
AD-A127 131 SOFTWARE FOR AVIONICSIUI AOVISORY RUP FOR AEROSPACE 1
RESEARCH AND OEVELOPMENT NUILLT 54*t-SEINE IFRANCE)
JAN 63 AGARD-CP-330

UNCLASSIF IEa ME
90/2 mnL

non

iiaa. *~ 3 2.2

11111 10
111I Al 3. II 2

III25 4II~ 1IN11.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDROS-1963-

AGARD-CP-330
0L
u

ADIOR RU O EOPAERSAC. E~OMN

AGARD CONFERENCE PROCEEDINGS No 330

Software for Avionics

~ *th~ ~ oproe~ APR 25 1983

Q--

DISTRIBUTION AND AVAILABILITY
ON SACK COVER

83 04 22 062

AGARD-CP-330

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

AGARD Conference Proceedings No.330

SOFTWARE FOR AVIONICS

Copies of papers presented at the Avionics Panel's 44th Symposium held at the
Atlantic Hotel, The Hague-Kijkduin, Netherlands, 6-10 September 1982.

THE MISSION OF AGARD

The mission o AGARD is to bring together the leading personalities of the NATO nations in the fields of ,cienwe
and technology relating to aerospace for the following purposes:

Exchanging of scientific and technical information:

Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defencc
posture:

Improving the co-operation among member nations in aerospace research and development.

Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the field
of aerospace research and development:

Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in
connection with research and development problems in the aerospace field:

Providing assistance to member nations for the purpose of increasing their scientific and technical potential.

Recommending effective ways for the member nations to use their research and deselopment capabilities for
the common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officiall. appointed senior
representatives from each member nation. The mission of AGARD is carried out through the Panels which are
composed of experts appointed by the National Delegates. the Consultant and Exchange Programme and the Aerospace
Applications Studies Programme. The results of AGARI) work are reported to the member nations and the NATO
Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published January 1983

Copyright Q AGARD 1983
All Rights Reserved

ISBN 92-835-032,-6

Printed by Specialised Printing Seri-ices Limited
40 Chigwell Lane. Loughton. Essex IGIO 3TZ

1i

THEME

The last decade has brought about an explosion-like progress in electronic data processing technology. This can he
mainly attributed to the continuously improving performance of semi-conductor devices with an ever-increasing inte-
gration density, and the tremendously fast development of digital computers.

While hardware costs for computers of all sizes are decreasing, costs and complexity of the associated software are
rapidly increasing. This problem has become even more critical with the implementation and application of advanced
microprocessors and microcomputers. With the high degree of digitalization in avionic systems, software determines.
to a large degree, the mission-critical performance in navigation, weapon delivery, flight control and defensive aids.

To address the predominant impact of software in avionics, it is opportune for the AVP. and in the interest of the

NATO community. to devote a symposium to this discipline.

.. The objectives of this Meetingaz. as follows:

- Provide an overview of the software elements associated with embedded computer resources.

Address current issues related to software requirements, design, development, verification, and validation.

Identify software life-cycle considerations such as costs, management, and maintenance. 1.-

D Iiscuss trends in software technology and identify the key features contributing to more efficient and more
economic software programs in the NATO countries. r

Au cours de la dtcrniere decennic. la technologie du traitement electronique des donn~rs a fait l'objet de progr~s
stup~fiants que)'on peut attribuer essentiellement a P~am~lioration continue des performances des semni-conductcur.,
accompagn&e d'une augmentation constante de la densit d'int~gration. et au cl %eloppenient extr~mernent rapide des
ordinateurs numi~riqslcs.

Parallement A une reduction des coiits do materiel des ordinateurs de toutes dimensions, on assiste i une
augmentation rapide des collts et de Ia complexit du logiciel qui lui est associ . Ce probl~me a rev~tu un aspect
encore plus critique avec la isc en oeuvre et l'application des micr6processeurs et micrbordinateurs de conception
avanc&e. ktant donn6 le degr 6lev6 de digitalisation des syst~mes lectroniques embarqu&s Ie logiciel dUtermine dans
une large mesure les performances. si importantes pour P'accomplissement de la mission. des syst~mes de navigation.
de tir de munitions, de contrble du vol et des aides Li Ia defense.

.. fin d'atudier lVimpact predominant du logiciel dans les syst~mes flectroniques embarqu~s, il est ii Ia fois opportun
pour I'AVP et b~n~fiquc pour Ia Communaut6 Atlantique de consacrer un symposium i cette discipline.

Les obiectifs de! Ia reunion sont les suivants:

proct~der a un tour d'horizon des 616ments de logiciel associ~s aux composants incorpores d'ordinatcurs.

traiter des probl~mcs d'aetualit poses par les impdratifs, Ia conception. le d~veloppement, Ia v&tfication et
la validation du logiciel.

dflhmiter les domaines int~rcssant Ic cycle du logiciel, tels que Ics cofits. Ia gestion et Ia maintenance.

examiner les tendances de Ia technologie du logiciel et identifier les 0l6ments cl~s qui contribuent i rendre
plus efficaces et plus &cnnomiques les programmes de logiciel des pays ~tf*N-

LIST OF OFFICIALS

AVIONICS PANEL

Chairman: Mr Y.Brault Deputy Chairman: IDr F.Dijamond
Thomson (SF Chief Scientist. RADC 'CA
D~ivision Fq nipements Rome Air D~evelopment (enter
AvioniquLes et Spatiaux Griftiss AFB,
178h Bid. Gabriel P~rj N.Y. 13440

92240 Malakoff USA
France

TECHNICAL PROGRAM COMMITTEE

Chairman: Mr Miacobsen
ALG-Tetetunken, A 14 V3
Postfach 1730, D-7900 Ulm
Germany

Members: Mr R.OMitchell, US
Dr A.A.Callaway. UK
Dott. Ing. L.Crovella. It
Dr W.Ware. US
Mr B.Mirailles. Fr
Dr li.1lessel. Ge

HOST NATION COORDINATOR

Mr E.G.HBleeker
Nederlandse Delegatie hij de AGARI)
PIA Stichting NLR
Postbus 126
2600 Ac' Delft
Netherlands

PANEL EXECUTIVE

L/CoI. J.B.C'atiller
AGARD/NATO

7rue Ancelle
92200 Neuilly-sur-Seine
France

CONTENTS

Page

THEME iii

MEETING AND PANEL OFFICIALS iv

TECHNICAL EVALUATION REPORT ix

Reference

SESSION I - SOFTWARE (S/WI TECHNOLOGY (TUTORIAL)

AVIONICS SOFTWARE: WHERE ARE WE?
by W.H.Ware I

AVIONIC SOFTWARE DESIGN
by D.E.Sundstrom 2

Paper No.3 Cancelled

SOFTWARE DEVELOPMENT: DESIGN AND REALITY
by H. von Groote and F.Schwegler 4

MASCOT DEVELOPMENTS TO IMPROVE SOFTWARE STRUCTURE AND
INTEGRITY

by H.R.Simpson 5

VERS UN VERITABLE ATELIER DE LOGICIEL AVIONIQUE
par G.Bracon 6

DISCUSSION FOR SESSION I DI

SESSION 2 - SOFTWARE AND SYSTEM REQUIREMENT ANALYSIS

REQUIREMENTS DECOMPOSITION AND OTHER MYTHS
by T.G.Swann 7

PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REQUIREMENTS
ANALYSIS TECHNIQUES

by C.P.Price and D.Y.Forsyth 8

THE A-7E SOFTWARE REQUIREMENTS DOCUMENT: THREE YEARS OF
CHANGE DATA

by L.J.Chmura and D.M.Weiss 9

D.L.A.O.: UN SYSTEME D'AIDE A LA DEFINII ION DE LOGICIELS
AVIONIQUES

par S.Chenut-Martin et F.Doladille t0

THE MENTOR APPROACH TO REQUIREMENTS SPECIFICATION

by D.Jordan and B.Hauxwel II

THE COMPUTER AIDED SPECIFICATION SYSTEM EASY
by L.Hirschmann and N.Christenaen 12

DISCUSSION FOR SESSION II D2

SESSION 3 - SOFTWARE DESIGN AND DEVELOPMENT PROCESS

THE IMPACT OF STANDARDIZATION ON AVIONIC SOFTWARE
by i.D.EnSelland 13

V

Reference

Adaa STATUS AND OUTLOOK
by J F.Kramer Jr. 14

STANDARDISATION DU LTR POUR CALCULATEURS EMBARQUES LE
PRESENT ET LE FUTUR

par J. de Montcheuil Is

OPERATIONAL FLIGHT PROGRAM DEVELOPMENT WITH A HIGHER ORDER
LANGUAGE

by R.E.Westbrook and L.L.Crews 16

AN APPROACH TO A PORTABLE PASCAL LANGUAGE FOR DIFFERENT
ONBOARD COMPUTER SYSTEMS

by St.Reitz and W.Wiemer 17

THE USE OF HIGH ORDER LANGUAGES ON MICROPROCESSORS
by R.M.Boardman 18

SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT
by R.Dibble 19

SAFETY CRITICAL FAST-REAL-TIME SYSTEMS
by B.Gusmann. O.F.Nielsen and RHansen 20

USABILITY OF MILITARY STANDARDS FOR THE MAINTENANCE OF
EMBEDDED COMPUTER SOFTWARE

by N.F.Schneidewind 21

SOFTWARE CONFIGURATION MANAGEMENT AT WORK
by J.T.Pedersen 22

CONFIGURATION MANAGEMENT AND THE Ada PROGRAMMING SUPPORT
ENVIRONMENT

by K.J.Pulford 23

SOFTWARE FAULT TOLERANCE FOR REAL-TIME AVIONICS SYSTEMS

by T.Anderson and J.C.Knight 24

Paper No.25 Cancelled

ELECTRONIC WARFARE SOFTWARE
by R.L.Shaw 26

DISCUSSION FOR SESSION III D3

SESSION 4 - SOFTWARE VERIFICATION AND VALIDATION

AN EIGHT POINT TESTING STRATEGY FOR REAL TIME SOFTWARE
by R.E.Wilson and N.Higson 27

TORNADO FLIGHT CONTROL SOFTWARE VALIDATION: METHODOLOGY
AND TOOLS

by R.Pelissero 28

APPLICATIONS OF NETWORK MODELING AND ANALYSIS TO SYSTEM
VALIDATION AND VERIFICATION

by G.M.Sundberg 29

IDA-LANGUAGE DE TEST DU LOGICIEL ET OUTILS ASSOCIES -
IDA-SOFTWARE TEST LANGUAGE AND RELATED TOOLS

par G.Lamarche et P.TailUbert 30

SOFTWARE VERIFICATION OF A CIVIL AVIONIC AHR SYSTEM
by M.Kleinschmidt and N.Sandner 31

vi

Reference

PROGRESS IN VERIFICATION OF MICROPROGRAMS
by S.D.Crocker 32

VALIDATION OF SOFTWARE FOR INTEGRATION OF MISSILES WITH
AIRCRAFT SYSTEMS

by J.R.McManis 33

IMPLEMENTING HIGH QUALITY SOFTWARE
by E.J.Dowling 34

LA QUALITE DES LOGICIELS AVIONIQUES: SPECIFICATION ET
EVALUATION

par G.Germain. M.Galinier et M.Delacroix 35

DISSIMILAR SOFTWARE IN HIGH INTEGRITY APPLICATIONS IN FLIGHT
CONTROLS

by D.J.Martin 36

THE COST OF SOFTWARE FAULT TOLERANCE
by G.E.Migneault 37

DISCUSSION FOR SESSION IV 04

SESSION 5 - SOFTWARE LIFE CYCLE CONSIDERATIONS

THE MANAGEMENT OF A LARGE REAL-TIME MILITARY AVIONICS PROJECT
by P.J.Carrington. R.M.Gisbey and K.F.J.Manning 38

F/A-I 8 SOFTWARE DEVELOPMENT - A CASE STUDY
by T.V.McTigue 39

A LIFE CYCLE MODEL FOR AVIONIC SYSTEMS
by H.Schaaff 40

AVIONICS SOFTWARE SUPPORT COST MODEL
by D.V.Ferens 41

A SOFTWARE-COST DATABASE FOR AEROSPACE SOFTWARE
DEVELOPMENT

by G.J.Dekker 42

THE MILITARY USER VIEW OF SOFTWARE SUPPORT THROUGHOUT THE
IN-SERVICE LIFE OF AVIONIC SYSTEMS

by S.J.Barker and B.Hambling 43

DESIGN OF A SOFTWARE MAINTENANCE FACILITY FOR THE RAF
by J.Whalley and T.H.Scott-Wilson 44

A SOFTWARE ENGINEERING ENVIRONMENT (SEE) FOR WEAPON SYSTEM
SOFTWARE

by H.G.Stuebing 45

ON AIRCRAFT TEST SOFTWARE FOR FIRST LINE MAINTENANCE
by H.Klenk 46

DISCUSSION FOR SESSION V D5

AV C p A'

.rzes the significant conclusions and recommendations from the

.tw~re will continue to be a major problem area, since advances in software

: ogy are matched by increases in hardware capability, the complexity of re-
;.:fements and the rate of growth in avionics software.

- ne requirement is to develop affordable avionics hardware and software systems
tnat are more reliable, higher performing, more flexible in configuration and
easier to modify than present systems.

There are too many different standard methodologies, too many different languages
with insufficient emphasis on good design techniques and tools. A strong need exists
for better coordination of software related research and development activities among
the NATO nations to increase overall efficiency and reduce redundancy of efforts.

A major challenge is to prevent software from limiting the use and performance of new
hardware technology, e.g. VHSIC (Very High Speed Integrated Circuits). Software
technology needs to be developed in consonance with hardware technology to make
effective use of available capabilities.

Avionics Software is moving into areas of such prominence that its failure might have
catastrophic results. Credible methodologies are to be developed to specify, predict

and measure software reliability. The achievement of adequate reliability and the
knowledge that this level of reliability has been reached are of prime importance.
Appropriate funding is required for Software Quality Assurance, Verification and Vali-
dation as well as Test and Evaluation.

Software will remain a dominant factor in the total cost of avionics softwire over
its whole life time. We, therefore, need to consider Life Cycle Cost as opposed to
acquisition cost.

Innovative techniques to permit reusability of application/support software are to be
developed. For increased software productivity integrated tools are needed which allow
for some degree of automation in software production.

It appears that the US DOD Standard High Order Language ADA is generally accepted by
most of the NATO nations. The importance of the ADA Programming Support Environment
(APSE) throughout all phases of the software development cycle must be emphasized.
Active European involvement in the definition of APSE/ADA is most essential for an
effective implementation process.

RECOMMENDATIONS:

- NATO or AGARD to support study to investigate alternative software development

approaches for large avionics computer systems.

- NATO or AGARD to support working group for the definition of a testing environment
related to APSE/ADA with promotion of strong European involvement.

- NATO to establish organization for coordinating software related research activities,

acquisition policies and standardization.

X

TECHNICAL EVALUATION REPORT

BY

M. JACOBSEN
AEG-TELEFUNKEN, ULM

1. INTRODUCTION

The 4ith symposium of the Avionics Panel on "Software for Avionics" was held in The
Hague, The Netherlands, 6 - 10 September 1 F2. The Program Committee consisted of

Mr. N. Jacobsen (GE), Chairman, Dr. W. Ware (US), Mr. R.O. Mitchell 'US),
Dr. A.A. Callaway (UK), Dr. L. Crovella "IT), Mr. B. Mirailles (FR),
Dr. H. Hessel (GE).

The technical evaluation for each session has been performed by the session chair-

men and edited into its final form by the program chairman. The evaluation has also
taken into account comments and recommendations which were received from authors/

participants of the symposium.

This report represents an attempt by the Program Committee to provide a summary of
the entire symposium and to draw conclusions and derive recommendations from the

presentations and discussions.

THEME AN, ;BJECTIVES

The last decade has brought about an explosion-like progress in electronic data
processing technology. This can be mainly attributed to the continuously improving

performance of semi-conductor devices with an ever-increasing integration density,

and the tremendously fast development of digital computers.

While hardware costs for computers of all sizes are decreasing, costs and complexity

of the associated software are rapidly increasing. This problem has become even more
critical with the implementation and application of advanced microprocessors and
microcomputers e.g. by the introduction of new technologies like Very High Speed
Integrated Circuits (VHSIC) and Very Large Sca'e Integration (VLSI). With the high
degree of digitalization in avionic systems, software determines, to a large degree,
the mission-critical performance in navigation, weapon delivery, flight control and
defensive aids.

To address the predominant impact of software in avionics, it was opportune fot the

Avionics Panel (AVP), and in the interest of the NATO community, to devote a
symposium to this discipline.

The objectives of the meetirg were as follows:
o Provide an overview of the software elements associated with embedded computer

resources.

o Address current issues related to software requirements, design, development,

verification and validation.

o Identify software life-cycle considerations such as costs, management, and
maintenance.

o Discuss trends in software technology and identify the key features contributing

to more efficient and more economic software programs in the NATO countries.

The symposium was organized in five sessions in which 44 formal papers were presented
covering

I Software Tech-ology (Tutorial)
II Software and System Requirement Analysis

III Software Design and Development Process

IV Software Verification and Validation
V Software Life Cycle Consideration

xi

i i

3. TECHNICAL EVALUATION

3.1 Overview

In most modern military weapon systems, software is the basis for tneir ar;:Oef.
behaviour. It is the means whereby computers and oomp-ter-bsel eemernt ure
structed to achieve desired operational capability; in a ene ware rvies
the "I.Q." of a military system. By its nature, thierefcre, sofware nas a a r
intellectual aspect that reflects the translation of user-ee f e req_.re-ents
into detailed specifications that will Decome computer programs frodacti, f -
ware must be looked at as a process, only a part of which involves or, fet-basel
tools. In particular, the predominant applications of such tools occur tari ne
coding phase; to a lesser extent, during the testing and Jeb .gin 7 as; - :
minimum extent, during the initial requirements specifiation hase.

Thus, even though significant advances have been made in provi ing s-pn-lsticate,
integrated and comprehensive computer-based tools for the development of software,
there still remains a large part of it that is not only labor intensive but is -.1z
intellectually intensive. As military systems ascend in their level of smartness
the expected performance of the software will become increasingly sophasticat
complex. Therefore, we can look forward to a continuing difficulty in sftaare ;r,-
duction for just this reason.

The papers at this synposium of course reflect a microcosmos Df the software
in the ':ATO countries. Bearing this in mind, it is nonetheless striking that tne
problems experienced in various countries are remarkably similar, and it is r'
that the state-of-art in software production is not significantly oifferent aarsJs
those NATO countries who reported to the conference. This phenomenon is itself a
manifestation of the intellectual content of software and a reficction of a drive ty
all countries to create appropriate software development environments.

It is true that standardization of approach, of language, of management mechanis,
of documentation, and of other aspects of software will lead to economies. 't e.
not follow that such standardization automatically guarantees a successful ooftwar,
undertaking. The current state-of-art in software seems to be that no matter now
competently any organization tries, and no matter how complete and contemporary its
management and software development environment, some projects will still be less
tractable to a successful comoletion.
Such is the problem we face.

The military world does not dominate software matters. While military requirements
tend to be specialized in the sense that such software must function in a reil-time
environment, must be proof against anomalous and unexpected behaviour, must not
jeopardize flight safety, and similar stringent requirements, there are nonetheles
enormous software undertakings in the business and industrial world as well. The
track record there seems not to be dramatically different. Since computer tecnnolo,'
- both hardware and software - is spread widely across military and nonmilitary
activities, there is little Research and Development (R & D) activity one can re-
commend that would be specifically beneficial to military affairs.

Thus, such desirable advances as improved higher order languages, more comprehensive
and powerful validation-and-verification techniques, more thoroughly integrated
development tools, more comprehensive requirement specification tools, and all the
rest are equally applicable across all fields of computer application.
Certainly, standardization within a country or even within a company is a necessary
effort. On the other hand, there is always a possibility that arbitrary enforcement
of standardization will of itself inhibit the introduction of new advances; some
consideration must be given to this point before embarking on standardization as a
goal unto itself. The real issue is not whether to have standardization, but rather
to what degree and in what areas it should be imposed.

Thus, the appropriate posture for NATO is to encourage and support as much software
R & D efforts as funds and qualified researchers maKe possible. Correspondingly,
NATO and its supporting industrial base must be quick to recognize and exploit soft-
ware R & D advances that come from industrial organizations, universities, or else-
where.

Xii

1

.c Opening Speech-'!

Aften nrof erlac- in' ns capacity asecr
,f A?- n3 warn welcomed the pantc,--t 'f th -ymp-:'M

1 r e in)r f teni'l ofthe oya Xe''n' r ,e r -
,3,teteme of t.%e acetic;.

tco' is n aised in this speech becan t'w red 1 ',e -r .Z t
s e--seg the need for Software standardi zatlo% J:, 'cc~ -.

lit YI es in.: to netter e ffec,-r
io f ooftwane iaeo~ 'nefacs r:-I ,r.

i .ron ,Iru. He stnessea the impontance A -A

-Aill yr-vi ie''-e~ ' to enrite a i tarable an!es i r
1- i~ii*all] :evelcpei a
w'o acn -,tyson vta s ~ u

Ae:er : A 'r 'aa ' lel IA nieecn. wi'lth e
bte t 'more e ftfi ci1er':. - ""nor i-c D,- c a I t arc -n-- .C -

view '!,e "-'lat ',- -I *Cn- -. e ,-r

ofc -f .or

The~ fnt papr, by t r nli Wan 1 e

and reviwaei the rogres in4 factic scfin 'r -

It y then c nee tat'.int-the jienios f te"-!'rw!z' ibre r,-n:i.
impl mntat i ad maaemn ,,el ooftwarv,---- i. rw-r
Following ;y a ,.r reviewr- ofth -av ncs ,e in so iri- f'
agains demans ofinc reaspeingcoex

fntormationas-reoc.

Dr.s sesdstonms d~esine asan "A inc ofjtane ?esig'e , -.i-;

cusedinmntseadetnodsi latri sin o o Jenral ?*nt- -'5'nli

craft.le describedae for pntcsofwrto r

ho wa rlatively siplned sotwresede'sinpoesaoex ~ '"sc; -)vr'-
ipprtast vpabe n thatgint rheprsne na mas ;en' vi
avoisfware esign concept.hiaw a'alii~e n.- dr

The follwin paper (' was als gie fro t11e pWine of view of tnv i:cn
this teied B.t waors yin avnircste fta Scw-r and was enii."Sfwr;Pvl

it coensciderediecceapcsasigotf the -development of the Tornaoc cperat on'l
fmlghtpram In his prnaeentati 4oDr vo .od hihihtdt.s...e hchpoe

coteto be crtcalsand.te papesas inclddals ftosadtonqe hc

repierene had proedtnos rn be c f asitnene suc devlomets

craf . H des rib d t fo r p rt s ftw re -;*rAct re ']hc na te !.

ho eaieysml otaedswI r~s rDefo :e-i ' e

One of the modern software development techniques which was Jisoussej in some de'311 in
Session III is MASCOT. In Session I, Dr. H. Simpson, one of the inventor3 of MASCOT, pre-
sented a tutorial (5) on MASCOT developments, particularly those deslgrec t- improve -Ke
structure and integrity of the resulting application software.

The final paper in the session (6) was presented by M. Gilles Bracon an! was entitlei:
"Towards a Genuine Workshop of Avionic Software". This paper gave details of Electronque
Serge Dassault developments leading to a software generation suite known as AISLE.

SESSION II - SOFTWARE AND SYSTEM REQUIREMENT ANALYSIS

Introduction

The development of a written software requirement specification is the first step in the
software development process. Poor requirement specificationoare the largest contribotur
to software errors. This session therefore was taylored around the advances in require7ent
analysis and specifications. Transforming user needs into testable requirements is -1
difficult task. Good software requirement specifications must be complete, consist-nt,
correct, concise, unambiguous, measurable, traceable and design free. The high error
frequencies in analysis and requirements can be reduced by application of structure-
disciplines, precise language, and automated tools. Improved nethouiclgies and tools fr
developing software requirement specifications have been presented in tne papers
session.

Technical Evaluation

Dr. T.G. S" n's poper (7) "Requirements Decomposition and Other 'ytno" de-orieoo
problematics of reqL -ements interpretation, emphasizing the most likely wr~n e
that can occur in the design.
In particular, the author suggested a theoretical means for generation of t e ";erf, t-
specification, i.e. the complete, formal, non redundant and unambiguous ne.

The following paper (8) by Mr. C.P. Price "Practical Considerations in the Irnt ..-
of Requirements Analysis Techniques", on the contrary, dealt with a practical ap;liltir
of the requirement analysis techniques by describing methods and tools to u i' the enei .ter
particularly in analyzing and expressing system or software requirements of Large project3
in a controlled and precise manner. The author also pointed out that, as in any compter
aided system, advantages will oe lost unless adequate training and preparation is maje
prior to starting adoption of the system.

Mr. D.M. Weiss's paper (9) "The A-7E Software Requirements Documen Three Years of Change
Data" presented a detailed analysis of the approach applied and the results achieved by
U.S. Navy in producing the A-7E Software Requirements Document, which is a complete and
concise description of the aircraft Operation of Flight Program (OFP), and in monitoring
its changes.
Success in change cost reduction is based on the strict application of the Software Re-
quirements Document.

Mr. F. Doladille's (10) paper "Un Systeme D'Aide i la D~finition de Logiciels Avioniques"
described another automated system, under realization in France, for airborne software
documentation definition and modification.

Mr. D. Jordan's paper (11) "The Mentor Approach to Requirements Specification" presented
a data base system for the maintenance of the technical documentation to be utilized by
systems engineering. Trends in its growth potential towards a more sophisticated system
were also described.

Mr. N. Christensen's paper (12) "The Computer Aided Specification System EASY", descrlbed
a specification language developed in Germany and already employed for a non-avioni. pro-
ject, with future use for an avionic system design being deemed possible.

The support tools used and the problematics encountered during the program were also hih-
lighted.

Xiv

-T -OFTWARE DESIGN AND DEV LOP tENT PIRDCS

I''' 1 tter'ae -, Seso_,0 III ware u'-ar'"'oas i's- re - ' -31 '.ee"-s a'"' z.en-

r :-i 1 hi s -r t iclsar fi1el '- r e 1 e f -s_ c' 1 r n -
1n ed o a '11Iz t~ ifte i :,f ~ f iE- at r' was soon felt .

tr ; -- r-a l'ttle ti ieran*n 'I 1, aatpz arr aa '"7 te-a e of t'-eir
7. i'-,,_,a1 very , e i Q. c ira -icte I1c- -,irj-r 1 tth sr -"i ' ocm r*

..a-ever ---- r " C'vir-' '--'" wart ("level ;m,,-

1m f- w:r r

ab tv - i -. " t " .ar 1'

falair ic l r ,. ,f tr 1 ''-5)

ff re.a a~et- r - "-a e 7 e Yz c , r 1r
a-ilis: -- ii alj " r.i 'an rlt a,-ij ' aa-' a 1 !e ti

'--''-rr laooesa r x "a aaea ' rwe-rza>ve

"rae' f n'''1 -1! 2 n I I c . t irnra !he e i t:.- f)')reae
4
ial s z the ia' , fac7- :-

!iava- '.1 r- na a-ois l-i alo t - " 'e 'vl e- to at% a' o as 1- a

T 1 tr ,e fa a r f vj.l erne.' 11tvasa. fwre c eI.r -n cran - ,o

,Dfk '" '-t r et an1 ireita e i .5 xcr a--. C - sotw r '-aa-e~n ne::
p-i-I a' t rsrw or -are it eea

r " lit or rn-at , a1lly - q"1i l t i - t a-a''" -its w rie _-- ' a -" tra l . h stn
rA, f ani~ra atr a, e inp'a'' f a lana-cei'' ' " Av'io

0
fw e" atr

a-ir r a'y " -t n"f'ie!en 1. 'i'ia """a- er-a, sofwar ,so

-'i--it erf p no;l-"va'ld-'-erti e a' ve af'-t' no en""an "d tha pesrtt soister,

I) a, iralie a'ot irto o -- a"" ,) tne -pr'np n a" - o saif - - tral i

fehia ala-sri D!

ra-I? -'a-'-e- 11-, ri (I " lAst be01e4e 'ar -- s., r-s"'-'ert a ac r;-o-. ± rein e v fri

t' 1 r 1 c i -n t '- b I e a"'cev -f) ,-a' . '-rr"' xmpe ,fn th ut il

C-Ct e -s j r s _r h f n e Tith ar i v n o a

i)ri~t rr-qa i--. jL re'aa a 'f -raala'a -t: '-"ala , ' 'o -terir
- '1- -y t..l.ie taoar'i of '' A' F, '"yn e i re' ~ 1:1

I f,;, : ") M : I I1 I il :1 1 _ tn t mel

Mr. Reitz (17) "An Approach to a Portable PASCAL Language for Different (n--oard Computer
Systems" presented a study on PASCAL, supported by the German Federal MIinistry of Defense.
The main ideas were portability, application for micro-processors, ievelopment on host
computer, hierarchic design, flexibility, efficiency. Shortcomincs in the basic veri:-r
- in particular for real-time applications - have made it necessary to write extensions.

Mr. Boardman (16) "Use of HOL on Microprocessors" also dealt with the topic of Hign CrIer
Languages (HOL) mainly emphasizing the rationalization in microprocessor software re-'uin'
from the uise of HOL compared to Assembler, feeling, however, that the gereration of an
equivalent Assembler listing at the time of compilation is indispensable. He ail- stresse:
the improvement of maintainability. He underscored the importance of the test pnase (on-
-line, off-line) and descrioed the experience with the language "C V5AL r-".

In paper No. 19 "Software Design and Development Using "ascot", M1r. Dibvle preer.'e a
method of analysis and management with its general principles, its rl.s f il ,
and several real ceses. This rigorous method reluires structural moiJiaraty 'n! ficilina-
tes, according to the author, the containment of the tren towards inreisir# -aftware
costs and the improvement of software reliability.

Paper No. 20 (Dr. Gdsman) "Safety Critical Past Real Time Systems" hnl e]'e 'rstlem
safety in real-time systems utilizing several processors. Tne Oie-i Jeriv<.

.
'rim t:.e

analysis of real cases have resulted in the definition of -'"mber of oril'ra for tne
selection of a high order language (HOL); among four langua.es .×.minel, tne laoge
"C" has been selected and applied in two projects. These application-s were escrmcei,
and the position with respect to ADA was outlined.

Prof. Schneidewind (21) "Usability of Military StandarJs for the alntenance cf Embes Sec
Computer Software" particularly emphasized the impact of sta 'ars on th'e ma:ntena.ce of
embed-ed software, with a detailed inv tigation of three !.S. stan'aris. -e cDoncluej
that this impact is often weak, and that revisions :-,ehe e:.eral ly, he 1s
of the opinion that maintainability must be defined and pur.ie4 'is " irlv as ;s:;ible in,
the development process.

Configuration Management is an essential technique in con'rsllir.g tt]e stftware level
ment process. Two papers addressed this topic. The first by r. PeJersc!, (21) "

5
o f"-ware

Conflguration Management at Work", presented experiences gamnej fr-m '4orwe; ian Se fense
Prograjmo.
Mr. ''F-lford tnen prejente:o an interesting paper 1! "C-1,fiearat n 'as heent ar. I the ADA

Programming Support Environment (APSE)" (, -. Co nfiJ irat ion . 1!.e t qu a i ty assurance,
better manageability of the levelopment prce oo, reuction Df .ftw ire costts, visitility,
portability are the objectives.

Paper No. 24 on reliability "Practical Software Fault Tlerance for Real Time Systems"
presented by Mr. Knight was a fine an- clear intrDuoction into fault-tolerant systems.
Some basic notions were explained, and the principal charactritics of toe fault-tos!r~nt
software system were defined.

Paper No. 25 cancelled.

Paper No. 26 "Electronic Warfare Software" presertel 1y '-r. .Thaw Jes"ribed a case stusy
showing the topicality of the Eloctronic Warfare softw:ire prDol"m a 'J tho metho c appliel
to solve it (definition of an ideal instructin set, of ber.ch rparson with toe
application of analysis standards, ind performanoce of existin, compiler-).

SESSION IV - SOFTWARE VERIFICATION AND VAL:ATIO'N

Introduction

With the advent of software intensive weapons systems containing more an, more embelle
computers and incorporating system architectures of ever-increasonge complexity, increases
emphasis has been placed on a category of testing which is callea software Verifioatin
and Validation (V & V).

Verification and Validation is a -ystematic evaluation of software Juring Ieve'opmest.
The concept is that a more orderly and efficient process results when V & V techroiq-,es
are implemented. Simply stated, verification and validation is an in-process review anl
analysis of eac.' developmental step to assure that the software being developed a-heres
to the technical abictives and conforms to the software requ_:'ements specified. Mre
precisely, it is a step-by-step examination of program requirements, specification, unit
module and system level code during ani, as the case might be, very oco:, after develop-
most. The quality and cost of software are the Key parameters the te-oi.ni e o- V V par-
p-or' .o to control.

xvi

Session IV, Software Verification and Validaticn, in keeping with Ie overall t!.eme
the conference addresses:

1) current issues in of:ware technology related to the development of 4ualitv s3ftwara

2) emergi-ng disciplines and methodologies designed to provide tecnncoal practt'tlners

with tools to control software cost growth.

It is an expanding opinion that because of the intricate nature If software :. avioni¢o
systems, isolating the "software problem" is most difficult and perhaps no looser ;raoti-
cal. Toward this end, to realize the full potential of the advances in V i V technil-es,
a complete testirg environment is required. The testing environment should cover th.e fu_
spectrum of software development. The papers of this session tended not to to tlis, oat
to focus or the current problems at hand. In general, the strategy and testlng metnhos
adopted by programming staffs cover only partial segments of the total process due
primarily to insuffiolent resources being allocated for testing. Still, there appearel
to be some need to rethink the approach within these resource constraints. For example,
ota was presented whicn represented the relating cost of errors based on where tne
-ccrre in the development cycle. Software errors discovered in tne test phase were
shnwn to cost ten times more to correct than errors uncovered during the earlier pnases
f reluirements and jesign. The paradox is that there was little evidence snown in the
uerspresenteJ indicat ing this as a driving factor in our testing approacn. any Osthoro

o-wever, spuce of toie need to research and exploit the concept of a complete s~ftware
testing environment, using microprocessor technology, and taKing 7ore of a system level
ipproacn to test ing.

It was suite clear from the papers presented in this session that there was nn
to the global problems of software quality and cost growth as a result of software V V
activities. The authors in their discussions and from toe data :.resente: di. ive ioji-
cations that a testing environment, complete with automated tools, would el: i:La.
in coping with the exploding use of computers in every facet of avionics s"stems. Yet,
there is no widespread mandate to define such an environment, to commit the resources,
to conduct the necessary research, or to establish the required universal standarls.

Technical Evaluation

The paper by Mr. R.G. Wilson (27) "An Eight Point Testing Strategy for Real-Time Software"
proposed a viable strategy for software testing. It represents a disciplined approach to
software testing beginning in the development cycle at module coding (build) and proceeding
through the integration ph.ase. The testing concept uses both a static and a dynamic environ-
ment. The testing strategy is based upon the software being decomposed into modules and
top down structure to do useful work. The philosophy of build a little, test a little is
employed until a fully integrated system is in place. The paper considered the responsibi-
lities of the programming staff using this strategy and assessed the problems encountered
in re-testing due to the errors detected.

Dr. R. Pelissero's paper (28) "Tornado Flight Control Software Validation: Methodology
and Tools" discussed the use of a real-time facility with a closed feedback loop for
testing critical functions. The basic intent is to be able to accomplish on the grourd
the testing of real-time avionics functions that are mission critical. The paper des-
cribed the real-time facility used in testing the Tornado flight control software and
elaborated in detail on the results. The paper concluded by offering the feasibility of
extending this concept to other critical functions.

Mr. Sundberg's paper (29) "Applications of Network Modeling and Analysis to System Vali-
dation and Verification" is a concept of applying system analysis technique and engineering
discipline to the software development problem. The system proposed by the paper, using
network analysis and Boolean logic techniques, enables the verification and validation
of complete software intensive systems or concepts at any stage of the development cyclc.
The paper concluded that the use of such a technique which provides uniform applicability
across all phases of the development cycle will result in a more reliable product.

The paper by Monsieur Taillibert (30) "IDA-Software Test Language and Related Tools" dealt
with the idea of a testing language with the objective of defining the resources require.
for the testing of real-time software. The paper described the study undertaKen and pre-
sented the definition of test language which resulted. The paper put forth several typical
problems (including parallel processing) which are likely to be encountered aid ajresse!
how the test language would solve these problems. The point of the paper was the desirabil-
ity of the use of a macro-language and a library of standard tools from early in the de-
velopment cycle to test real-time software.

Xvii

-.. .- rr

-. r ' t t. _'Ir.L0 t i- 1 ' t yr e .: r 2:<- '-

* r.' C7.' ~ r. r ,i l . r - r

r ra :' 1,1 - I), : -,,

ri 7 e7 M

!ep 4o1e1 ' r i i Mi s1e . -- In w

tI i i : , ! rt -r''-e _

it r t r rr" 7, iif)te ' a >' fe r 71 nn' ig1,.

41 loe A" t t1iprrn Mn - i ro , - 1 pm e 7 E i

w~ 1 e.'iit fir Pe rs p2...~e r

-n 7 prny'r 1M m:r y~ wwre rpec siat7' t 1r

x>l i 'twr' :11 "im fl1pte re
1

aic AndCt o~lemi e for j Iae " & p
l,, Ii~ i" , l I -rr, an.'. I rt~s " ow'ai " ', 1art '' ro ow unsr , C

w ')A e . i nna Ar la'-at 'v nm Crier irue.D e ajR s
'eve i Iispe"'n'rtontn al t ri evreaD'm- g trocnest :

!r. ara . er (it) , "The>in1jrj .ofw vre t'
4

a'I'" : Ap.lCatiiO Ph& I i
"c

t
rl" i: re twr ., i i'l toeis n reel fo a h aprs m te 'l eoi :tr tsa t%,p ' *'ts .

r inti l-! o, iliab x t rid o fec he nn Plo' 17 ti tc piae ofc 'osrilar D
HA. [on ax an cs . 1a reoundort asl fo i.. wor qo aii iffiero sc. wr i% - -Ic-* 1
vnaelun3 tfearsopan c~aiprcnt s anicropocessor wasn 150.mi-1 *a~n D!i'rae of~ tits rc-
tecara diesign on sofjetwaepoe.e a rnc r'

with theat th; at sr er ror 3s cn a nou wa e to nIctc an ha t th ppp112ape occlp ansi 6
nodel tha ttems to bnlanc the stem proc leve 'elationsap amog te fcos costt

M"eounay andeablity Mr.e Mas 3ful' pctare p1lropose" pd te use of' faultac

teniaqaco as a reins 'of controlling 'he cost of sotaewhile bu.ying only the reli
ability n eelel.

xviii

E_\

. * .. - .. :7Ah 25F 5YL :-EIATICXS

r,: '. y e onsiJerat-ns :.a. -eon .ne in re ent yeirs an: it s
I'rb 'isos of this sessiDn t:st a eoral inerstanio of .
.• r ti*:J resent':

-t - e interface uetween user an. producer
- feonn:Ical aspects/solutions related to software reliuti ty in: ma--

y -if ye "e ez en, e e rrn envronment wncY s iports n -: : tne islo:;v

t im1za i i ne me't roceires nd ass-ctate toiDs.

wer', i ;rme:it ,ve].t nav e sstasfyn 4 general SOeut o.S to the p r i7ms. e . "
tr e a t oe r r we :nave n , J muon wore: rema..s to -7ne t na

5

'-re and more complex systems.

015h41i Evai uat ionhrd~aloa

Dr. Carrington's paper 35), "Management of Lrge rea1-Cime "-it :ny .'zono's
?norams", presented the experiences amne: urin tne.'ee me:.t f e 1.- - r--
ceslna and display system flown, in tne SAh tro: I . :t empnase r .
by additionai reqirements durine. toe levelopment pnas sf r f
management procedures and of tools to 3voi/reJ.too these risks.

Mr. Mc Tigue's paper (o), "F/A-
T
I Software -evelopmen a 2 e ;t re-

successful avionics software development for the FtA-It Hornet---- i-t -erA-tt -W,
System, and emphasized the different phases of the Jevelspment pro)es o ass__,-te
test strategies and support facilities.

Mr. Schaaff's paper (i.2, "A Life Cycle Model for Avionic Systems", rese2-' ! i- r
concept highlighting the early project phases functional/technicai dezthn wl'n respeC'
to cost and time for toe whole software life cycle.

Mr. Ferens' paper (-1), "Avionics Software Support Cost Mocel was presented Cy "-r. -aw.
The model is based on niistorical data from USAF Logistics Centers and is desiglneJ to
evaluate software life cycle costs during the conceptual phase of a project.

Mr. Dekker's paper (42), "A Software Cost Database for Aerospace Software Development"
also described a software cost estimation method based on historical data. Toe problem
of the method is the collection of representative data from completed projecto.

Wg Cdr. Barker's paper (43), "The Military User View of Software Support Throughout the
In-Service Life of Avionic Systems", was an excellent presentation on the current soft-
ware life cycle considerations. It emphasized first the need for a better communication
of user and producer with respect to operational, technical and budgetary aspects, an'
second the work on a Software Support Environment like APSE/ADA as a significant step to
reduce software life cycle costs.

Mr. WIalley's paper (44) "Design of a Software Maintenance Facility for the RAF", des-
cribed the tool which is being used by the Royal Air Force for the maintenance of navi-
gation and mission system software. It pointed out that future software maintenance costs
can only be reduced by establishing suitable hardware and software standards.

Mr. Stuebing's paper (45), "A Software Engineering Environment for Weapon System Software",
discussed the experiences since 1975 with a "Facility for Automated Software Production"
(FASP) at the US Naval Air Development Center which supports the coding and testing by an
integrated environment.

It emphasized the necessity that a System Engineering Environment should be an integrate:
environment which supports the weapon system over the entire life cycle from mansion re-
quirements to in-service maintenance.

Dr. Klenk's paper (46), "On Aircraft Test Software for First Line Maintenance", descrabes
a separation method for avionics test software design and implementation in order to re-
duce software maintenance costs in the in-service phase.

xix

I~ e'

n. -I ,I

e~ !. n .' ex r1 r ' ,I'

treeC-r Aeoi a.- -*-m'"".n A- n Nn

n f t e 1:aln s e iir 1 0erin2

wyi re so wr 4 a~ 'Q> e .; A ~ l

reir an L' *'m Dr Anersi4 e 34g"4e 'a:' w i ~ 3" n

a-nti:' v mer0-

r0 0 Y"n,

'r .2 - f c.'

n r dire -i% env.n ' r 'i-f'0'

xx

V l am Df code;

capacity and performance of computers.

This is why the user must become well aware of these problems and their consequences
prior to defining his development policy and to making his technical choices. He most
learn to adapt his ambitions to his possibilities and his real requirements.

As the complexity of software systems increases, it becomes increasingly difficit t
predict how they will behave in any given scenario. Testing is of value in this area,
but has its limitations. The highest priority in improving the quality, maintain-
ability and efficiency of software designs must, therefore, be assigned to Improvement
of the design process itself.

it is certain that nothing will prevent ADA from substantially characterizing the fiel:
of design and development of avionics software in the future. However, ADA, complete
with APSE, must be carefully developed such that its full potential benefits are
realized. There is a great preoccupation with developing integrated sets of software
tools. This has been recognized in the ADA development program, with the requirement
for APSE (ADA Programming Support Environment) assuming prominence equal to the
language development. Whatever language is being used, a need exists for an integrated
support environment. More work must to be done in clarifying and examining standardiza-
tion options in this field. An urgent requirement exists for becoming familiar with -e
potential and limitations of ADA/APSE.

The software Validation and Verification (V & V) efforts are non-standard, injivalo-
lized approaches to software testing with each company, agency, country, etc. genera-
ting testing techniques for their specialized use without the concern of reusatility.
The disappointment is the inability for others to use not only the ideas but also toe
actual code without totally recreating specialized versions. Uniform definltio an'
agreement on testing methodologies would be beneficial.

Although softw .re experts believe that V & V is an acceptable approach to sftwire
develop-nt, the initial investment has discouraged many acquisition nanagers. i
software experts believe that V & V is a cost effective ventore. However, the cost
reductions are minimum during the development phase but more extensive drcng the
in-service support phase. Since there is no documented data that aecrately assesse:
the value added (cost and quality) for systems using this technique, a~d snce m-st
of the system cost growth will occur during the in-service suppo rt phase, it has beeo
impossible to get a full commitment to the V & V approach to take alvantoce of the
potential such a process holds.

Many papers centered around the existing software development proceos and sougot tc

define or develop techniques for its implementation. based on the content of these
papers, the foreseeable advancements are evolutionary and will not provide tne ;untn
step that is going to propel software development into a highly productive, low cost,
very reliable undertaking; to this end, rather some revolutionary action is reoired.
The level of explorato;y resources indicates no such change at this time.

Software technology requires improvements in all areas to cope with future needs.
Research and development shouild be directed towards areas promising improved software
juality and reduced software cost. Comprehensive near-term software policy initiatives
are required by NATO.

xxi

AVIONICS SOFTWARE: WHERE ARE WE?

Willis H. Ware
The Rand Corporation

Santa Monica, California

Abstract

Since the digital computer first flew in an avionics system 25 years ago, the

art has progressed from small very slow vacuum tube machines with limited memory to
fast chip-based machines that not only do sensor processing but also integrate a

variety of data sources into many capabilities--among others, navigation,

sophisticated weapons delivery, programmed menu-displays to the air crew. As onboard
computer hardware has proliferated, software inescapably has also. From a few hundreds
of program words at the beginning, flight software is commonly many tens-of-thousands
of words; frequently, a few hundred tbousands; and in some cases, even a million.
Thus, implementation and management of software resources has become a major problem
area for military services. The paper explore* dimensions of the issue as it now
exists, suggests many positive actions unervay, and proposes a direction in which the
future may well move. It concludes that software will continue to be troublesome;

progress will come slowly.

Before asking where are we in avionics software, we first ought to ask where have we been; then we can

ask where we are going. Among the earliest, if not the first, digital computer to fly, was one in the NA-I
fire control system. It was developed in the early 1950s for the F-102 fighter to control the Falcon
missile and folding fin rocket*. A vacuum tube machine using subminiature tubes, it operated only at

hundreds of operations per second. It could not accommodate the full dynamic behavior of the fire control
and launch calculations; primarily it supplied constants to the analog computation of the fire control
equations. Its operational program, measured in hundreds of words, was contained in a small magnetic drum
on which individual instructions were spaced circumferentially to accommodate the latency time of memory
access. Parenthetically one might wonder whether anyone today would still know how to do minimum latency

programming. The program was done in a machine language, and life-cycle support of software had not yet

emerged'as an ongoing operational issue for military services. Interestingly, KA-I still flies in the F-
106; its operational life has exceeded 25 years.

By contrast, the Air Force F-16 fighter is among the most highly automated of deployed operational
aircraft. Instead of vacuum tubes, F-16 avionics uses modern microelectronics; its fire control computer

has 32,000 words of memory and runs at some half million operations per second. While 128,000 words of
computer program fly in every operational F-16, of this only about 30,000 words are written in the high-

order language JOVIAL J-35-2. The rest are in the machine language of whatever computer happens to be

involved, e.g. the microprocessors in the stores management subsystem, the signal processor in the radar,

the microprocessor in the heads-up display. As a second example, the U.S. Navy F-18 flies 400,000 words of

program which executes in some 13 machines; about 2 percent of it is in an HOL. The LAMPS helicopter also

has some 400,000 word, of program on board; of it about 30 percent is in an HOL. Turning to larger
aircraft, the U.S. Navy P-3 land-based airborne early-warning vehicle has 700,000 words on board, 128,000

words of core memory, but also over one million words of diagnostic and maintenance programs. Originally

done in assembly language, it is now approximately 70 percent in HaL after a major upgrade. The analogous

Air Force AWACS has 512,000 words of memory. Some modern-day military aircraft have a centralized
computing function with point-to-point wiring for signal paths, whereas others--notably recent tactical

fighters or upgrades--use data bus architectures with some measure at least of distributed processing.

Some onboard systems have a capability for degraded modes of operations as equipment fails, but others have

virtually no fallback capability.

Indeed, we have come a very long way in terms of the amount of software that flies with modern-day

aircraft, a long way in terms of the speed, size, and power attributes of electronics, and a long way in

the level of automation. Obviously, though, the penetration of HOL languages is neither as uniform nor as

deep as often believed. It varies from a few tens of percent in contemporary fighters to many tens of

percent in the larger vehicles, especially those that have been upgraded. The NA-I system is where we came

from; the F-16, F-18, P-3, and AWACS are representative of where we are.

To explore where we are, let us note some dimensions of modern avionics software. First of all, what

is "the total software job" of a modern aircraft? The first and most obvious component is that which flies
onboard--software in a radar, in the heads-up display, in the stores management system, in the inertial

navigation computer, the air data computer, possibly a fuel management subsystem, perhaps a separate

display and controls management subsystem, or perhaps an entirely separate system (as in the B-I bomber) to

monitor all else for malfunctions and to capture maintenance data. In the most complex of aircraft, all

such systems will be networked together by a bus arrangement often presided over by a central computer

complex. Just as we have not progressed all that far in the use of HOLs, neither does the reliability of
equipment always exhibit outstanding field reliability. It might be, however, if one were to measure some

ratio such as reliability-to-complexity, perhaps progress is better than normally perceived. Be that as it

may, onboard equipment does malfunction and so modern aircraft have an extensive array of ground support

equipment, which for the mst part is software controlled.

I 2

Among the ground-based diagnostic and repair facilities is one often called the Avionics Intermediate
Shop, generally a highly automated complex of test stands that can examine equipments which either have or
are presumed to have failed. Supporting the AIS level of maintenance is a depot or rear echelon capability
that generally deals with problems at the electronic card level rather than at overall equipment level.
Here one finds a wide variety of automated test equipments, most of which are software driven and
controlled.

Just as equipment must be maintained in operational status, so aircrews have to be properly trained.
For that purpose crew training devices of many kinds are utilized for modern aircraft. Perhaps the most
widely known example of this technology is not an airborne one but rather the crew training simulators used
by NASA for manned space missions.

All the software implied by the prior discussion had to have been developed somehow, so one commonly
finds one or more program development environments for the working programers which includes all the
diagnostics, testing tools, recordkeeping tools, languages, compilers, etc. used in modern software
development and its management. Contrary to the common perception of 25 years ago that operational
software would never change, it is now widely understood that it does and will continue to change for a
variety of legitimate reasons. Therefore, a modern deployed highly computerized fleet of aircraft must be
supported by a facility for the life-cycle support of software. Among other things, the latter includes a
software development environment for each of the computers whose software is to be maintained and for each
of the languages that are flying and in ground support.

However, it must also include a variety of test and simulaticn tools to assure that software changes
have been properly made and will not lead to new anomalies of behavior. In addition, there usually also
must be appropriate flight vehicles, perhaps especially instrumented, to make certain that all is well with
the updated software before it is dispatched to the field. Sometimes, especially when the computer
involved is a microprocessor, any software involved will be regarded as simply another component of the
equipment, which will be tested end-to-end for functional performance without special explicit tests of the
software. This view has been taken, for example, in new commercial aircraft; and hence, any life-cycle
software support in such instances is seen as an obligation of the vendor supplying the basic equipment.

Thus, when one speaks of "the software job" for a modern aircraft, it proves to be an enormously large
undertaking. Moreover, it implies ongoing attention to change just as does physical modification of
aircraft. At minimum, the software job for a modern combat aircraft is a few hundred thousand lines of
code; but if all of the software development tools must be built as well, then it can be many hundreds of
thousands. For large sensor platforms with extensive diagnostics the corresponding number can exceed a
million. The many components of the total software job share a unique characteristic however; they must
all be kept in lock step. The ground-based test equipment must examine equipment boxes as they are, not as
they were a year or more earlier. The crew trainers must mimic the aircraft as it is, not as it was.
Life-cycle support must match equipment as it is, or in some circumstances as it will be. Finally, we say
have to do configuration control of the software by production block numbers, and in some circumstances
even by the tail number of an aircraft.

Thus, in addition to all the usual management difficulties associated with large and diverse software
undertakings, there is now a time synchrony aspect that can be difficult to accommodate. It is especially
so, given that the several components of software are, in the United States Air Force at least, handled by
different groups of people at different places, in different organizations--some military and some
contractor--and often with different planning and funding arrangements. In one sense it can be observed
that the wide exploitation of computer technology in modern aircraft has lead us into a morass of difficult
organizational and technical issues; but it is part of the price to pay for military air power capability.

Where do we stand? Computing technology continues to be very dynamic. Software is a very manpower-
intensive undertaking that is difficult ti manage and frought with danger. Seemingly, the number of
successes as measured by budget and schedule ar± far outweighed by the number of failures. Software
generally is entirely too unpredictable at the outset in regard to its eventual cost, the date of its
eventual completion, and its ability to realize the user requirements as he really wants them to be, versus
what he perceived them to be at the outset of the program. Finally, there is always the question of the
resources needed for ongoing life-cycle support.

What is being done about this array of problems? Special languages have been developed and are
gradually coming into use to support the initial requirements analysis phase, and to assist in tracking the
translation of such requirements into corresponding software capability. Some automated design techniques
are slowly appearing, and there is discussion of, but not too much success in, reusable portable software.
New languages--such as ADA--are being completed and will be introduced into military software programs.
Standardization is finally achieving some level of success; at least in the Department of Defense there now

exists military standards for data buses, for languages, for instruction set architectures, and for
acceptable HOLs.

Some of these techniques have just moved from the research laboratory into the development world, and
hence their effect has yet to be felt. Clearly, some installations and some contractors are in the lead;
but even in the best places software disasters continue to occur. Beyond that though, there is still a
major part of the software community supporting the Department of Defense that has yet to be introduced to
the most contemporary tools, techniques, and management approaches, and to be trained in their effective
use. Some things thought originally to have been truths are yet unvalidated and may prove to be mythology.
It remains to be seen, for example, whether extensive use of an ROL will result in cost savings either in
the initial development or in the ongoing life-cycle support. Limited evidence suggests that it will not
happen. Similarly, the arguments for standardization suggest significant cost savings in term of logistic
support, replication of software development support tools and environment, training of people, etc; but in
this case also, the penetration of standardization is presently minimal and its payoffs are yet to be
realized and measured.

Hence, there are advances underway that promise future benefits for accommodating the difficulties
that have appeared through wide exploitation of computing technology in modern aircraft. There are other

1-3

things coming along, however, whose consequence is harder to judge. Ahead, for example, is a new VISIC
era in semiconductor technology. Might it make possible capturing specific functional capabilities on a
chip, thereby eliminating at least some part of a software job? Yet to be felt are the fullest impacts of
the microprocessor advances. As they grow smaller and more capable, will we see an increasing array of
equipments that are microprocessor based, my contain extensive software, but are treated, tested and
maintained as functional equipment without regard to software content? Is there some possibility, for
example, that some part of the software job can be passed off to the suppliers of equipment? Clearly,
there has been progress in dealing with software; there are new ideas and advances in train. What though
might the future look like? What conjectures can be made about it?

Admittedly, it is a judgment call, but in my view the odds are that every problem that we now have
with software, will continue to be so and perhaps more so. Why? The automation levels on newer aircraft
are bound to increase as the task environment in which the aircrew must function becomes evermore complex.
Even today's pilots commonly state that the job in the cockpit is far beyond what can be accommodated by an
individual. Many, for example, say that of an aircraft's total capabilities, a given pilot is familiar
with and exploits perhaps only a third of them. Probably, however, each pilot specializes himself to a
different third.

One can project, I think, that avionics systems will Set smarter in the sense that their behavior will
be perceived by users as having some level of intelligence. The evolving technology of expert systems and
knowledse-engineered systems is bound to find its way into aircraft, and as it does the "IQ", so to speak,
of the avionics system will gradually increase. There are some very profound technical consequences of
projections such as these not only for implementing better systems but also for maintaining them. If we
are successful in building smarter avionics systems, will we be equally successful in assuring that they
can be maintained in operational status and repaired in the field by military manpower?

The computer programs to provide higher levels of automation and expert systems will be enormously
more complex than even the worst of today. The programing job will be more difficult to do and will use
more sophisticated techniques; thus one can imagine that the management task of producing such software,
and testing it to assure that it is adequately error-free, will also increase in difficulty. If smart and
highly automated systems are to be accepted by their users, then they must be available when needed and
they must perform as expected when needed. Thus we have ahead of us the task of handling much better the
whole business of malfunctions, anomalous behavior, fault detection, maintenance and repair.

It is commonly acknowledged throughout the industry that there now is a serious shortage of properly
trained personnel--both for creating computer programs as well as for managing the process--and the
situation is not likely to improve. Computer technology is still diffusing so rapidly through the world at
large that the demand for such talent is high everywhere. Hence, the commercial organization that support
military systems will have to compete with a rapidly expanding commiercial world for what is already in
short supply.

Everything clearly suggests that aircraft will continue to get ever more expensive; therefore looked
at as a resource to be maximally exploited for military advantage, a faster sortie turnaround rate will be
essential. This point reflects itself partly in the issue of managing faults and error problem, but it
also reflects itself in the ground maintenance aspect--notably rapid testability and identification of
trouble, efficient means for removing-and-replacing, and fast checkout of an aircraft on its way to the
neat sortie.

Look now at technology push and technology suction. Whether one country likes it or not, potential
opponents will make technological advances that result in new capabilities and opportunities for military
action. To counter such ever-increasing threat, at least equal progress will be needed in order to remain
superior. Thus, the military establishment will always require the best of technology to accomodate an
enlarging threat. The technologist himself, as he perceives the need of the military services, will
encourage use of his capability. Thus, military systems will always be on the forefront of technology.

For most of the parameters important to flight performance and the technologies behind them, there
simply is not much room to grow. Progress in such things as propulsion, lift-to-drag ratio, or thrust-to-
weight ratio will be measured in a few tens of percent at the best. In contrast, growth in raw computing
power still promises at least a factor of 10--and perhaps even 100--as we move into new more elegant
semiconductor and switching technology. If--and it's a big if--we can build software whose growth In
capability approximates that of computing hardware, then we my be able to vigorously exploit a resource
not commonly perceived as part of an aircraft, namely data available to it from sensors and information
that can be derived from such data. It is conceivable to my mind, that while the usual vehicle performance
parameters may grow only slowly, large increases in military capability may nonetheless be achieved through
a highly automated, wholly integrated information infrastructure to manage the vehicle and support its
crew.

As we better understand decisions and actions that a pilot makes, complex information processing
system can be designed to do things that were formerly the prerogative solely of the human mind. With sew
progress in electronic technology and therefore in computer hardware, we will be able to architect systems
whose individual components are not only highly reliable but whose system availability is even higher.
This will not minimize the whole issue of health status monitoring, fault diagnosis, and repair; but it
probably will affect how maintenance t done, the magnitude of the logistics tail, and the geographical
location of repair facilities. Military aircraft will continue to push the forefront of informtion
technology; and because skilled personn-I will continue to be in short supply, ad because we will be
building ever more elegant systems, things *n the software world are not likely to get much better is term
of the overall job, in spite of all of the positive efforts now underway.

Life-cycle support is not likely to change either, although its details may somewhat. Kiatorically,
what was once called maintenance of software was seen as a nuisance to be minimized. It is now u mertood
that the changeability of software--as awkward as that may be or as demanding of resources as it my be--is
still the easiest way to accommodate inevitable change in the military threat and the unavoidable changes
demanded by operational users. Whatever the problem of modifying software might be, it is still easier

'-4

and less expensive than modifying physical equipment. Among other things, replication of software is
automated, error-free, and inexpensive. It can be shipped to the field for instaLlation rather than
bringing every serial number of some equipment back to a depot for modification.

While computer hardware apparently will be no problem in a real sense because of progress in the
semiconductor industry and such specialized efforts aa VHSIC, sensors and instrumentation may be a problem;
they have been in the past in other areas of automation. We will need to know, for example, what the
aircrew is up to, which way they are looking, what they are intending to do, what they are planning to do
in the next minutes. How will the crew comunicate its intentions to automated systems? I can imagine
that the development of appropriate sensors to sake measurements not only on the world but also on the crew
and the aircraft--and they will obviously be computer-based ones--might be a pacing item in moving up the
level of automation.

If this is a valid projection for the future, then one must focus immediately on the software issue of
the future. Clearly, airborne computer hardware is progressing extremely rapidly, and one can stipulate
that it is unlikely to be the pacing item. On the other hand, we will continue to have all the problem
dimensions now associated with and understood about software. We will certainly encounter new ones, some
of which have been suggested. We may have to build software intensive systems that function on various
aircraft, systems that are cross-service, or even multinational systems. One way or another though, we who
are in the computer hardware and software world of military aircraft can look forward to a continuing
growth of onboard computery, and a continuing ever-widening exploitation of information. After all,
information is the universal commodity that keeps all complex systems functioning, and to make better use
of it, we have only digital technology.

The military user will state his operational requirements as best he can perceive them, but software
intensive systems are so complex in their eventual behavior that the user often cannot understand what he
wants until he has first seen and has used the end product. For relatively simple software-based systems,
tiis issue may be inconsequential or even absent. For the most involved ones, tiowever, we will probably
have to accept a fairly intense modification, update, and support activity in the early part of operational
life as the user really comes to understand what the system can do or might do. This is quite aside, of
course, from whatever design flaws or anomalies of behavior remain in the delivered software for whatever
reason. The odds are that life-cycle support of software will never stop throughout the entire life of an
air vehicle or its systems. Moreover it has become clear that everything is likely to have a much longer
operational lifetime.

The real pacer of an information intensive avionics future is almost certainly to be the frontend
intellectual understanding of just what functions the user wants, and how they become software. We will
need research emphasis for many years to understand how to develop and manage not only user requirements,
but also their translation into software requirements. In this regard, one must note that the precision of
dialogue demanded by the software design process is rarely matched by the precision with which user
requirements can be stated and transferred to software designers.

While we should not predict the future with gloom and doom, nonetheless I think we must realistically
acknowledge that software will continue to be troublesome. Moreover, it will almost certainly continue to
be seen as the culprit for a whole variety of ills. I do think that changeability of software, and hence
its life-cycle support demand, will increasingly be acknowledged as a positive feature rather than an
annoying nuisance that cannot be avoided. Thus, some of the past negative attitudes toward software in
this regard will gradually erode. While the software world has devoted itself in the decade of the 1970s
to understanding and developing specialized management techniques for implementing it, the problem in
software is often an incomplete intellectual understanding at the beginning of what it is really supposed
to do.

Of course the computer software scene will improve somewhat; there are a lot of positive actions
underway. We will improve our mechanics of organizing and managing software projects. Occasionally some
software project will even go smoothly because it will represent a task that is conceptually simple; or a
task that is fully understood intellectually; or a task that has already been done before, and therefore a
kind of software prototype exists. In particular, the intellectual prototype of the job to be done will be
understood. To be sure, HOLs will improve and they will help; but system developers are moving slowly into
them. New HOLs such as ADA will undeniably be very useful in providing a structured way in which to
describe software requirements. Moreover, such languages will provide an unambiguous way to communicate
among people that are involved in the user requirements, in system requirements, and in software
requirements phases.

Let us acknowledge all the positive steps now underway to improve the whole software situation in the
broad. Let us take credit for all the improvements that will happen in and from HOLs, improvement in
management techniques, improvements in descriptive languages, and all else. No matter how good we get,
software in my view will continue to be troublesome and progress will come slowly. There will be the
ever-increasing demand for military capability to counter new threats; software that must be built will
ever-increasingly try to implement complex intellectual information processes; the unavoidable intellectual
understanding of the frontend requirements process will continue to be a pacer. It is not a dreaded future
though; it is an exciting one as we in the avionics business learn how to create a fully integrated
information infrastructure for military aircraft. Unlike the relatively stable future of many technologies
involved with the air vehicle itself, we in the avionics business have several decades of dynamic future
as we learn how to exploit information as a resource to achieve large advances in military capability.

AVIONIC SOFTWARE DESIGN

Dr. David E. Sundstrom
General Dynamics
Fort Worth Division

Fort Worth, Texas 76101

SUMHMARY

Time, theory, and applications experience have lead us to an understanding of a very
specific software prodact, the avionics operational flight program. The knowledge we now
have permits us to identify a common software structure and design methodology. The

structure reflects the characteristics of the avionics environment, and is applicable to
mission processors, stores management processors, integrated cockpit control processors.
and possibly others.

In this paper we identify a number of characteristics of the avionics environment
and relate these characteristics to design requirements for a common software operating
structure. The adoption of this structure supports a design methodology which has many
desirable features, beginning with common naming conventions, an emphasis on data flow
specification, and clearly identified design responsibilities. A discussion of the
structure and the design methodology are provided in the paper.

This structure and methodology has been demonstrated in production F-16 airplanes
and is currently the developmental basis for multiple software programs in advanced F-16

versions. It represents a mature and transferable technology.

I. Introduction

Digital processing in the airborne environment has reached a point of maturity in
the core area of avionics. Processing tasks in this area, which may be conveniently

called mission data processing include navigation, weapons delivery, displays control and
annotation, and self-test fault data reporting. These tasks were among the first to be
automated in early analog computers and the first to be automated in digital processors.

The shared experiences of the avionics community in achieving numerous implementa-
tions of mission knowzledge processing has brought this area to a maturity. It is a
maturity in the sense of our ability to understand, analyze, and trade-off requirements
and in the sense that implementations are now generally of low risk. As a community, we
have a broad understanding of the organizational and management requirements and the
computing and support resources required, We are even beginning to converge on the
appropriate cost factors. Other signs of maturity include the emergence of standards, of
applied high-order languages, quality assurance practices, and user groups.

But this is not to say that all avionics processing has reached this stage of
maturity. Integrating software, that associated with mission knowledge processing, is

best known. The lesser understood areas run in three directions: towards high speed,
high data rate signal processing applications, toward the replacement of hardwired logic,
and toward the specialized control of sensors and control devices. Our topic in this

paper is the design of avionic software, specifically the mature areas of mission
knowledge processing software.

We can understand the general characteristics of mission knowledge processing soft-

ware by understanding the avionics environment. Hence, our paper provides first some

thoughts on the characteristics of the avionics environment. Following this, we explore
the structure of an avionics software system. Finally, we discuss the design process
itself and identify several concepts in design methodology which have proven benefits.

II. Characteristics of the Avionics Environment

The primary function of an avionic system is to integrate the data acquired by sensors
into information forms useful to the pilot. Interactive controls, displays, sensors, and

targeting devices are included in current systems, and it is clear that advanced systems

will involve many forms of automatic control of flight.

There are three significant characteristics (reference Figure 1) related to this

functional environment that strongly influence avionic system design and the associated

software design. First, we are dealing with a real-time, sampled-data environment which

contains numerous feedback control loops. In man: cases, we rely on the pilot to close

the loop, but in others, such as controlled pointing of a radar antenna or a target

, i•,I

EXTERNAL SENSOR M ISSION CONTROLS EXTERNAL
ENVIRONMENT PROCESSING PROCESSING PROCESSING ENVIRONMENT

OBSERVABLES

" REAL-TIME, SAMPLED DATA SYSTEM WITH
DISTRIBUTED PROCESSING

9 ALL PROCESSING AND COMMUNICATION AMONG

SYSTEM ELEMENTS IS DETERMINED IN
DESIGN PHASE

* EFFECTIVE PILOT INTERFACING REQUIRES
A PREDICTABLE, REPEATABLE SYSTEM RESPONSE

Figure 1 The Characteristics of the Core Avionics Environment Are Known

tracking device, the control process has been built into the mission processing function
The second factor influencing design is the simple fact that all systems users. task,.
and communication are known a priori. Finally, the cost of development and operation.
and the need to limit pilot workload requires that a deterministic execution of modes and
tasks be pursued, in which predictabilit, of response is essential. The recognition of
these primary characteristics can lead to significant design implications as outlined below

Real-time, sampled-data control system environment. This environmental facto:
requires that sampling frequencies be compatible with hardware stability a:2 -stem
accuracy requirements. Further, the inter-equipment data bus which transro- "e sam
data must enable periodic dat- transactions having known propagation deL.

These factors must be recognized and dealt with in structuring the avionics interface
and associated software designs. The data bus control protocol for example. must provide
for the required periodic data transactions that are so critical to the operation of
sampled-data control systems. (In this regard, protocol designers must recognize that
their systems must meet the stringent requirements of control systems and not simply the
more flexible requirements of communications systems.) Within the software bus contrcl
algorithm, provisions must exist to carry out the required data transactions at the
predetermined rates and phases.

Known tasks design environment. The avionic software environment is benign in that
all computing users are known at design time. This is in contrast to the usual university
or industrial computing environment where the users and their programs are unknown and
some may be hostile. This fact, that all applications are known a priori, leads to
significant reductions in operating system complexity.

University courses in operating systems stress generality, protective features,
capabilities for tasks to request I/0 or scheduling of other tasks, and privileged modes.
These general capabilities, when applied directly to the avionics environment, are wasteful.
They are wasteful because the powerful features of a general operating system require
considerable memory to store and duty cycle to execute.

A better solution is to downscope the generality and arrive at a simple operating
system tailored t6 the avionics environment. Privileged modes are not needed, for
example, since the access rules and control can be exercised through the normal design
process. It is better not to allow tasks to request I/O or to schedule other tasks
recall that we are dealing with a control systems application where time-predictability
must be a major design consideration.

Deterministic execution design. The software to control the operations of avionicsneeds to be repeatable in operation and predictable in performance. Several factors leadto this conclusion. First, the need for time periodicity in control systems. Second,the need to he able to analyze and predict behavior of algorithms. Third, the need totest the software and to be able to reproduce test conditions and replicate events. Fourththe essential need of a human operator to rely on the consistent actions time after time.
Deterministic software design can be achieved through a priori scheduling, throughexclusive mode definitions, and state transition tables. For example, the applicationconfiguration of the avionics flight program should be a function onlv of cockpit switchpositions at each instant. The alternative is to remember previous switch settings sothat operational history becomes a part of state logic. This is vei undesirable becauseof the uncertainties induced when testing or troubleshooting, not to mention pilot

operations.

III. A General Structure for the
Avionics Flight Program

The characteristics outlined above identify the environment of the avionics flightprogram. The characteristics, when coupled with the design and structural advances inthe understanding of software technology, make possible the identification of a generalstructure for an avionics flight program. The technology advances referred to are thosein areas of data flow and control partitioning.

The general structure of the avionics flight program (Figure 2) consists of onlyfive major parts. As may be seen from the figure, the internal partitioning of functionsreflects the hierarchy present in the external environment. Recognizing the existence ofa functional separation is in itself a significant achievement, for it allows categori-zation of signals and events and helps to avoid multi-purpose types of input data. Klcs(kXos, L. C., 1978) addresses the interface approach to avionic software definition inhis NAECON paper.

HARDARE U ESPILOT INTERFACES,

OAI
O

" STER

BASE C~hPRO

AOPLICATION

COMETVINENTS

Figure 2 A Generalized Avionics Software Product Structure Has Been Identified

2-4

In this general structure, the executive has only the function of time partitioning.
The executive enables periodic tasks, background tasks, and interrupts. The executive,
however, has no knowledge of the applications or the switch commands or of control modes.
These are handled elsewhere. Closely related to the executive is the computer self-test
which has the continuing task of validating the operations of the machine.

The bus control and formatting section deals only with getting data on and off the
bus, the timing of data transmittals, and the handling of transmission errors. The
formatting portion handles the scaling and packing of data as well as validity checking.
Hence, the program component has the function of gatekeeper, allowing only valid data to
reach the program data base.

The data base itself has two sections. One section reflects the interface to the
external environment while the other reflects the data shared by applications. When
structured via a high-order language such as JOVIAL, the data base provides an excellent
place from which software interface management can proceed, more discussion is provided
in Section IV.

The system control component may be thought of as the applications executive. This
component provides the single-point focus within the flight program for processing
cockpit switch commands, pilot interfaces, and mode status of external equipment. By
having a single-point control component, displays content can be insured consistent and
modes can be clearly defined for entry and exit. Further, this approach proves favorable
to implementation through table structures, which provide a great help to insuring a
deterministic, state-oriented system. Edwards, in her AGARDograph article (Edwards, J. A..
1980) discusses this in detail.

Finally, the applications components emerge. These represent the classical functions
of navigation, weapons delivery, and other mission-related functions, It is in the
applications area that the specialization of the program occurs, where, for example, the
difference between fire control and stores management processors is most distinct.

This simple structure has been used in several versions of the F-16 and has been
proven effective. It provides a design environment that is manageable on understandable
program framework. Moreover, it shows the way to providing executive-to-application
interface standards. The following section will elaborate on these considerations.

IV. A Supportive Design Methodology

Simple ideas, such as module naming conventions, can be more useful than perhaps
is commonly recognized. Nomenclature, then, is one element of a design methodology.
Two other elements to be discussed here are the interface approach to data flow
identification and task assignment partitioning for the design team. These elements fall
into place once the structure of the flight program is recognized.

Nomenclature conventions support the development by clarifying relationships and
ownership of modules. We use two levels of identification (Figures 3 and 4). First.
a component is idenitified. A component is a major task area that usually requires one
or more engineers to develop. A component consists of segments. A segment corresponds
to a module or procedure.

Once identified, a component is given a name and a two-letter tag that will be used
to prefix all segment names. For example, the navigation support component has tag NS and
all segments within navigation support are coded with NS as a prefix. Thus, we have
NSALT, the altitude adjusting segment, NSWINDS, the wind computing segment, and NSINIT.
an initializing segment.

This convention introduces wonderful coherence into the development and maintenance
of the program. Since the nomenclature appears in the product specification - where
components correspond to chapters - and in the listings, it is easy to read the documen-
tation and to relate the parts. In the laboratory environment, the nomenclature is a
great aid in recognizing code.

Suppose, for example, an engineer in the laboratory observes a computer error occur.
By inspecting the registers, the faulted instruction is found and the indexed listings
then identify the troubled segment. The name of the segment immediately identifies the
component and hence, the responsible design engineer.

FUNCTIONS
* TASKS PERFORMED BY AN OFP WHEN VIEWED EXTERNALLY

(EXAMPLE - AIR TO GROUND)

* APPEARS IN DEVELOPMENT SPECIFICATION

COMPONENT
* A MAJOR BUILDING BLOCK OF AN OFP(10 TO 20 PER OFP).

NORMALLY CONSISTS OF A NUMBER OF SEGMENTS (10 TO 40
EACH), RELATED TO IDENTIFIABLE FUNCTIONS.

SEGMENT
* AN ELEMENT OF A COMPONENT (E.G. PROCEDURE, MODULE,

OR SUBROUTINE ARE EQUIVALENT TERMS). A SEGMENT IS
A SCHEDULED TASK, EITHER THROUGH THE EXECUTIVE OR
SYSTEM CONTROL ACTIONS.

SYSTEM CONTROL
* THE COMPONENT OF AN OFP THAT CONFIGURES THE APPLICATIONS

TO SUPPORT THE REQUIRED FUNCTIONS.

Figure 3 Operational Flight Program (OFP) Nomenclature Conventions

*ALL COMPONENTS HAVE A TWO CHARACTER DESCRIPTOR, FOR EXAMPLE
COMPONENT ABBREVIATION
EXECUTIVE EX
SYSTEM CONTROL SC
AIR-TO-GROUND AG

*ALL SEGMENTS CARRY A COMPONENT PREFIX AS PART OF THE SEGMENT
NAME. EXAMPLE

SEGMENT COMPONENT
AGLADD AIR TO GROUND
FXFRZ FIXTAKING

* DOCUMENTATION FURTHER USES CPC NUMBER IN IDENTIFYING
INTERMEDIATE FLOWCHARTS, EQUATION SETS, AND SEGMENT NUMBERS
EXAMPLE

CPC 6 FIXTAKING 6.1 THRU 6.26 SEGMENT NUMBERS
6.1 THRU 6.33 EQUATIONS SETS

Figure 4 Software Item Naming Conventions

Of course, the flight program structure has further helped us here because the

coherent partitioning of functions has made it possible to isolate problems. Under this
approach, we are not troubled by interacting chanbes. Flags, hidden logic, and assump-
tions are minimized. Since these are things which result in interacting events, the
cases of change-induced problems have been minimized.

The interFace approach to data flow identifications recognizes that data interfaces
must be complete and well-specified. Two aspects emerge, first, the specification of the
software to the external environment, and second, the specification of segment-to-segment
data relations. Interface management has long been recognized as a critical discipline
in systems design; our extension has been to carry the same recognition down into the
detail design of software within a single processor. An example of the types of sLructures
and approaches being used is illustrated in the graph of Figure 5. More detail on the
structuring of interfaces with a program is contained in the Klos and Edwards papers
previously cited.

...... 1 254

S.,. SCSI CL020

.. . .. s s: SC CI-

L A O C Rt- O 4 -

ZAZiAATIO

Figure 5 This G raphic Approach to Interface Definition is acked b a Detailed Specificationof Sinal Attribute

It turns out often enough that external interfaces may be negotiated by engineerso are not familiar with details of machines and languages. Where this condition exists,wh eracmay be structured without adequate consideration made of software impacts.For those implementing MIL-STD-1553 data busses, the Edwards paper (Edwards, 3. A., 1979).
on formatting will provide excellent guidelines.

The final element of a supportive methodology relates to organizing to accomplishthe design task. The flight program design team can be organized around the structureidentified in Section II. Such an organization will have the hardware/software integra-tion experts developing the executive and bus control components and the mechanizationexperts who understand the pilot-cockpit interface and the modes and functions of theweapon system will be assigned to develop the system control component. The applicationcomponents will be identified through functional partitioning and will be assigned toexperts in navigation, altitude filtering, numerical integration, and other such functions.
And very importantly, the data base can be managed by an identified peron whose
responsibility it is to negotiate data flows and structure the organization and distribu-
tion of data.

sCQ9lG2f

V. Recent Experience

The structure and methodology described above was initiated through funded research
(Engelland. J. D. 1977), and brought to bear on the full-scale development of F-16A/Bfire control software. Most recently, the concepts expressed in this paper have beenapplied to the development of multiple software programs for the F-16C/D airplanes.

The F-16C/D represents a considerable avionic extension over that of the F-16A/B.and requires software to be developed for a fire control computer (different from thatof F-16A/B), for a stores management processor (greatly different from F-16A/B), for anup-front integrated cockpit controls processor, and for a multi-function displays processor.
The latter processors are completely new development items for the F-16C/D.

Our review of appropriate design approaches and methodologies supported the basicconcepts outlined in this paper. In several cases, the desire to fully embrace standard-ization and to introduce common elements into our approach caused us to strengthen ourperceptions. The resulting approach (illustrated in Figure 6) introduced hardwarefeatures common to all the processors and to support equipment. Software commonality wasintroduced through the general program structu.re and design methodology outlined here Asummary of the extent of software-related commonality in this project is provided in
Figure 7.

HATCHING IDENTIFIES

U::: COMMON ELEMENTS

AESSMvSe
INTEGRATION

INTEGRATIO N

SDESGN/TEST/FAB

OFP DEVELOPMENT

L ,.~TESRTO

..SIGN POR S. T ATOS EIG

Figure 6 The Design Approach Emphasizes the Use of Common Elements to Minimize Development Effort

OFP SOFTWARE DESIGN
*COMMON DESIGN METHODOLOGY
a COMMON EXECUTIVE, DATA BUS COMPONENTS
* COMMON STRUCTURAL DESIGN

INTEGRATED SUPPORT SOFTWARE & OFP FAB
9 COMMON HIGH ORDER LANGUAGE
e COMMON DEVELOPMENT TOOLS
* COMMON FAB PROCEDURES

SOFTWARE TEST STATIONS
" COMMON PROCESSORS AND OPERATING SYSTEMS
" COMMON REAL-TIME MONITOR HARDWARE
*COMMON OPERATOR INTERFACE AND CONTROLS
*COMMON RECORDING & RETRIEVAL SOFTWARE

AIRBORNE HARDWARE
e 1750A OR Z8000 PROCESSORS (INTERIM PROCESSOR)
*COMMON DESIGN OF INTERRUPTS& FAULT REGISTER
* COMMON BUS INTERFACE OPERATIONS

Figure 7 Common Elements Simplify Development and Anticipate MIL-STD-1750A in Production

V. Summary

The approach described above has been successfully used in the development of
F-16A/B fire control software. The same approach is proving valid in the development
of F-16C/D software, which includes fire control, stores management, integrated cockpit
controls, and multi-function display management. Before adopting this structure and
methodology on the major F-16C/D project, we undertook a careful scrutiny of methodology.
The resulting approach added new ideas but also sharpened the old.

The F-16C/D software flight programs all use the general structure illustrated in
this apper. The executive was developed once and provided as a ccrmmon element to four
design teams. The same is true of the bus control software. Data base management
practices have been made common and the nomenclature conventions also adopted.

In short, the maturing of a general structure for avionic software design is at
hand.

Acknowledgements

The structure and system reported on in this paper builds heavily on foundation work
accomplished by J. D. Engelland, L. C. Klos, and J. A. Edwards. D. 4. Daggett has
supported this structuring and constructively steered it in the mat' ing process.
S. A. Alford has been instrumental in the implementation of the --vecutive, control
algorithm, and hardware provizions.

References

1. Edwards, J. A., 1979, Inside MIL-STD-1553: Interface Format Guidelines, NAECON,
pp. 419-425.

2. Edwards, J. A., Jan. 1980, Advanced Design Concepts and Practices in the F-16 Mission
Computer Software, NATO AGARDograph on Guidance and Control Software.

3. Engelland, J. D., et. al., August 1977, Operational Software Concept, Final Report,
AFAL-TR-77-78.

4. Klos, L. C., 1978, An Interface Management Approach to Software Development, NAECON.
pp. 741-748.

.. .

4-1

Software Development; Design and Reality

Dr. H.von Groote and Dr. F.Schwegler

Messerschmitt-B6lkow-Blohm GmbH
Unternehmensbereich

Flugzeuge

Postfach 801160, D-8000 Minchen

SUMMARY

This paper describes some experiences gained during the development of the Operational
Flight Program of the MRCA Tornado. A short outline of the organisational structure and
of the Avionic System is given, followed by the description of the different design and
test stages of the OFP. Then some general reasons are presented which caused major
changes to the software specifications and which are believed to be true for any
development of a new avionic system. The paper concludes with a description of the
purging process of the assembler program.

1. Introduction

The Panavia MRCA-Tornado has been developed as a joint European venture of the three
Nations Great Britain, Federal Republic of Germany and Italy for the operational
scenario

* Interdiction
* Strike IDS Tornado
* Close Air Support
* Reconnaissance
* Air Defence ADV Tornado

the ADV being a UK-only requirement. The first production aircraft of the IDS was
delivered in 1980 to Cottesmore training centre; right now the third batch is in
production, and operational service has started.

Fig. 1 shows the overall organisational structure for the design, development ana
production of the aircraft. The Ministries of Defence of the three Nations have
established the Nato MRCA Management Agency (NAMMA) to act as their Executive Agency wo
in turn contracted Panavia Aircraft GmbH as industrial organisation formed by British
Aerospace (BAe), Messerschmitt-Blkow-Blohm (MBB) and Aeritalia (AIT). The Panavia
Partner Companies are the prime subcontractors for design, development and production.
With respect to the avionics system they each act as Panavia's agents towards the
national equipment suppliers. Each of these partner companies also manage an avionic
system test rig for full scale integration of the avionic system. The responsibility for
the avionic system's design and development was placed on EASAMS, UK, who in turn
subcontracted ESG of Germany, SIA of Italy and itself to staff the international Central
Design and Management Team (CDMT), which was responsible for the avionics system &
subsystem design, and the International Software Team (IST) which formed part of CDMT
and was responsible for the generation, testing, and configuration control of the
Tornado Main Computer software. Each company formed "In House Teams" who managed the
CDMT controlled development rigs and implemented CDMT design requirements on equipment
level.

Since this can only be a rough outline of the tri-national organisational structure
we refer to previous AGARD presentations (Sanderson K., 1980 and Harris D.J., 1979)
where the different tasks and activities during the development phase are described
in more detail.

Today the tasks for CDMT have ended, the rema.ning activities for productionising and
modifications are placed on the a/c companies under the leadership of MBB for the IDS
Tornado. The now-named International Programming Team (IPT) still co-resides with ESG
who manage their test rigs.

2. The Avionic System of the IDS-Tornado

In order to provide a background for what the software was written for, we give a
short outline of the avionic system describing those features which have major
implications on the development of the Operational Flight Program residing in the
Tornado Main Computer. The most critical requirements for the system are

IJ

4-2

* high speed low level flight
* first pass aquisition of targets
* accurate weapon delivery
* acceptable workload of crew
* high reliability and maintainability.

These requirements are fulfilled by a semi distributed system which is divided in the
following subsystems (see Fig. 2)

" Navigation
* Weapon Delivery
* Terrain Followinq/Automatic Flight Director System tTF/AFDS)
* Displays and Controls
* Recording
* Computing

Generally speaking each subsystem has its own computing power which allows for a
stand alone capability. The full performance, however, is provided by integration of
the subsystems performed by the computing subsystem which consists of the central
computer, the Tornado Main Computer (MC), and two Interface Units (IFU). The MC is
programmed in Assembler and communicates with the other systems via one-way serial data
links. For those equipments which do not conform with the serial data standard, the IFUs
perform the necessary data (onversion.

The system encompasses dual redundant high precision navigation optimised by a
Yalman Filter, automatic track and attack steering, A/G and A/A target aquisition and
tracking, weapon aiming calculations and generation of release cues, and various modes
of navigation and target fixes. Ample use is made of electronic displays to provide
comprehensive information and guidance to the crew.

More detailed description of the system and its functions can be found in
Bross, P.A., 1981.

3. System Design and Test Stages

The System Design was broken down into subsequent stages which provided more and
more detailed specification of the system and its components. (Fig. 3)

The prime document which formed the contractual basis between NAMMA and Panavia for
full scale development was the Performance and Design Requirements (PDR) document. In
the PDR the operational requirements, the avionic equipment fit, and the overall
functional characteristics were laid down.

The avionic system was then divided into subsystems which were defined in subsystem
specifications. These reflected the relevant parts of the PDR and describe the
structure of the subsystem, the internal and external interfaces, the operationally
visible performance, and general aspects like safety, reliability and maintainability.
They explicitly or implicitly became the high level specification of the operational
software.

On the hardware side we then have the equipment specifications which became the
contractual technical description of the equipment. They implicitly also defined the
dedicated software specific for that equipment.

The system software, within the Main Computer, is defined in a series of Software
Requirements (SWR), which describe the operational requirements by defining the
logical and mathematical functions to be carried out by the software. They include
description of crew actions, switching functions, priority and iteration rate of tasks,
and relations to other documents like other SWR, equipment specifications, the
Interface Control Document (ICD). They also contain two annexes, the Logic and Equation
Development and the Outline of Test Requirements.

The ICD describes all the interfaces of the avionic systems detailing all signals,
signal types, ranges, accuracies, iteration ra~es, sources and sinks, and so on.

These documents were generated by CDMT. Except for the ICD they were written in plain
English and maintained manually since at that time computer aided tools and methods of
specifying real-time systems were not yeL available. We shall come to that point later.

The SWR formed the basis for the program definition performed by IST. The first level
document was to be the program specification describing the program structure, the
functions of the scheduler, packages and subroutines, the data base and I/0 areas. The
internal structure of the packages, their routines, subroutines and interfaces are
defined in the Package Specifications. Then follow the flow charts and finally the
source code listing which was to be carefully commented in order to put the assembler
code in context with the applicable documents and how they were realized by the code.
The rules for programming and documentation are laid down in the Programming Guide.

4-3

Testing of the software and the system is performed in basically 5 stages. (Ficl. 4)

Stage 1, located at ESG Munich, is the workbench for the IST where the programs are
generated and tested using a host computer, early development models of the MC and
TV/TABs, and an external computer for open loop simulation of the avionic environment
with the aid of models derived by CDMT for evaluation of avionic equipments and SWRs.

Stage 2 is the test facility for integration of the software with the prime avionic
equipments using test procedures derived from the Outline Test Requirements of the SWRs.
Initially there were two rigs, one at ESG and one at EASAMS, the latter has been closed
now. They comprise development models of the prime avionic equipments with associated
Special to Type Test Equipment (STTEJ, and computing facilities which allow for
simulation of avionic equipments, stimulation of data, and limited closed loop
simulation using a simplified aircraft model. The necessary recording, replay and
display facilities are also provided. From Stage 2 the software is released to the
subsequent Stages 3 and 4 with formal Quality Assurance Certificate.

Stage 3 was the early flight test facility run by CDMT where critical functions of
the subsystems Navigation, Terrain Following and Weapon Delivery were tested and
evaluated under dynamic airborne conditions in two Buccaneers as test bed aircraft.
The facility also provided a test bench harness for integration tests and a ground
replay and analysis system. The activities at Stage 3 have stopped several years ago.

Stage 4 are the full scale integration rigs at each a/c company. Essentially they
are ground mock ups of the complete avionic system, fitted with the most recent
hardware standard. They provide ample test facilities by STTEs, external computers for
data acquisition, simulation and stimulation, interfaces to other a/c systems like
flight control, power supply, and cooling. They also allow for full scale closed loop
simulation, at MBB not only including the avionic system but also the flight control rig.

The primary tasks are

* integration and performance testing of avionic hardware and software
within the avionic system and with other a/c systems

" flight clearance of the software for flight test and production aircraft
and support to flight line and production line

* definition and control of software configurations which became a
progressive task due to the evolution of the software, its adaption to
the flight line requirements, and the differing equipment build
standards of the flight test and production aircraft.

The tests are laid down in test procedures derived from the Subsystem Specifications
and SWRs and aro performed under the supervision of the industrial and national quality
assurance authorities.

Stage 5 finally are the flight test facilities of the a/c companies. The flight tests
are performed with fully instrumented prototype Tornados supported by appropriate ground
facilities like recording, replay and analysis systems and for some time a tracking radar.

During the development of such a complex system, of course, a considerable amount of
changes to the system's software is to be expected. In order to deal with these changes,
formal procedures were established which are divided into three levels:

* Software Query (SWQ)
* Program Change Request (PCR)
* Software Requirement Change Request (SWR CR).

The purpose of a SWQ is to report a software problem encountered at any of the test
sites and to call for investigation by CDMT/IST. Depending on the result of the
investigation a program change and possibly a SWR change may be required.

A change to the software officially delivered by IST is initiated by a Program Change
Request raised by one of the test sites. The PCR is forwarded to all test sites and to
CDMT/IST for assessment. If agreed, a software change is generated by IST and delivered
to all test sites. A PCR may also result in a SWRCR if there was an error or
insufficient definition in the underlying SWR.

A Software Requirement Change Request may be raised by either NAMMA, the a/c
companies, CDMT, or TST. All SWRCRs were assessed by CDMT and subsequently by IST and
the a/c companies prior to inclusion into the relevant SWR. If a corresponding change to
a Subsystem or Equipment Specification would result from a SWRCR, NAMMA approval is also
required.

There are many reasons for a SWRCR some of which will be described and illustrated by
examples in the following.

4-4

4. The law of permanent changes verified.

Certainly the ultimate aim of all SWRs is a complete, unambiguous, physically
logical, and consistent description of what the software should do. So the
programming team can then go ahead ana generate a nice structured program which is well
documented and easy to maintain. However, in the development of a complex real-time
system the prerequisites of completeness, unambiguity and consistency are very hard to
fulfil, and unavoidably many changes to the SWR and cf course subsequent changes to the
program will occur. Some of the reasons will be described in the following.

4.1 Ambiguity of Software Requirements

Let us look at unambiguity and let us for a moment assume the SWRs were complete and
consistent in the sense that they contain all functions to be performed and the
definition of all data.

As already mentioned the SWRs are written in plain English. Furthermore they are
written by system engineers who kno:w much about the system's and equipments' functions
and inter-relationships and usually less about the conditions and restrictions inherent
to the computer hardware and programming language. Conversion of these SWRs to program
and package specifications then demands quite some system knowledge by the programming
team and often resulted in SWRCR for clarifying purpose in order to avoid
misinterpretation of the requirements. To gain and maintain this knowledge is not easy
especially in view of the fact that the fluctuations of the IST staff was quite high due
to the international structure.

The advent of modern tools and methods for unique specification of real-time systems
like formal specification languages very much avoids the possibility of
misinterpretations of SWR and also reduces the necessary level of system knowledge of
the programmers. However, these specification languages are usually aimed at program
specification, not so much at formulating software requirements. Anyway, somewhere down
the line the verbally expressed PDR have to be converted into an unambiguous formulation,
be it at the very last step, i.e. the coding or be it at an earlier stage, if formal
specification languages are used. And that is the place where misinterpretations come in.

4.2 Evolution of SWR

The statement that a SWR is complete can only be a relative statement, it reflects
the present status of the knowledge, experience and imaqination of the people involved
in the definition of the operational requiremen's and the design of the system and its
functions.

Let us consider the development of the Navigation Kalman Filter (KF) as an
illustrative example (Fig. 5). After selection of data sources (IN, Doppler Radar) and
position fixing methods, the equations including the moding and cockpit interface were
laid down to form the draft issue of the KF SWR. The filter was then programmed in
Fortran and optimised using "real world" simulation models of IN, Doppler, and fixing
methods. This resulted in the first issue of the SWR which was complete in the sense
that it contained all information available from the simulation. The :,,xt step was to
generate the assembler program to debug it and to test it against the)crtran FF.
Eventually recorded flight test data of the IN and Doppler became available from
Stage 3 together with external references provided by a DECCA Navigation System. This
allowed for num-ric optimisation of the XF and assessment of sensor and system
performance. The resulting SWR now also rflected the real equipment hardware, however,
with the restrictions of the installation in the test-bed aircraft and the accuracy of
the external reference. When the filter finally became airborne in a Tornado prototype
at Stage 5 with a high precision navigation tracking radar as external reference it
turned out not only that again numeric optimisation was necessary but also that the
performance could be consilerably enhanced if some structural changes to the filter
were introduced. This evaluation was not possible in the previous stage because of
the different installation of the equipments and the lower accuracy of the external
reference.

With these changes incorporated in the SWR it is now also complete with respect to
the real world but not with respect to the imagination of the system designer. For
example they were and still are inventing new fixing methods of automatic nature or
with crew involvement that further enhance the system performance.

Looking back we realise that the specification and generation of the airborne
program started with a SWR which defined the modelled function but was still incomplete.
At that time dummy routines were implemented to cater for the identified but then still
undefined function. However, during development changes to the structure, new functions,
and different iteration rates became necessary that not only affected the KF package
itself but also the scheduler and overall program organisation.

-

4-4

This example demonstrates the evolution of a SWR and the inevitable changes to it
although the objective was formulated right from the beginning and the realisation had
been carefully assessed in computer simulation before the programme specification and
generation started.

4.3 Unpredictable errors

There are other sources for changes to a SWR. These are effects which were hard to
predict or were thought to be covered by other means so that they need not be considered
in the SWR.

Take e.g. unpredictable malfunctions of an equipment, errors that were not generally
known as are e.g. gyrodrifts or the time delay of air data sensors. Originally it was
thought that malfunctions will be detected by the Built In Test (BIT) and signalled to
the system. Maliciously enough, however, they did occur and they were not detected by
the BIT because from the point of view of the equipment everything was correct, no
component was broken. In most cases these errors occur very seldom and cannot be
reproduced on STTE since they are probably caused by external interference. Therefore
they tend to reveal themselves very late in the test stages usually during flight test.
So what you do is to design a software monitor which checks the output of that
equipment and in case of a malfunction generates warnings to the system and/or the crew.
For example if the error is of a jumpy nature where physically there cannot be jumps
the monitor simply checks for the continuity of the data.
In any case you end up with a major change to a SWR and the program itself.

4.4 Trade-offs between H/W and S/W changes

Inevitably during the development of a complex integrated avionic system one is
faced with the decision whether to modify an equipment or to cure the problem by a
software change or even to do both: To cure the problem at least partially by an
interim software solution until the equipment modification has been performed.

The reasons for hardware modifications are manifold, e.g.

" misinterpretation of specification often resulting in a wrong sign
of I/0 data which of course can easily be cured by the software.

* erroneous behaviour under unspecified conditions which often can

be solved by monitors.
* insufficient performance of equipment under extreme conditions
which in some cases could also be cured by a software solution.

For example during flight test it turned out that the attitude data of the SAHR were
not accurate enough to provide redundant inputs for terrain following under all flight
conditions. The problem could be cured by adding high precision accelerometers to the
gyro platform which of course was very costly and would impose a considerable delay to
flight testing. There was, however, an alternative solution to the problem using the
interface between MC and SAHR: In order to compensate for the earth rotation and the
transport rate of the aircraft the MC provides slewing commands to the SAHR which are
well defined functions of basic navigations. The solution was ot use other redundant
information available to the MC, namely the air data vertical velocity and the vertical
velocity derived from Doppler velocities and the SAHR attitude data. Comparison of the
two leads to correction terms which are added to the original SAHR compensation terms.
This software change was implemented and flight tested within about half a year and
improved the accuracy of the SAHR attitude data by a factor of two.

Although software solutions instead of hardware modifications are very attractive:
They are faster implemented, often are cheaper and in some cases avoid long I
negotiations with a supplier and retrofit to the aircraft. But they also have their
drawbacks as can be seen from the last example: the rather simple and logically clear-cut
interdependence between the data source (MC) and data sink (SAHR) becamc more complex,
mixing two physically different functions and involves new data sources coming through
the backdoor. This makes it harder to test and maintain the software and the hardware.

The list of reasons for changes to SWR we have mentioned so far is certainly not
complete. There are others like changing operational requirements, replacement of older
equipment by a new generation, or expansion of the system by new equipments. But the
reasons given already clearly demonstrate the impossibility to fulfil the postulation
that a complete, unambiguous and consistent description of what the software should do
must be laid down before the program specification may star-,)less you do it for a
system that already exists.

5. Clean programs, patches, and all that

There is a unanimous wish for clean programs, i.e. a program that does not contain
any patches. But we have seen that changes to a program are unavoidable for a variety of
reasons and in an assembler program these changes are realised by patches, since
rearranging the source program instead takes quite some time and is likely to create
more errors in the program and the configuration control than you wanted to correct.

.1mmm m mml~Rm l

Furthermore, many of the changes are of experimental nature, they have still to be
evaluated at the different test stages previously described and you don't want to
permanently incorporate them into the program too soon.

Last but not least flight tests need long term planning due to lay ups, reserving
ranges or tracking radars, etc. The test program itself then usually must run through
in a short time. So errors found before and during flight tests have to be corrected
very quickly if the corrections are to be tested within the same flight test programme.

However, from time to time you make a freeze and define a new baseline program which
is to contain all program packages implemented so far and all program changes available
and tested at that time. Incorporation of the patches and testing of the new baseline
take at least half a year up to one year depending on the number of patches and occupy
most of the manpower and facilities at Stages 1 and 2.

When the job is done, already a new pile of patches immediately builds up for the
following reasons:

* Some program changes could not be incorporated in the baseline since

they were not yet fully tested at all Stages. New errors had been
found and corrections generated.

* Not all Software Requirement Changes had been implemented at time of

freeze and new ones were generated in the meantime.

* The baseline obviously was targeted for the most recent hardware

standard uf the avionic equipments, e.g. the production standard.
For reasons of costs and availability, however, the different test
stages were outfitted with quite a mixture of early development,
late development, and production equipment which in some cases
necessitated hardware related patches specific to the individual
test stages and aircraft.

* Eventually the decision was made to double the MC memory, and the

full OFP was targeted for that memory size. However, the new hardware
was not available until recently. So in order to fit into the smaller
memory the OFP was divided into a baseline and major amendments and
patches which were configured to the test programs at the different
flight test stages. With the new MC being available, of course a new
baseline was to be generated.

Especially the last two points are the reasons for the fact that the software
tested at Stage 2 is different from the OFP released from Stage 4 to flight test
and prodution aircraft, contrary to the original development planning.

In total, patches cannot be avoided unless development is rigorously stopped, no new
requirements are accepted and one year of intense work including flight testing is
spent for cleaning the program.

This statement, however, is put into a new perspective with the advent of real-time
high order languages which allow for separate compilation of program packages or
modules. Here the cleaning is more or less automatically done by the compiler and one
is "merely" left with configuration control which in itself is already a hard job.

References:

P.A.Bross, The Computer System of the Tornado, 31st AGARD G&C Panel Symposium,
Roros/Norway, 1981

D.J.Harris, Software Development for Tornado - a Case History from the Reliability and
Maintainability Aspect, AGARD-CP-261, paper 37, 1979

K.Sanderson, Main Computer Software for the MRCA Tornado, AGARDOGRAPH No. 258,
paper 11, 1980

4--

List of Abbreviations

A/A Air to Air MC Main Computer

ADC Air Data Computer MFK Multi Function Keyboard

ADV Air Defence Variant MRCA Multi Role Combat Aircraft

AFDS Automatic Flight Director System NAMMA Nato MRCA Management Agency

A/G Air to Ground OFP Operational Flight Program

BIT Built In Test PCR Program Change Request

CDMT Central Design and Management Team PDR Performance and Design

ESRRD E-Scope and Radar Repeater Display Requirements

SAHR Secondary Attitude and Heading
ICD Interface control Document Reference

IDS Interdiction Strike SMS Stores Management System

IFU Interface Unit STTE Special to Type Test Equipment

IN Inertial Navigator SWQ Software Query

IPT International Programming Team SWR Software Requirement

IST International Software Team SWRCR Software Requirement Change

KF Kalman Filter Request

TF Terrain Following

TV/TAB TV/Tabular Display

-x-

UK GE I T

MOD MOD 0_

MAOM

SuppierSupplier Supplier

Fig. 1 Organisational StruCture of Development
Phase

Pi lot

*--

Performance and Design Requirements

- gat-n

0 Uiply

PrwaeSeiiaton

SourcetCode

Prt ogptra Proerifieceratio

15G. ~ ig 3ESM) Desngs andages fi

SlItg Daot compuatern Ptrltio - Itgratioeneradpiongo /
ISG [t Crd tb eecr ersnttv) tsing and rpa (Integ ration Peofc assmn

Simuitdcose l oputsimdlationle

Stage 32 Devest-bedt Buccaeer oflprinstrqui- Inear tfigot tef ofim criic

USe *drton: CDMD meuted letbec ans funtin in an.I U

CO.Rcrdn £. rela facai .s iltion es Inea tiingadpoigo

StagecordGrou nd o e pla iPl ntntegration erformance ssmn
R~e rtSftwUSare tes o il/ ge 3 S/ 4

AllTurinLiDatd acuisti lon. simulationsi syt

(a/c 3 c2p stioneU rucepl fuASS, iPu Pallight larnes U f supritia
IA atn OE mnterfacesto otnhe hanesyes fornclighntestn I roductio
falldin A cloed loop sailati on W/eacool imin dfnto

Stage 4 Prototyp m no wic full ~ys Iult fgto tetfomanyet

R Ae BarTon, fitstr lite Il/stand fH 1 S/

MOB Munichn Reotrin FI Rep a dr nertonwt te /

Alr Turin;ISrii Drtaacki to radarin si- syt

d~~~c ~ cop-uain&rpay-AS DS lq laac upr

N ig. 4 Test Stage

-10

K AtNA F ILTER
ITST DATA

OEVITOPMEf STAGES

SIILCIION Of DATA SOURCES (I$DOPPLER) & FIXING METHODS IDEFINITION OF EQUATIONS. MODING I COCKPIT INTERFACE THEORY

FORTRAN KF

SIMUIAIID 111O ORDER OPTIMISAFION, PERFORMANCE PREDICTIONSINSORS
CONFIDENCE CHECKS

SIMULATED WORlD

ARIFIC Ii MC - PROGRAM

DAIA AND DEBUGGING AND TESTINS OF WC PROGRAM
IORTAR CE

STAGE
3F.TI DATA NUMERICAl OPTIMISAIION. ASSESSMENT OF PERFORMANCE REA EFERNCE

DCCA REF. EC A REFEECE
-_TEST-'BED A/C

STAGE 5 OPIINISATION OF STRUCTURE I NUMERICS. ASSESSMENT OF
F.T. DATA FUL SENSOR A SYSTEM PERFORMANCE WITH POSITION AIDING REAL WORiDIRACKING NEW IEING METHODS
RADAR

Fig. 5 Evolution of a Software Requirement

MASCOT DEVELOPMENTS TO IMPROVE SOFTWARE
STRUCTURE AND INTEGRITY

H R Simpson
British Aerospace Dynamics Group

Six Hills Way
Stevenage

HERTS SG 2DA
UNITED KINGDOM

SUMMARY

The principal features of the MASCOT approach to design are described and some possible developments to give
improved software structure and integrity are proposed. These developments are concerned with three areas of
the MASCOT approach:

- Subsystem Structure. The present definition of subsystem structure
can be generalised to give a hierarchical framework for functional
decomposition.

- Process Synchronisation. The oresent range of synchronisation primitives
can be extended to allow complex requirements to be met in a more direct
and efficient manner.

- Data Access Control. The kernel executive can be extended to give run
time enforcement of the data access constraints implicit in the network
structure which is the product of the design phase.

The proposed developments are entirely consistent with existing MASCOT concepts and, with little difficulty,
can be incorporated into the system building, run time executive and dynamic monitoring software. It is a
powerful feature of MASCOT that the supporting software which underpins the method (sometimes called the
MASCOT machine) is not excessively complex and so can be reasonably easily implemented and readily understood.
The proposed developments preserve this feature.

1. INTRODUCTION

A recent 'Guided Tour of Program Design Methodologies' (Bergland 1981) idendifies four program design
methodologies which are used or discussed more than most:

- Functional Decomposition

- Data Flow Design

- Data Structure Design

- Programming Calculus

These four headings are reasonably self explanatory; each methodology is described in some detail in Bergland's
paper together with a supporting bibliography which need not be repeated here. The important point to note at
this stage is that these methodologies are traditionally concerned with program design rather than system
design and thus are primarily directed toward single thread sequential program structures. It is hardly
surprising therefore that these methods as conventionally described do not cope well with multi processor
target environments and take little advantage of the possibilities for using parallel programming constructs
t, give improved software structure within a single processor.

Recent developments in the programming language field eg ADA and the Communicating Sequential Processes
technique of Hoare, 1978 contain parallel programming features designed to overcome the limitations imposed by
single thread structures. The approach is generally based on a form of direct process to process inter-
communication which results in a highly synchronous relationship between adjacent parallel processes. Further-
more the interaction mechanisms require that processes know the names of the other process.- with which they
wish to communicate. This erodes modularity and results in functional dependence between conceptually
parallel processes.

MASCOT (Modular Approach to Software Construction Operation and Test) is a language independent method which
places tie expression of software parillelism abovi single thread structuring by conventional programming
techniques. It results in a high degree of asynchronism and functional decoupling which is well suited to
multi processor target environments. The method is based on a general approach to information system design
and so ensures that software design is carried out in a manner which is consistent with sound system desigr
principles.

Many of the principles of the functional decumposition, data flow design and data structure design methodolog-
ies can be applied to system design in which parallelism is exploited. MASCOT provides a medium in which
these techniques may be used with the confidence that the resulting software design can be implemented in a
reasonably efficient and straightforward manner. It is not easy at this stage to see how the programming
calculus approach relates to MASCOT. However in terms of verification of correctness the strong modularity
of MASCOT offers distinct advantages by breaking down the verification task into more manageable components.

2. DESIGN DECOMPOSITION

The software design problem can be considered within the wider context of information system design. An
information system is concerned with data representation and manipulation; it is considered to be bounded by
the data environment which separates it from the external elements (eg electro-mechanical components, chemical
processes, human operators) with which it interacts. Although such external elements do not forn part of an
information system they are of course its "raison d'etre" since the ultimate purpose of any information system
is to react to and affect the physical environment in which it exists. The data interface with external
elements is of vital importance since it constitutes an information system's perception of the outside world.

At its broadest, but not especially helpful, level of representation we can regard any particular system (S)
as being contained within its own particular environment (E) as shown in figure 1.

E

S

Figure 1 The Problem

This form of expression becomes more useful if we insist that E is described purely in terms of the informat-
ion interface (static and dynamic properties) as seen by S and forbid the inclusion of any active processing
elements (explicit or implicit) in the environment definition. In general this will not be easy but the
discipline enforces a clear and complete specification of interfaces and prevents that class of design error
which arises from misunderstandings concerning the dynamic properties of separate but related processes.

Clarity of expression demands some method of partitioning the environment into various elements. The
processing system can now be defined in terms of its reaction to, and impact on, the individual elements in
the environment. This can be represented diagrammatically as shown in figure 2.

Figure 2 Environment Definition

In such a diagram a rectangular box labelled I represents an information element in the data environment and
the closed curve labelled S represents the active processing element, A line joining S to I represents an
interaction path. Arrows may be placed on interaction paths to indicate information flow.

____ -dI

Although at this level we have chosen to represent the system as a single processing element surrounded by a
number of information elements this does not necessarily imply the absence of active processes outside the
system boundary. Such processes will generally exist and often give rise to interactions between elements in
the information environment. The characteristics of external processes must be taken into account when carry-
ing out the top level partitioning and element definition. However the method does require that the function-
al specification of the processing element must be couched in terms of the information with which it interacts.

In describing an information element it will be necessary to consider a number of aspects including structure
(formats, syntax), flow rates, semantic content, signals and stimuli, etc. It may also be necessary, as in
MASCOT, to define the formal mechanisms (access procedures) by which interaction between active processes and
the information environment takes place. This is relatively straightforward compared with the specification
and description of processing functions where it often becomes extremely difficult to define precisely what
is to be done without making assumptions as to how the processing function will be implemented. A method of
functional decomposition is therefore required not only to break up the task into more manageable components
for implementation and integration purposes but also to give substance to functional specifications by identi-
fying the underlying functional elements.

Functional decomposition should be carried out in a manner consistent with the principles outlined above and
should also be capable of logical extension to any depth necessary to achieve a satisfactory measure of
functional modularity and simplicity. Accordingly decomposition of an active processing element is carried
out by identifying component processes together with an internal information environment to be used for inter-
communication purposes. Thus a first level of decomposition might take the form shown in Figure 3.

S12

12

Figure 3 Firs Level Decomposition

This form of representation is based on functional issues and does not directly depend on the underlying
supporting resources (processors, operating systems, communication highways). Of course the nature of the
computing and communications environment does affect the functional decomposition but the design approach is
one that emphasises functional considerations. Resources will always impose the ultimate constraint on
realisable functions but ideally we seek an approach where there is considerable flexibility and ample
capacity to meet all foreseeable requirements.

A key feature of this method of decomposition is the emphasis placed on inter process communication with no
direct process to process interaction allowed. Communication is regarded as a function in its own right with
all the attendant analysis, specification and design implications. It would be wrong to regard the method as
producing a set of passive information elements which are operated on by active processing elements. The
dynamic properties and functional significance of the information indicate a vital active role. Information
propagation aspects are treated explicitly which allows timing considerations to be formally addressed in real
time system design.

Design decomposition into processing elements which are always buffered from one another by intermediate
information elements induces a powerful form of modularity and maximises functional decoupling. When design-
ing any processing element it is unly necessary to consider the characteristics of the surrounding information
environment. When designing any information element it is only necessary to consider the characteristics of
the processing elements with which it interacts.

3. CURRENT MASCOT

It is clear that the proposed design method conforms with the basic principles of MASCOT. Various aspects of
MASCOT have been described in a number of reports and papers eg Simpson and Jackson 1979, Jackson 1977,
Simpson 1982 and is the subject of an official Ministry of Defence Handbook (1980). The principal structural
features of MASCOT as currently defined can be summarised as follows.

-.4

MASCOT is a machine and language independent method for software design ano implemeritstioi. which has at its
heart a particular form of software structure based on independent parallel processes (known as ACTIVITIES)
ihose sole means of communicating with one another is through INTERCOMUNICATION DATA AREAs known as IDAs.
IDAs conventionally fall into two broad classes: CHANNELs which are used to pass message data between
producer activities on one side to consumer activities on the other; and POOLs which are used to hold data of
a more permanent nature. The processing function of an activity is defined by a ROOT PROCEDURE and activit-
ies operate on IWAs by means of ACCESS PROCEDUREs. The overall structure of software can be represented by
a network of activities interconnected through IDAs and shown as SYSTEM ELEMEMTs on an ACTIVITY-CHANNEL-POOL
(ACP) diagram. System elements may be grouped together to FORM SUBSYSTEMS. All activities and some IDAs
are contained in these subsystems which provide a higher level of functional definition; other IDAs lie on the
boundaries of subsystems and are known as SUBSYSTEM IDAs (SIDAs).

Activities and IDAs correspond to the processing and information elements disrussed in the last section.
Since an activity cannot be further decomposed it can be regarded as a basic processing element. Subsystems
constitute a single form of higher level grouping to represent more complex processing elements. Thus the
current form of MASCOT provides for two levels of formal functional decomposition, first into subsystems and
then into activities.

Each activity and IDA is an object in the execution environment and can be regarded as a particular 'instance'
of a general 'type'. The concept of type allows a distinction to be made between passive definition (ie the
code specifying program logic or data structure) and active use (ie the actual system component representing a
processing or information element). The type of an activity is defined by the root procedure which supports
it and the type of an IDA is the associated data structure definition (or template). Element types are
ENROLLED into the programing support environment and are used to CREATE element instances in the target
execution environment.

4. HIERARCHICAL SUBSYSTEMS

Although there is a high degree of correspondence between MASCOT as currently defined and the more general
design decomposition method described in section 2, there are several structural and diagrammatic differences.
The following relatively minor changes to MASCOT are needed to make it conform fully with the requirements of
the method.

a. Subsystem Structure. At present subsystems can only be composed of component activities
and inte TDAs. It should be possible to also include component subsystems thus allowing
full hierarchical decomposition to be used where required.

b. Sin le Activities. Currently all activities must be contained within subsystem boundaries
and thare is no provision for forming an activity which exists in its own right. It should be
possible to represent and form individual activities without necessarily making reference to a
containing subsystem.

c. Boundary IDAs. Current ACP diagram conventions place external IDAs on the boundaries of
subsystems. Thi s misleading. External IDAs should be placed outside subsystem boundaries
to indicate their role as separate design elements.

d. Activity Creation and Connection. At present MASCOT separates out the creation of an activity
from its connection to the IDAs with which it interacts. This is unnecessary since an activity
which cannot communi'ate has no purpose.

e. Subsystem and Activity Representation. At present the boundary of a subsystem is shown as
a dashed closed curve whereas an activity is shown as a solid circle. The same convention should
be used for both subsystems and activities, namely a solid curve enclosing the internal structure
if any. It is up to the designer to decide whether he wishes to represent the internal structure
of any particular processing function in terms of lower level subsystems or activities.

f. 1ARe resentation. Conventionally MASCOT allows two broad classes of IDA, channels and
pools, with different symbols to represent them. In practice the distinction between these two
classes is sometimes difficult to make and it is suggested that a rectangular box is all that is
needed.

These changes are small but significant and must be backed up by facilities for enrolment of types and creation
of instances. The following are proposed:

a. enrol ida type (data struct(....

This allows a given data structure (expressed in source text form) to be used for subsequent
IDA creation. If necessary the named structure may be parameterised (eg to permit the form-
ation of different sizes of IDA from a single IDA type). IDA parameterisation must not affect
the access procedure interface to an IDA in any way. Access procedures should be associated
with a given IDA type by conventional procedure parameter typing mechanisms.

b. enrol act type (root proc(ida type

This allows a given root procedure (expressed in source text form) to be used for subsequent
activity creation. The named root is programmed as a procedure which can make use of all
conventional program structuring techniques.

L II III mIiI•H

c. enrol ss type (create file(ida type.

This allows a given parameterised command file defining a subsystem type to be used for
subsequent subsystem creation. The named file, whose parameters are the external IDA types,
contain a set of create commands (see below).

d. create ida(ida inst, data struct(....))

This creates an ida instance from a previously enrolled IDA type. All formal parameters
in the structure specification must be replaced by actuals at the time of creation.

e. create act(act inst. root proc(ida inst.

This creates an activity instance from a previously enrolled activity type. If necessary
the facility may make provision for a software priority to be associated with the activity
as it is created.

f. create ss(ss inst, create file(ida inst.

This creates a subsystem instance from a previously enrolled subsystem type.

g. define ss(ss inst, (ida inst.
(act inst,.
(ss inst

This defines a new subsystem by placing a subsystem boundary around a collection of already
created IDA, activity and subsystem instances. Once an element has been enclosed in a sub-
system it is only accessible by means of a compound name.

Enrolment requires that the type being enrolled is already fully defined. This results in a bottom-up
approach to type enrolment which prevents formal representation of type relationships prior to the full
definition of supporting data structures, root procedures and create files. To achieve top-down represent-
ation of type relationships it is necessary to introduce types prior to full definition by means of a
further set of facilities:

introduce ida type (data struct (..

introduce act type (root proc (ida type.

introduce ss type (create file(ida type

These facilities allow types to be specified and used in other type specifications. However no system
elements can be created from a type introduced in this way until the code representing all supporting
(explicit and implicit) root procedures, create files and data structures with their associated access
procedures have been enrolled.

At any level of design decomposition it is not immediately clear as to whether a given processing element will
be implemented in terms of a subsystem or an activity. The above facilities require a decision to be made so
that the appropriate act or ss commands may be used. This is unlikely to cause much inconvenience but if
desired facilities can be defined for introducing ar creating (but not enrolling) processes, where a process
may be either a subsystem or an activity.

5. INTERACTIONS

The structural concepts already discussed show that formal decomposition during design can be directly
supported by facilities for creating the corresponding software processing and information elements in a form
which accurately reflects the static structure of the solution. These facilities must be backed up by run
time mechanisms which ensure that the basic processing elements (ie activities) execute when necessary and that
information propagation is sustained through the information elements (ie IDAs). It should be noted that those
processing elements which are further decomposed (ie subsystems) represent functional configuration definitions
which play little direct part in software execution; the execution properties of a subsystem are embodied in
the component activities and IDAs.

The MASCOT run time environment contains a compact kernel executive which sustains the operation of activities
by the scheduling of processor resources. Propagation of information through IDAs leans heavily on a special

type of control variable known as a CONTROL QUEUE. An IDA may have any number of associated control queues
i which can be operated on by a set of standard primitive operations normally embedded within access procedures.

MASCOT attaches great importance to the tight control of interaction. Various relevant aspects, and the way
in which MASCOT covers them, can be briefly summarised as follows:

a. Connectivity. Facilities must be provided to build the network of basic processing and
information elements and to establish the connections between them. MASCOT system building
features allow IDAs and activities to be created and interconnected in a formal manner. By
this means static control of access is achieved.

Im

b. Leglity. Within the limits imposed by connectivity constraints it is necessary to
controldcynamic access by restricting the range of interaction operations available. MASCOT
makes use of conventional type checking mechanisms to ensure legality of operations. First,
an activity may only be connected to IDAs o

f
the type specified in the relevant root procedure

parameters. This is checked at system build time. Second, access procedures used by a root
procedure must be selected from the set defining legal operations on the associated IDA type.
This is checked at root procedure compile time.

c. Exclusion. The method assumes that all processing elements are potentially asynchronous
and it i-stherefore possible for a given information element to be operated on by several
processing elements simultaneously (in this context operations which overlap in time are said
to be simultaneous). Coherency of data in an information element must be preserved under
these conditions. MASCOT allows simultaneous operations but provides facilities (the JOIN and
LEAVE primitives) to enforce mutual exclusion (ie to suspend concurrent operation) where this
would adversely affect data coherency.

d. Stimulation. Each processing element potentially has a continuous interest in its relevant
information environment but it may not be advisable or possible to arrange for it to monitor
this environment continuously. Where a processing element has completed its current processing
task it may assume a dormant state whilst awaiting further work. Some means is therefore needed
to alert dormant processing elements to changes in the information environment which may be of
interest. MASCOT contains facilities (the STIM and WAIT primitives) to arrange for appropriate
direct cross stimulation but at present this is limited to a single activity-IDA interaction
at any one time. It is also possible to set up polling mechanisms (t.y means of the DELAY primitive
to arrange for periodic interrogation of the information environment. Further facilities are
netdqd to combine direct cross stimulation with stimulation on time (Dy means of a time out on wait
primitive - see section 6) and to allow multiple IDA interactions (by means of a multiple wait
primitive and composite IDA constructs - see section 7).

e. S7uncing. In some circumstances it is necessary to ensure tha7 separate interaction
operations are carried out in the correct sequence. For example it may be necessary for data
transfer interaction operations to be preceded by an 'open access' operation. MASCOT as
currently defined does not cope adequately with this requirement and a further facility (the
CHECK primitive - see section 8) is needed.

f. Integ jty. The aspects discussed above identify a number of software mechanisms which
can b use to control data access and hence ensure system integrity. However the ultimate
guarantee of integrity rests in the use of hardware facilities to limit access to authorised
data areas. The MASCOT kernel, if supported by appropriate privileged mode and address base
limit facilities, can readily incorporate an efficient form of memory management to provide a
program execution environment of the utmost integrity (see section 9).

6. TIME OUT ON WAIT

Many MASCOT users have experienced the need for a variation to the wait primitive which allows escape (ie
rescheduling) after a specified time has elapsed. A form of time out can be implemented with the existing
primitives but this is inefficient and requires the introduction of additional 'watchdog' activities.

A time out on wait primitive is essentially a conination of the existing wait and delay primitives. It is

proposed, therefore, to call the new primitive WAITDEL, specified as follows:

PRIMITIVE PROCEDURE waitdel (q : CONTROLQ, delay : INTEGER)

The primitive requires two parameters, a control queue and a time delay. A stim to a control queue which has
been the subject of a waitdel operation causes rescheduling in the normal manner. If no stim has been received
before the time delay has expired then rescheduling occurs as in the conventional delay operation. A case can
be made for an indication of the cause of rescheduling (stim or delay) by returning a boolean value although
this is not essential since the associated IDA data and the real time clock are both available for inspection
and are more relevant to the current data/time situation.

As an illustration of the use of waitdel consider an access procedure named readword designed to read a word
from an IDA of type WORDCHAN (using the open access protocol - see section 8). WORDCHAN and readword take the
following form:

IDA TYPE WORDCHAN
RECORD

iq, oq : CONTROLQ
word : WORD

empty BOOL
END

ACCESS PROCEDURE readword (ida : WORDCHAN, delay INTEGER,
value : WORD, nodata BOOL)

BEGIN
time : INTEGER
WITH ida DO
time := TIMENOW + delay
WHILE empty AND TIMENOW.-time
DO waitdel (oq, time - TIMENOW) ENDWHILE
value := word
nodata := empty
empty := TRUE
stim (iq)
ENDWITH

END

7. COMPOSITE IDAS AND MULTIPLE WAIT OPERATIONS

It is the task of the kernel to sustain information propagation under all conditions. There is one particular
situation where the existing MASCOT facilities are not well suited to the stimulation requirement. This
arises when an activity becomes dormant but needs to be altered to changes in the data associated with any one
of several IDAs. Specific extensions to MASCOT are necessary to cope with two aspects:

a. An activity needs to express a requirement for simultaneous access to more than
one IDA.

b. An activity needs to be rescheduled in response to stims received on any one of
several control queues.

A simple solution to this problem is to permit access procedures to have more than one IDA parameter and to use
a form of multiple wait operation which can take as its parameter a set containing any number of queues. Such
a solution has an inbuilt source of inefficiency in that queue sets are formed dynamically and repeatedly when
the multiple wait operation is called.

This latter aspect can be avoided by allowing the enrolment of Composite IDA (CIDA) data structures which can
define a set or fixed size array of component IDA types, together with a declaration of control queue sets
whose elements are drawn from these components. Such a CIDA type is a legitimate parameter of an activity
type specification. When an activity instance is created the IDA instances satisfying the CIDA parameter are
inserted. Thus a CIDA only exists as a grouping of already created IDAs and its only unique components are the
control queue sets declared in its data structure definition (it follows that these control queue sets are
formed at the timethe activity is createdThe CIDA facility should be regarded as providing a collective view
of a defined IDA set. Access procedures may be written to operate on a CIDA to gain access to any component
IDAs; alternatively each individual component IDA may be operated on by its own access procedures in the normal
way.

The control queue sets defined within CIDA data structures are intended to be used as a basis for synchronising
mechanisms embedded within CIDA access procedures. The following forms of multiple wait operation are
proposed for this purpose:

a. PRIMITIVE PROCEDURE orwait(qset: ()CONTROLQ)

The using activity is rescheduled when a stim is received on any queue in the set. All
stims are cancelled on rescheduling.

b. PRIMITIVE PROCEDURE andwait(qset : ()CONTROLQ)

The using activity is rescheduled when a stim has been received on all queues in the set.
All stims are cancelled on rescheduling.

c. PRIMITIVE PROCEDURE multwait(qset : ()CONTROLQ, n : INTEGER)

The using activity is rescheduled when a stim is received on any queue in the set. The parameter
n (0...) indicates a queue which has received a stim. The value of n is remembered between
multwait calls and stims are taken in order counting up from the last value of n in an end
around fashion. Only the stim corresponding to queue number n is cancelled on rescheduling.

Time out variants of the above would also be needed and it is likely that other qset primitives (eg joinqs,
stimqs, etc) would prove useful.

The above CIDA multiple wait proposal must be seen as a fairly complex extension to MASCOT. It does however
plug a gap which is significant if the basic method is to cope with all interaction requirements.

As an illustration of the use of the multiple wait primitive consider an access procedure named readone
designed to read a word from any of four IDAs of type WORDCHAN (see section 6) which have been grouped into
a CIDA of type FOURWORDS. FOURWORDS and readone take the following form:

CIDA TYPE FOURWORDS (w : (O..3)WORDCHAN)
RECORD

oqs (O..3)CONTROLO
oqs : (w(O).oq, w(l).oq, w(2).oq, w(3).oq)

END

ACCESS PROCEDURE readone (cida : FOURWORDS, value : WORD)

BEGIN
n : INTEGER
WITH cida DO
REPEAT ir.ultwait(oqs, n)

UNTIL NOT w(n). empty ENDREPEAT
WITH w(n) DO
value := word
empty := TRUE
stim(iq)
ENDWITH
ENOWITH

END

8. THE CHECK PRIMITIVE

It is important that all members of the set of access procedures which can be used to operate on a given type
of IDA should include safeguards to prevent any misuse which would corrupt the IDA data. The check primitive
is proposed to close an existing loop-hole and also to provide a more efficient and straiqhtforward ,ans of
achieving certain synchronisation effects.

Access procedures may need to impose mutual exclusion constraints to maintain IDA data integrity. Where
control queues are used for this purpose two different forms of access protocol can be distinguished.

a. Closed Access Protocol. This protocol is characterised by the presence of join and leave
primitives at the access procedure entry and exit points respectively. Exclusion is confined to
the duration of the access procedure call.

b. 0 pen Access Protocol. This protocol separates the securing (using join) and releasing (using
leave) 5f an interface from the data transfer operations, and each of these functions 's programmed
as an individual access procedure. Mutual exclusion operxtes between the secure and release access
procedure calls.

The closed access protocol is completely safe since the necessary exclusion constraint is imposed by a single
call. However the open access protocol relies on a correct sequence of calls and the responsibility for the
maintenance of data integrity passes from the access procedure designer to the root procedure designer.

Efficiency and simplicity considerations support the need for an open access protocol:

a. Efficiency. Where an activity is the sole user of an interface it is more efficient to use
the open access protocol rather than repeated calls of join and leave for each data transfer.

b. Simplicity. The open access protocol allows a set of related data transfers to be made as
a series of access procedure calls. The same effect could be achieved by means of a further
synchronising queue to provide mutual exclusion over the related calls but this would be niore
complex and less efficient.

To make the open access protocol safe from the access procedure designer's point of view requires a new
primitive which can be inserted at the start of a data transfer access procedure to ensure that the appropriate
IDA interface is currently secured by the activity making the data transfer. The check primitive is introduc-
ed to meet this need and has the following specification:

PRIMITIVE PROCEDURE check (q : CONTROLO)

This primitive has the effect of raising a fault if the queue is not currently joined. Of course the check on
the queue ownership itself constitutes an overhead which would seem to amount to a continuing waste of resourses
at run time; albeit this waste will be substantially less than that arising from a join primitive at the same
position (plus the associated leave on exit). As with other potential fault conditions this run time overhead
can be avoided by using off line program analysis. In this case the analysis must ensure that check always
occurs between appropriate join, leave brackets.

g. HIGH INTEGRITY AND MEMORY MANAGEMENT

High integrity features in computer software are concerned with the prevention of access (unintentional or
deliberate) to unauthorised data areas. Achievement of high integrity will generally involve direct manipulat-
ion of hardware base and limit registers together with strict control of the construction processes which are
used to build the executable software.

i.1 ii ii

Many machines which are appropriate for ise in conjunt0ion wit
n

the MASCOT software design and implementatior
methodology have memory management facilities. Generally speaking these facilities are provided to extend the
basic address range of the machine rather thar 'or t'Qht aLLesS control ourpcses. Consequently the facilities
are usually coarse in their effect and only allow melury to te managed in relitively large chunks. Neverthe-
less they do constituce a basis for the provisnnr cf high irtegrity features.

The MASCOT ACP diagram is an explicit expression of authorised data access since the lines j, ining IDAs to
activities show permitted interactions. Not shown enplicitly on an ACP diagram are the access procedures and
private data areas (activity stacks) which are involved in any information transfer between the IDA and an
activity. The kernel executive is an additional implicit element of the run time softwar. High integrity
and memory management considerations indicate that the run time software should be broken down into six broad

categories:

a. Primitive procedure code

b. Access procedure code

C. Root procedure code

d. Kernel data base

e. IDA data

f. Activity stacks

The relationship between these six categories is shown in figure 4 which also partitions the software into
privileged and application areas. This partitioning expresses the MASCOT principle that communication between
processes takes place within the application area and is not the special preserve of the operating system.

ida activity
data stack

privileged area application area

Figure 4 MASCOT Software Categories

At this point we should make a clear distinction between high integrity in particular and memory management in
general. High integrity requires only base and limit facilities to constrain data access and code execution
to defined ranges. Memory management requires address extension facilities to enlarge the overall direct
address range of a machine by mapping virtual addresses onto a larger range of physical addresses. Thus from
the high integrity point of view we do not need to concern ourselves with the various mechanisms which extend
addresses but can concentrate on access and execution protection.

A further assumption is necessary. The base and limit information for the IDA data and activity stack areas
will form part of the kernel data base and should be inaccessible to access procedure and root procedure code.
This implies two different modes (privileged and application), the mode being automatically set on transition
across the privileged/application boundary, together with a restriction that instructions which change hard-
ware base and limit registers can only be executed in privileged mode. If the hardware architecture
contains base and limit facilities but makes no distinction between privileged and application modes then a
system which prevents unintentional unauthorised access can be created but deliberate unauthorised access will
still be possible.

Conventionally the primary function of the MASCOT kernel has been to schedule activities. The introduction of

high integrity features requires that the kernel is also concerned with the dynamic control of IDA access and
the kernel data base must contain IDA control structures together with the relevant linkage information.
Figure 5 shows the relationship between elements of an appropriate kernel data base structure. Each activity
control structure in the kernel contains a reference to a vector (idas) indicating the IDAs to which the

activity has access. These are the only IDA-activity connections and the kernel has complete control over the
data path interactions implicit in the ACP diagram.

data data stck code

Figure 5 Kernel Data Base Structure

Figures 4 and 5 taken together imply that the virtual address space associated with the application area is
divided into a minimum of three regions: code (root and access procedures), activity stack, and IDA data.
(Note that if the access procedures are placed in a separate fourth region, or if they are placed in the same
region as the IDA data, then each IDA control structure must locate the relevant access procedure area and
entry to these procedures must be by special kernel call; the discussion here assumes that this is not the case
and that access procedures are effectively directly linked into the root code). Primitive calls result in a
transition into privileged mode which it is assumed allow manipulation of the base-limit register sets for the
three regions. These three register sets form part of the context of an activity and must be set up by the
kernel each time an activity is scheduled. In addition the registers associated with the IDA data must be
set at the start of every access procedure call. This can be accomplished by an additional primitive:

PRIMITIVE PROCEDURE setida(ida : IDA)

This procedure takes as its parameter an IDA of any type and has the straightforward effect of loading the
hardware base and limit registers for the subject IDA.

As an illustration of the use of the setida and check primitives consider an access procedure named read
designed to fetch a word from an IDA of type WORDCHAN (see section 6):

ACCESS PROCEDURE read(ida : WOROCHAN, value : WORD)
BEGIN

WITH ida DO
check(oq)
setida(ida)
WHILE empty
DO wait(oq) ENDWHILE
value := word
empty := TRUE
stim(iq)
ENDWITH

END

The check primitive ensures that the using activity has previously secured the IDA's output interface. This
avoids a possible latent fault in that read might be called many times without invoking the wait primitive,
and it prevents this access procedure from operating on the interface when it has in fact been secured by

another activity. The setida primitive merely adjusts base and limit fields to allow access to the data
fields of the IDA (note that the control queues are regarded as being in the kernel data base and are always
visible to a primitive).

10. APPLICATION OF THE METHOD

MASCOT has been set in the framework of a general design method based on hierarchical functional decomposition
in terms of information and processing elements. A clear distinction has been made between types and
instances of such elements and this has been used as a basis for the formulation of a coordinated set of facil-
ities for generating MASCOT software.It is useful to sunmarise the part played by these concepts in the overall
approach to software design and implementation.

Figure 6 shows the route from prnhlem environment through to target software. The first stage of the design
is to identify the information eit.,ents which surround the outermost processing element. Since these are the
pointat which the system will interact with the outside world this generally involves designing software
representations of information elements (often hardware components) which already exist. The IDA instances

I-

A

IProlemn
Environment

S I ntrcIos 1 4

Fi Pr Design TdIypntonAeros

which are created at this outer level can be regarded as software extensions to the information elements on
the boundary of the system (see section 11 for an example). It is convenient to include all e~enets at tsis
level within a single subsystem boundary wahich has no explicit connections to the outside world. A subsystem
type can then be introduced to reprenent this confisuration and can be used to generate the target software
when the design is complete.

The method then proceeds with decomposition of the outermost processing element to yield information and
processing elements at the next level down, and this is followed by further decomposition as necessary. After
the first level of infor. Stion environment definition the design process produces additional internal
information elements which supplement the external elements identified at the previous level.

As each element instance is identified the corresponding type should generally be enrolled (as a datastructure, root procedure or create file) or at least introduced into the supprt environmn. This step of

course will be unnecessary where use can be made of a type which already exists. The names of types have

global significance for any given system support environment but the instance names are local to the enclosing

Dsubsystem.ySusyte

It is important at this point to consider the rature of the decomposition process in mor detail. The metlod
formally expresses the decomposition of a subsystem type in terms of its internal component instances, and the

I external interface definition fora subsystem type is expressed in terms of IDA types. An ACP diagram should
show the internal structure as instances, but it is a debatable point as to whether the outermost subsystemand external IDAs should be identified by type or by instance. Cmplete specification of an IDA instance must
include te seantic and dynamic propertie of the associated information. Thus the formal specification of
subsystem connections in ters of external IDA types alone is inadequate and it is reconended that the ACP
diagram shows both the te an nanc names for such IDAs. Similarly the outermost subsystem should also
be shwn by type and instance. The r ole of the define ss facility during decomposition is worth noting.
This allows ere than one level of nested decomposition to take place without enrolling intermediate subsystem

types.

Access proceLures service the interactions between processing and information elements. They have an
'operates on' relationship with IDA types and a 'used b' relationship with activity t s. Access procedures
to meet all interaction requirements must be inserted in the suprt environent either at the time the
associated IDA type is enrolled or separately by facilities specially provided for this purpse.

stutrrorcdueoraefl)oraesnrdcdnotespoteviomn.Titpo

When all supporting software (explicit and implicit) for a given processing element typo (activity or

subsystem) has been enrolled a corresponding instance may be created either in a special test environ-et or
in the final target system. Similarly an instance of each IDA type may be specially created to test fr-

correct operation of the assosiated access procedures. It should be noted that tne create files effective!,
provide a recursive facility for building the system bottom-up from a top-down design specification.

I1. AN EXAMPLE

The overall decomposition approach is aimed at system design in the large and it is impossible i,; i oape-

this length to give an example which covers all stages of the design process. However the first arl most
important steps of a fairly straightforward design task can be described.

Consider a hypothetical control problem where input data is derived from two sensors of identical type and,
after processing by a controller, is used to drive an actuator. As far as the function to be performed is
concerned there are three peripheral items for which some form of software representation is required. Thi
can be achieved by enrolling two IDA tyres from which conceptual instances can be created:

enrol ida type(SENSOR(LOCATION))

enrol ida type(ACTUATOR(LOCATION))

The SENSOR and ACTUATOR types have been given a parameter on the assumption that each individual instanc will

have an associated unique address. Such instances can be regarded as software extensions to hardware informat-
icin elements which physically exist. Thus the total software system boundary (shown in figure 7)passes
through the sensor and actuator information elements, containing on its inside the components which are part
of the software design.

system

controller ss

sensor--

TYPE sysdef

Figure 7 A Control Problem

At the topmost level the software design can be regarded as a single subsystem instance (named system) with
no external IDAs. The type of this subsystem (which we will designate sysdef) expresses the internal
structure of the system. As shown in figure 7 sysdef contains the subsystem instance named controller ss
and in order to define sysdef in terms of a create file we must first introduce a subsystem type (which we
will name controller) for controller ss:

introduce ss type(controller(SENSOR, SENSOR, ACTUATOR))

The create file defining sysdef can now be expressed as follows:

CREATE FILE sysdef
BEGIN

create ida (sensorl, SENSOR(IOOi))

create ida (sensor2, SENSOR(2000))
create ida (actuatorl, ACTUATOR(5000))

create ss (controller ss, controller(sensorl, sensor2, actuatorl))
END

The numbers in the above create ida statements have been arbitrarily chosen. They :an be regarded as
representing the address space associations between a real physical element and its corresponding software
component. Subsystem type sysdef can now be enrolled:

enrol ss type (syqdef)

controller SS

Type SENSOR

TYPE controller

Figure 8 Controler Subsystem Decomposition

The next stage of design decomposition is shown in figure 8. Three handler subsystems interact with a set of
internal data buffers, and an io pocessor subsystem controls the flow of data between input and output. All
buffers are of type DATACHAN which, presuming that we have written the necessary source text describing the
data structure, may be enrolled as follows:

enrol ida type (DATACHAN)

Subsystem types must be introduced for the handler subsystem (of type sense and actuate) and the processing
subsystem (of type compute):

introduce ss type (sense (SENSOR, DATACHAN))
introduce ss type (actuate(ACTUATOR, DATACHAN))
introduce ss type (compute(DATACHAN, DATACHAN, DATACHAN))

The definition of the controller subsystem type introduced above can now be completed:

CREATE FILE cnntroller (sl, s2 : SENSOR, al : ACTUATOR)
BEGIN

create ida (ichanl, DATACHAN)
create ida (ichan2, DATACHAN)
create ida (ochan, DATACHAN)
create ss (sensor ss, sense (sl, ichanl))
create ss (sensor ss2, sense (s2, ichan2))
create ss (actuator ssl, actuate(al, ochan))
create ss (io processor, compute (ichanl, ichan2, ochan))

END

Further decomposition proceeds until all processing elements which are to be implemented as activities have
been identified. Although the solution method is apparently rather long winded it is entirely logical and
systematic and ensures that a soundhighly visible software structure is achieved.

It is interesting to consider the case where sensor, actuator and io processing functions are resident in
separate processors in a distributed system. The approach adopted is to duplicate the internal IDAs (eg ichanl
is split into ichanla and ichanlb) and to install a communications subsystem to drive data between associated
IDA pairs. Note that the communications hardware is conceptually embedded within the communications subsystem
and that the communications function is kept entirely separate from the rest of the design which is hardly
altered at all provided that a satisfactory intercommunication performance can be achieved.

12 CONCLUSION

The design approach outlined in this paper is based on functional decomposition in terms of data driven,
independent and potentially asynchronous processes which interact through well defined information flow paths.
The approach is tormal yet flexible enough to allow progressive tightening of functional and design Specificat-
ions.

Although applicable to both hardware and software the approach is particularly suitable for the software
elements of a design where it can be used to achieve visibility of the functional partitioning which of
necessity must be applied to any large capacity computing or communications resource.

MASCOT as currently defined enforces a useful degree of functional decoupling and interface definition. The
proposed changes, which are small but significant, bring MASCOT into line with a more general design decompos-
ition approach. In addition a number of possibilities for improving the control over activity-IDA interactions
are described.

The problem of real time performance analysis remains to be resolved. However the design framework calls for
explicit expression of information propagation aspects. This is considered to be an essential prerequisite for
any worthwhile consideration of real time performance characteristics and opens the door to the development of
further formal analysis methods.

REFERENCES

BERGLAND G D, 1981. A Guided Tour of Program Design Methodologies. Computer Vol 14 No 10 pp 13-37

HOARE C A R, 1978. Communicating Sequential Processes. CACM Vol 21 No 8 pp 666-677

JACKSON K, 1977. Language Design for Modular Software Construction.IFIP 1977 Congress Proceedings pp 577-581

MASCOT SUPPLIERS ASSOCIATION, 1980. The Official Handbook of Mascot. RSRE Publication

SIMPSON H R and JACKSON K, 1979. Process Synchronisation in Mascot. The Computer Journal Vol 22 No 4

pp 332-345

SIMPSON H R, 1982. Act Parallel Use Mascot. Computer Bulletin 11/31 pp 6-9

VERS UN VERITABLE ATELIER

DE LOGICIEL AVIONIQUE

G. BXACON

Electronique Serge Dassault

92214 SAINT CLOUD (FRAN4CE)

RESUME

L'eprience acquise A l'ESD en matlAre de d~veloppement de logiciels avioniques (Mirage Fl,

Mirage 2000, Squlpewents) a conduit I Ia d~finition d'un atelier logiciel.

L'atelier AIGLE a pour vocation la prise en compte des m~thodologies et 1'assiarance A

Penaemble des activit~s de d~veloppement, de maintenance at de suivi de projet. 11 coisporte

un ensemble d'outils fonctionnellement compimentaires. qui utilisent une base de donnfies

centrals, et peuvent donc partager des informations. L'intlgration de services bureautiques et

Is confort du dialogue homme-machine permettront laafiioration de Is productivitS.

Enfin, is caractfiristique essentielle d'AIGLE est la saisie automatique d'informations de

contr8le-qualitfi et de gestion de projet. Ceci peruettra de valider le processus de

production, 611fment indispensable AIs certification des logiciels.

I - NTRODUCTION

L'Electronique Serge Dassault est sp~cialisfie dans l'6tude, le d !veloppement et is fabrication

d'asqulpemencs Slectroniques de pointy, tant dans le domaine nilitaire que dans le domaine

cilvil .

L'vtfvctif de P'ESO est de plus de 3 000 personnes, dont 1 700 inglolvurs et cadres.

L' informatique a~rospatiale (caiculateurs, bus nuiriques, syst~mes digitaUc * logic jets de ba-

se et d'appllcatlon) constitue une des activitfis principales de PESO 20 A 25 Z du chiffre

d'aftairvs eat r~alisf! dans cv domaine.

One communication effectufec A La conference AGAR) d'OTTAWA, en nat 1979, prt-sentait le contet-

te de d~veloppvmvnt des logiciels avioniques et ia afithodologie NINERVE mise en oeuvre A

1 'ESO.

L'adoption d'un cycle de vie du logiciel conduit A conacater rapidement le faible tauc de cou-

vecture des outils utilisfis au cours dPun projet. lea outils couvrent traditionneliement aur-

tout l'&tapv de codage, quf ne repr~sente qu'enviroo 20 Z de l'effort total.

LPESO s'vst, deputs 1977, dot~es de moyesa de tests puissants :lee B.V.L (Bale de Validation

du Logictel, dficrites dana une communication AGAXO en septembre 1979), part icullirement adap-

t~ea aLK tests de logiciels avioniques destici~s auK calculateurs ESO. Cependant, iI est apparu

nlcessatre de complfter is panoplie d'outtls, attn de prendre en compte Is spficification des

besoins, Is conception, et Is gestion de projet. Osautre part, l'esp~rience acquise dans le

domaine du test nous s paru mfirter une gfinlrslisatlon qui permette de s's ifranchir de 13 ma-

chine et du langage-clble. Enfin, lea problkmes de l'assurance et du contr8le-qualt, et par-

ticulitrement de Is mesure de la qualit6, ont fitt pris en compte dana notre rfiflec ton giobale

sun le probl~me du gfinie logicili.

C'est pounquoi, depuis 1979, nous avons entrepnis une sfine d'actions concertlses dans co do-

maine avec Is SNIAS/OSES. En effet, une telle rlflec ion nficeste Is wise en common

d'ecpliriencea diverses attn que puissent line imaginles des solutions A vocation glnlnale per-

mettsnt des investissements I Is hauteur des besoins.

Parml ces actions, Is dlftion d'un atelier de glntle logiciel (AbGLE) constitue le cadre gfi-

nliral des orientations adopies, et eat donc prfisentle ci-dessous.

11 LES PRINCIPALES ACTIONS GENIE LOGICIEL

Les travaux prfisentfis idi ont fit6 effectufis ou sont en couns A PESO cents ins sont menus

conjoinnement avec is SNIAS/OSBS, tous fItant rialisis de fagon concertfie. La terminologie uti-

11isle pour situer lea travauc dans un cycle de dlveloppement s'appuie sur celle adoptle dana

lea plans-qualit6 fitablis par FlEEt yet l'AFCIQ, A savoir:

-splictftcation des besoins (uitfirleurement abniglie en spficification)

- codage et tests units Inca

- tests d'intligration

- tests de validation.

2.1. Etudes en mat i~re de m~thodes

line assistance tec hnique a fitf fournie au SCTI-CELAR pour is standard isat ion d 'fl schm

de dfiveloppesent de syst~mea militaires Int~grant du logiciel. ainsi que l'Lstablissement

d'une terminologie et d'une Haste de plans-type des documents A produire.

line Etude est en cours i la SEPT pour settre en place des moyens de d~veloppesent de

projeta, en particulier pour la d~finition et Ia recette des systemes et la gest ion de

proj et .

2.2. Etudes en anati~re de d~finition et de conception de logiciel

Un systame de dfifinition de logic tel assist~e par ordinateur (D.L.A.0.) a 6t[spficifit.

dana le cadre d'un contrat DRET. 11 s'appuie aur un langage principalement conqu en fonc-

tion des applications avioniques. La conception de ce syst~ime eat en cours. line commsuni-

cation concernant cette Etude sera faite au cours du prfisent symposium (010).

tn systame de dfifinition et de conception de logiciel a 6tE dfifini pour PAgence Spatiale

Europ~enne en s'appuyant sur lea r~sultats de I'6tude D.L.A.0. et de 1'6tude S.S.P.

(Systame Support de Programmation, dfiveloppE par la SNIAS/DSBS). et en gtnfralisant lea

domaines d'application.

2.3. Travausc dans le domaine des tests

Lea Bales de Validation de Logiciel Zelles qu'elles sonE utilis~es actuellement permet-

tent Is mise en oeuvre, l'obaervation et la simulation de l'environnement des calcula-

teurs op~rationnels. Elles posadent aubsi ure interface op~rateur, sp~cifique du type

d'applicstion, qui permet A l'ingfinievr conduisant le test d'un logiciel d'agir Solt Sur

Ilenvironnement, en simulant des actions lu pilate ou des 6vfnements 1i68 aUK

fiquipements. par ecemple, Sait Sur le logicial par l'intermfidialre de commandes de mise

au point. Dewc directions de d~veloppement ont it suivies pour le perfectionnement des

BVL:

- L'automatisation des moyens de test actuels, sous contrat SITE, permettant

i'enregistrement des &changes au cours d'une sfiance de validation entre machine de test

et machine testfie, afin de pouvoir effectuer des revalidations automatiques qui r~dui-

ront le co~t et lea d~lais des tests de non-rftgression.

- La gfinfrallaation du systilme B.V.L. , afin de permettre sa mise en oeuvre Sur diverses

machines-cibles et pour divers langages de programation. Ceci a fait l'objet d'une

6tude, Intitulie IDA, dana le cadre d'une convention Agence de l~nforma tique, qui a

abouti A Ia dfifinition d'un langage de test du logiciel, d'une interface standard entre

machine de test et machine cible, et d'une bibliottaque d~outile sp~cialisfis. line com-

munication concernant cetto Etude sera faite au cours du pr~sent symposium (#30)

2.4. Etude de m~tlsodes pour Is assure de Ia gual lEA at de I& fLabilit6 des logicils

Ces fitudes, effectuiee sous contrat DTEn, sont actuelllement en coursaet onE pour but

- IS diterainatlon de facteura, criEares et mAtrrquom de qua
1 litt du logiciel

- I& dfifnition do procdures d'fvalustion de is qualitt

- 1'Atablsesent de classes do fiabilitA du logicie1.;

- la difinit ion de procldures do assure de Is fiab11lEA

- l'eephrinentation an vus d'une &valuation des Etude*.

t)-4

III -L'ATELIER DE GENIE LOGICIEL :AIGLE

Lea d Iverses rffacions menfies dana lea domaines de Is mfgthDdologie et des outils logiciela

ont conduit VESD A1 ssassocier A Ia SNIAS/DSBS et A Ia STERIA pour dfifinir un atelier intggrE

de ginie logiciel qui puisse conatituer une infrastructure dans laquelle les outils dsvelopprs

devront s'intfigrer, et qul permette d'articuler lea outils entre eLK en tenant compte du cadre

math~dologique [RID 80). Cette dfifinition, effectuge avec laide d'une convention Agence de

llInformatique, a abouti A une apficification fonctionnelle, ainsi qu'A des chotx globauc

d' implkmentation.

3.1. Contimte d'utilisation

L'atelier a pour doisaines d'application privilfigi~s lea logiciels intigrl-s A des

systboes, en particulier dana le domaine safrospatial, et, par ailleurs, lea applications

de gestion. Ce second domaine n'est pas dfiveloppAi ici, Ia dual it@ ayant Et introduite

pour favoriser l'amortieseuent Aiconomique de l'investissement (outre que nombre de fonc-

tionnal itfis de base s'av~rent Atre communes).

Compte tenu des moyens mis en oeuvre, i'Atelier et plus part icul.irement destin6 allK or-

ganisations syant I dfivelopper des projets de mayenne et grande envergure, ou nombre de

petits projets.

L'Atelier s'adrease A toutes lea personnes intervenant dana le cycle de dfiveloppement du

logic ie.

L'Ateiier set ind~pendant

- des machines-cibles;

- des langages de programmation

- de Vorgsnisation de 1lfguipe, qu'il permetira cependant d'etpriner et dont le fonc-

tionnement sera facilit6 grace ant outils de gestion de projet et d'asaurance-qualitir.

Selon lea implimentations, diverses mfithodes pourront atre supportfies en fonction des

contuc tea d'utilisation ;ceci impliquera i& aise en place de plusleurs "gsses"

d'outils.

3.2. Activit~a prises en compte

L'Atelier fournit des aides automatisfies pour routes lea activitfis (et tous lee acteurs)

concourant A Is vie d'un logiciel)

- Activitts de dlveloppement:

L'Atelier adopte le cycle de vie prlconis& par IIEEE at l'AFCIQ.

- Activitgs de maintenance:

Des moyens seront fournis pour Ins asie, Is consultation at Is rapprochement des rap-

ports d'anowalie ou demandes de modification, des fiches descriptive@ de modifications,

I& gestion des versions at configurations.

- Activitgs "horizontales"

Sous cette appellation @out regroupAes lee activitis de gestion de projet. assurance-

qualitO et production de documnents.

Le support d'une activitfi pourra 81tre selon le cas

- un ensemble spficifique d'outils :syst~me d'aide A Ia specification ou a la conception,

moyens de production de programmes, moyens de test, outils de planification,..

- l'utilfeatlon dans le conracte d'une actlvit&s d'un service A vocation gen~rale : dj-

tion de teste, gestion de documents, gestion de configurations

- le contr8le par l'ateiier de procfidures, en particulier d'assurance-qualit6, matt-riali-

stes par le respect de plans-type, de ragles de pr~c~dence entre act ivit~s, le maintien

de la cohfirence des configurations, etc ...

Les activitks prises en compte dfiterminent le sch~csa conceptuel d'ensemble d'un projet

dfiveloppfi Bur AIGLE (cf. Fig.1). Ce sclfima global Be d~taille selon les outils mis en

oeuvre ou constituants plus prficis.

Fig.1 Schfima conceptuel d'ensemble

ISpficifica- I Codage II I IAssurance I
tions de I Tests IIIValidationi I I Qual itfi I I

Ibesoin II UnitairesiIL . .. I

I 1 I I I Gestion del

I Conceptionj I intfigratioj I Miaintenanc4 I projet I

3.3. Principes de conception

3.3.1. Innover et non pans inventer

Compte tenu de 1'6tendue de Ia tfiche de rfiallsation de l'Atelier, le princlpe fon-

daaental retenu afin d'aboutir A un premier produit utilisable A I' horizon 1985,

eat de priviligier l'approche innovative, clest-A-dire la misc en oeuvre de con-

cepts 6tablis. AIGLE se ftse donc pour but principal d' int~grer des outils eK is-

tants en on mgme syst~me, c' est-a-d ire de les doter d'inter faces homogLnes tant

via A vis de l'utilisateur qo'en termes d'6change d' informations entre euK .

3.3.2. L'approche systbme

Plutbt que de rechercher one portabilitg ganatralisfie. toujours dilicate et

coOteuse, voire Inefficace, il nous a paru plus prometteor de privUigier un car-

tain type de configuration inatfrielle. En consaiquence, l'architecture phyaiqoe vi-

age eat conatitufie doun rlaeau local reliant des postes de travail autonomes et

puissenta, qui partagent des services centralialas, variables salon lea

installations. Le service central essentiel eat le stockage des informationa dens

one base de donnfies, dont Ia gestion assure la 9&curlt&, le partage et Is aise en

relation des Informations constituent lea produits des projeta.

6-6

3.4. Architecture

3.4.1. Architecture foncttonnelle

L'Atelier est perqu par l'utiiisateur comme gtant structur* en deuK niveauK de

service . des services locauc assurgs de fa~on individuelle par le poste de

travail, des services g&nfrauK partagfs avec lea autree utilisateurs. (cf. Fig.2).

I1 nly a pas de rgpartition a priori entre Les dew categories de services.

Cependant, d'une mani~re g~nfrale, tous les services seront 1ocauK eceptr.s

- le service base de donn&es : normalement utiliea au travers des outils, i1 pour-

ra servir A 1' interrogation directe par lutilisateur avec lea restrictions

dacc~s qui lui sont attachfes ;

- le service production de programmes : ce type de service (comptlateur,

assembleur...) ftant grnfralement disponible dans les environnements actuels, et

reprfsentant un investissement trs lourd, l'atelier se contentera d'en assurer

l'utilsatlon par une mise en oeuvre de Ia machine h~te ;

- It service impression de masse : dane le cadre du posre auronome de travail, une

impression locale parait ngcessaire en gfnfral ; cependant, un tel dispositif

n'a pas pour vocation d'aller au-dell du "hard-copy" ; il est donc nfcessaire de

disposer d'un ste central pour lea impressions en quantit6 (listings, gros

documents), bien que Ia nature du poste de travail aft pour effet de diminuer

notablement lea manipulations de papier.

- le service test ; il permet l'accks A la machine-cible, afin d'exficuter des

tests "rel s", c'est-A-dire ne perturbant pas le programme sous test ;

AIGLE comprendra une machine de test, outil de aise en oeuvre et d'observation

du calculateur-cible, telle que l's dffinie l'tude IDA ;

- le service rfaeau : au cas ok i'accas A un rgaeu gfnfralial, tel que TRANSPAC

ou la communication avec une autre installation AIGLE, serait nfcessaire, une

passerelle permettra de disposer des services etistants sur d'autres sites.

Fig. - ARCHITECTURE FONCTIOWNELLE D'AIGLE

SERVICES DUl

I POSTE DE I
I TAVAIL I

I BAS I RDION I{{

u iE u IMPRESSION I TSTS

DON°ES , PR eOGRA SI I _ 1

3.4.2. Architecture physique

L'architecture matfirielle d'AIGLE est une architecture rlpartie comprentant

*d'un rfiseau local de type ETHERNET;

*des posies de travail autonome et puissants, c'est-A-dire dot~s d'un processeur

puissant (68000, 8086...) d'une m~moire centrale de plusieurs centaines de K

octets, de disques Winchester, d'un 6cran bit-map, d'un dispositif de manipula-

tion de type souris. Le poste de travail offre dans ce cas un contort important

d'utilisation et de par Is localit6 de Ia majoritfi des services, garantit is

disponibilitfi et lIa stabilitfi des temps de rfiponse. Son co~t, du fait de la gs-

nfiralisation pr~visible de cc type de mat~riel, doit s'avfirer rapidement compc8-

titif en raison de lIa dficharge obtenue sur les machines "serveurs".

*des aerveurm assurant Les services centrauK partagfis. Ces services peuvent 6tre

assuris sur un serveur unique, ou confi~s A des machines dbdi~es, selon lea

installations. Les services considfirfs mont essentiellement :le SCEII, Les

moyens de production de programme (compilation/id ition), les moyens d'impresmion

de masse et I'accbs A Ia machine-cible. En cc qui concerne le SGBD, la solution

du serveur spficialisfi (machine de base de donn~es du type Copernique) apparalt

atre A terme garante de Is qualit6 du serveur.

3.5. Organisation logIclelle

line caract~ristique importante d'AIGLE ftant 1i6voiutivit6 9 Is fois via A via des outtls

mis en oeuvre et du matfiriel support, it eat n~cessaire d'organiser le logiclel en ni-

veau(de services successits.

3.5.1. Structure d'accueil

LA base du systbme est constitufie par des 6lbsents pr~cistants :architecture

matfirielle, systbise UNIX/SOL [8EL781 (CAi482j, SGBD.

Ces Alfiments dofvent Otre encapsutfis de faron A orfisenter une interface de service

invariante aue couches sup~rieures :ce niveau est baptisfi structure d'accueil,

puisquil assure Ia pfirennitfi des outils vis A vim de larchitecture mat~rieile.

La structure d'accuell assure trois classes de services:

Is comsmunication dans l'atelter, c'est-A-dire Ia gestion de Isa local isation des

services utilisables par lea niveas sup~rieurs, et des protocoles de communica-

tion entre constituents de base du systems;

Is gestion des informations, appel~ea "objets" dans AIGLE ;lea activitfis prises

en compte par l'stelier permettent de d~gager un schema conceptuel, qui Identi-

fie des classes d'objets (de specification, de code, de gestion de projet ...) et

des classes de relations entre ces objets. A cheque ensemble d'outils consti-

tuant une version de l'atelier correspond ainsi une instantiation du schfma

conceptuel. prenant en compte A des niveauc plus fins les types d'objets et de

relations d~pendants des outils. La structure d'accueil a pour r~le de gfirer. de

manilre gfinfrique pour tous lea objets, leur manipulation et lea 6volutions de

versions ;cette gestion est assurfie par Isa distinction, pour cheque objet, en-

tre son descripteur (Identlflant, type, version, ftat ...), entitti propre 1 .a

structure d'accueil, at son cQrps manipulable par lea outil a compatibles avec

i'objet consid~r*

Isa jestion de lintsrface utilisateur, qui assure l'bomogfn~it* des protocoles

de diasioaue entre l'utilisateur et Is systbme, fournissant un standard

d'intorfaces atm outils interactifa.

3.5.2. services gbnkraac

Au delA de La structure d'accueil, des services gfin~rauc peuvent Atre mis A d ispo-

sition de tous lea outils ascifiques. Ils regroupent principalement

*lee moyens bureautiques : dition de tas te, fidition graphique, messagerie, ges-

tion des documenta

Isl gestion dea configurations :dana le contete VAIGLE, cette gestion couvre

l'ensemble des produits issus du d~veloppement (des spgc ificat ions auK testa et

auc informations de maintenance),* ainsi que Ia geation des sites d implantation

et des moyens de production et dmcxploitation, indispensable ascK contr8les de

cohfirence.

3.5.3. Gestion de projet et assurance-gualitE

Lea outils de gestion de projet et d'assurance-qualitf! sont invoqubsasutomatique-

ment lora de l'utilisation doutils de dfiveloppement, et effectuent en temps r~el.

lea mises A jour et les mesures conceinant le dfiveloppement. Le suivi permanent du

planning de projet et du plan-qualitfi peut sinai acre consult&s par lea out Us

d'interrogations sp~cifiques I ces activitfis, et ies drepassements de prEvisions ou

non-respect de procadures signalls auc divers intfiressais.

3.5.4. Dfiveloppement et maintenance

Les outilsa de dfiveloppement (et lea outils compl~mentaires de maintenance ;saisie

des incidents, demandes de modifications et modifications effectives) constituent

des ensembles couvrant le cycle de vie adopt&, dont l'utiiisation entralne automa-

tiquement des questions drifiniea au moyen de l'outil de gestion de projet et des

contr8les dfifinis so moyen des outiis d'assurance-qualitfi. C'est en particulier al
partir des wcigeoces du plan-qual itfi que devront @tre fitabl is des liens entre pro-

duits d'activit~s diverses Is long do cycle de vie.

3.6. Le dialogue utillsateur-systbae

11 repose en particolier sur l intfigration de decw concepts :be langage de comade

SHELL d'UNIX, et lea interfaces utilisateurs df~veloppf~s dana lea projets SMALLTALK

[SNA 81) at KAYAK [NAl 81).

Lea caract~ristiques principaies en soot

- Is diroulement paralble de plusieurs tiches pour on samue usager et Is possibilit*

d'enchmlner des commandes par le jeu des filtres

- Ia pr~sence sicaultanle d informationa de provenances diverss, appasaisaant dana des

fengtres diatinctes, ce qui facilite 1& consultation de documents;

- Is fonctionneuent AI lintfrieur d'un moda, difini par l'activitt chs~isie par

l'utilsateur parmi calles@ offertas par AIGLE, qui autorise Is manipulation des infor-

* smations li~es I cette activitS, et ne permet que Is consultation des aotres Inform-

tions ;par escample, il eat possible d'utiliser un Sditeur syntax ique de langage de

programmtion dana on tact. de spficificstion, maim It produit n's vie I via de

b'activitS do spficification qu'une velour de texte informal (inversement, un tecta de

spcification formalosis insari done un programe-source nWs plus qua I& velour de

comments ire)

('-Q

- la prbsence A lgfcran de menus contectuels guidant l'utilisateur en permanence ;de

plus, l'appel contectuel au guide auto-fiducatif est toujours possible (cette fonction-

nalit& eat Indispensable, du fait du grand nombre de services susceptibles d'ftre four-

nis par AIGLE);

- l'interprfitation contectuelle des commandes, alligeant et uniformisant l~a syntase

- i'interrogation par un .query-, sous-ensemble des primitives base de donnges de l~a

structure d'accueil, des informations accessibies A un utilisateur, en particul icr a fin

dPen consulter lea relations ;ce service, utilisable au travers d'outils de

formattage, permettra l'6dition de liates d'objets, de rffrences croisges, d'ectraits

spficiaiisfs (un minimum de procfidures prkg-ftablies fitant fividemment fourni).

3.7. Lea services gfingraux

11a se r~partissent en deuc catggories isl bureautique et Ia gestion des configurations.

3.7.1. Moyens bureautigues

La bureautique d'AIGLE off'e trois types de services

- i'fidition tectuelle et graphique, interface standard entre l'utilisateur du po-

ate de travail et lea outius final isks

- la messagerie, qui comporte:

le bloc-notes d'un utilisateur qui lui permet de gfirer sea

notes personnelles (en particulier de stocker les messages requs)

Is gestion des boltes A lettres, qui permet aux differents utilisateura de

a'adreaser des messages, et ascx outils de tontr~le (gestion de projet,

assurance-qual itE) de pr~venir par message lea divers in' .. essg quant auK

anomalies rencontrfges;

la gestion des documents :l'utlisateur dialogue avec le syst~me au moyen de

tec tea et graphiques, que nous appelons "composants documenta irca" a ins i

peuvent Otre constftufis divers documents, A partir de plans-type prudfinis et

de composanta documentaires iaborga A laide des outils (fiament de

apficifications, de conception, code source de programme, jeu de test,...).

Le documentaliate assure ainai is gestion des plans-type, ls saisie d'un document

scion un plan-type, et la misc en forme pour fidition.

3.7.2. Gest ion des configurations

Cette fonction, essentielle dans AIGLE, assure Ia cohfirence des produits issus

d'un projet, d'un bout A lautre du cycle de vie. Elle s'appuic sur la gestion des

* objets de is structure d'accuefi, qui contr~ie Is valid it& des relations fitablies

entre objets, et lea chungementa de version d'un mime objet. En revanche, la ges-

tion des configurations doit s'assurer de la cohrence d'Avolution des versions

entre des objets en relation. Par ecemple, is modification de Vinterface d'un mo-

dule doit entralner Is signalisation A l'utilisateur des modules 116a une fiche

de modification portant our la ap~cifications dfiteraine Is trace vera lea 6iA-

ments de conception, codage et tests concern*.

Tout projet est reprfisent@, pour une version donnte, psr une nomenclature des pro-

duits qui en sont issue. De plus, pour chaque type de produit, il sera possible

d'y rattacher les rt-f~rences des moyens de production et d'exploitation associ~s,

et les sites d'iaplantation. En particulier, il peut Otte utile de conserver Ia

dfisignation de is version et/ou des options de compilation ou d'6dition de liens

utiliaefie pour produire un programme ;de m~me Is version de moniteur

d'ecploitation suquel eat destinfie une version d'application eat une informtion

qu'il taut avoir.

Ainsi, Ia gestion des configurations eat le r~gulateur du systbme d'informations,

capable de d~terminer si une application eat complate ou non, et si l'enaemble de

sea constituanta soot hoinog~nes et peuvent donc Otte intfigrbs pour emploitation.

De ce fait, elle conatitue un filfment important du systbme d'asaurance-qualitE.

3.8. L'aaaurance-gualit*

L'aasurance-qualitfi eat une fonction r~partie dana le ayst~me AIGLE, wise en oeuvre a

l'occasion de toutes lea op~rations de dfiveloppement et de maintenance. Elle a'appuie

pour as rfialisation aur une grands quantitE d outlils (mc istants et A d~velopper).

3.8.1. Le plan-qualitfi

La dfifinition du plan-qualitfi d'un projet s'effectue A Vlde d'un outil apficia-

lisfi qui permet de saesir:

- lea produits mc igfis pour chaque &itape du cycle de vie

- ls designation pour ctaque produit do standard A lui appliquer (plan-type,

langage, outil de contr8le et paramatres correspondents, ...);

- lea rbgles spkcifiques du projet zvalidation d'un produit avant passage A

l'Stape suivante, droits d'acciks des divers participants, cycle d'autorisation

de modifications

- lea mesures demandfies sur le dfiveloppement.

3.8.2. Le suivi de Ia qualitfi

Toute utilisation d'outil. en dlvdloppewent ou maintenance entrallne un contr8le par

rapport ao plan-qual itfi

- de respect du cycle de vie

- de conforuit6 &s standards

- de respect des r~gles spficifiques de passage d'une activitS A une sutre, de

modifications, de validation de prodults

- de mitriqoes (A certains 6tats des produita)

3.8.3. Le suivi de lassurance-gualitfi manuelle

Bien que 1'atelier ait pour objectif d'outomatiser l'assurance-qualitt8 autant que

possible, certaines opfirations demeurent soissises A lspprciation lumaine. Affn

d'intfigrer leurs rfisultats, AIGLE permettra Ia saisie:

- des rfisultats de revues de projet et "walkthroughs", qui portent uric apprficia-

tion sur un produit (en particulier, l~e valident et peuvent demander des

mod ifications);

- des cycles auteur-lecteurs de produits, c'est-A-d ire des interlocuteurs, pro-

duits concernfis et remarques.

Les informations seront datfies de Ia maine mani~re que toute operation A effet r&-

manent rfialisfie par l'atelier.

3.8.4. La mfitrologie

AIGLE permetirm V insertion d'outils de miesures de toutes sortes [LAW 81).

En particulier, des mesures seront fatten

- sur is dur~e des activit~s (temps calendaire, temps d'utilisation de Patelier)

- sur les quantitfis produites (nombre de lignes, de pages, d'objets, ...);

- our len caractfiristiques des produits (couplecitfi tectuelle or' structurelle)

- our lea temps d'exfcution des tests dynamiques

- our lea tauc de couverture des tests;

- our is frfiquence et l'incidence den modifications.

3.9. Mfithodes et outiUs

3.9.1. La d~marche [ME '

Lnstelier a pour but d'offrir un ensemble couplet d'outils assistant asiK tfiches de

d~veloppement, suivi, contr8le et gention de projets logiciels. Nious avons dit

plus bout qu'il fitait indispensable d'utiliser des outiUs Etablissant un cadre mE-

thodologique attn d'annurer la formalisation des produits, Is miss en relation a

un niveau de d~tail suffinant des 6l6ments de dficomposition, et la possibilitcE

d'urtliser des outils de mfitrologie.

L'optique d'une botte a1 outils ind~pendsnts Etant rejet~e, deix votes restent pos-

sibles:

a) D~finir un ensemble d'outiUs adapt~s A une afithodologie particulitre et C~om-

plAte (couvrant toutes lea activitfis). Le couplage de cen outln et lour IntE-

gration neront slorsalnins, et le syst~me r~sultant d'une rotate homoginfiltE.

Cette solution comporte pourtant des Inconv~nients notables

- ellm implique In conception de llennemble des outils, voite la d~finition

coupltmentaire de In a~thodologie, un ensemble homogbne et couplet d'outiUs

n'Etant pas disponible aujourd' hul

- eile lie AIGLE nix paris techniques impliqu~s par cette d~finition totale.

Cette vote a donc EtEi rejetfie.

6-1 2

b) S'attacher A rassembler dana une maine structure mat~rielle et d'interfaces des

outils cc istants ou dont la dafinition eK iste, outils qul sont retenus du fait

de leur adaptation auc besoisr identififis, et dont lea concepts sont

complbmenta ites.

Cette approche permet

V adoption d'outils atistanta, dont Ia spficification eat done acquise

*plus de souplesse A 1'6gard de l'adaptation de nouvelles mfthodes ou de nouveaux

outi1ls.

C'est cette solution qui a Atfi retenue ;des clht de premiare impltmentation ont

r~(effectufis.

3.9.2. Les outila

- LA phase de spaicification eat assiataie par Is systasme D.L.A.O., dont Is modaie

conceptuel et I& syntace semi-formelle sont bien adaptis A l'ecpresaton de pro-

blAmes avioniqucx temps rfi, et A I& description des interfaces du logic lel

avec Ie mat~riel environnant.

- La phase de conception eat conduite aelon la mfithode des machines abstraites,

supportt par Ia systae SF. Ce syst~me dfibouche sur un service de programmation

assistfie vero lea divers langages pris en coupte :LTR, PASCAL, FORTRAN...

- Le code produit fait l'objet d'analyses statiques ;il sets Aiventuellement pos-

sible d'intfigrer des analyseurs dynamiques sur Ie poste de travail, mais ceci

n'eat pas prgvu dans un premier temps.

- Les tests d'intaigration en temps r~el sont effectugs depuis Is paste de travail

sur Ia machine-cible, sous contr8le ee I& machine de test, avec Is langage de

test difint par l1ftude IDA.

- La gestion de projet sera assur~e par Is produit SGPL (Systame de Gestion de

Projets Logiciels), caract~ris6 par son orientation vera lea travaUK logiciels,

I& prise en compte des fitudes de Putnam, I'utilisation des historiques de projet

at Ia saisie automatique des donn~es A l'int~rteur d'un atelier.

fi 3

3.9.3. Inr~gration des outils

Les divers outils aivoqufis ci-dessus, ainsi que Ies fonctions gfinbrales et lea uti-

litaires fournis en particulier grice 41 UNIX, sont intfigrfs aelon divers points de

vue:

- par leur accas 41 travers le maine interface hommte-machine

- par i'utilisation d'une mane base de donnfies

- par la possibU iiaf, da-terminke dans le plan-qualit& d'un projet, de mettre en

rapport dans is base de donnkes des filaments de produits issus d'activitfis dis-

tinctes (par ecemple :un programme et I& partle de conception quf le dficrtt, ou

lea parties de spficification quil implamente). Ceci assure is possibilita de

parcourir lea liens entre lea Informations et vers lea modifications, et donc

d'assurer I& cohfirence et la cozpla~tude des produita.

IV -CONCLUSION

Le volume et la complecitre. et par vole de consfiquence l'iinportance ct le coit du logiciel ne

cessant de croltre [BOE 82] , le risque technique encouru A clinque projet, en termes de

qualitfi, coflts et dalais nficessite de nouvelles solutions pour atre maltrisi. Ces solutions ne

peuvent rfisider uniquement dans lea progras, par ailleurs souhmitables, des langages de

programmation.

En effet, lea progrbs en matibre de langages mettenl au contraire toujours plus en &ividence

lea aspects mel connus, et donc incontr8lres, des daveloppesents de logiciel:

- Vlinauffisance des spaic ificat ions, trop flouca, incomplates, voire contradictoires, la dif-

ficultfi d'apprfihender de gins documents,.;

- l'incapacitai dana laquelle nn me trouve sujourd'hui de valider totalement de gros logiciels

compleces en dehors de leur environnement opairationnel, cc qui cat cofiteuc, voire dangereuc.

Be fagon plus g~nfirale, il eat Impossible 41 l'heure actuelle d'estimer Is qualitk d'un logi-

ciel avant une utilisation prolongfie qui permette de conatater lea coflts d'ecploitation et

de maintenance;

- Ia difficult* qu'il y a d'cstimer et de contr8ler lea co~ts et M~aim, et d'fivaluer lea in-

pacts des modifications.

Tous ces problames damontrent le besoin de disposer d'outils qui prennent en compte lee divers

points de vue our un projet, standard isent lea produits (docuents, programmes), fournissent

des gilaments chiffias objectivement sur le processus de diveloppement et de maintenance, donc

asaurent Ia vfiritable visibilitai du logiciel.

En fait, Is conclusion qui 5' impose maintenant eat qu'il four pouvoir valider le processus de

daveloppement et d'entretien du logiciel au momns autant que Ie produit, come cela me fait

dane d'autrea techniques [HOW 82). Ceci n'est aividement possible qu'avec un degr* Important

d'automatisation [SOR 791.

6-14

AIGLE nous paraft Otre une faqon de s'orienter risolument vers une telle automatisation. Apr~s

une phase exp6rimentale, un tel atelier permettra de capitaliser une rfelle connaissance sun

des logiciels dfveloppfs, tant en termes de qualit8 et de gestion de projet qu'en termes de

"mhmoire technique. En effet, ii eat envisageable d'Slargir le systbme A l'interrogation sur

des sujets dfjA trait~s, ce qui permettra de fournir des 6lments r6utilisables par de nou-

veaux projets [WAS 821.

BIBLIOGRAPHIE

[BEL 78] BELL System Technical Journal - 1978

[BOE 79] BOEHM, Barry - 1979

Software Engineering - As it is - Software Engineering Conf.

[BEL 821 BOEHM, Barry - 1982

Les facteurs de coot du logiciel (Software cost factors) - TSI n
°

1

(CAM 821 CAMPBELL et aI - 1982

Le systbee d'exploitation SOL - Note INRIA

[HOW 82] HOWDEN, William - 1982

Life-cycle software validation - IEEE Transactions on S.E.

[LAW 811 LAWLER, R.W. - 1981

System Perspective on Software Quality - COMPSAC'81

[LED 81] LEDGARD et al - 1981

Directions in human factors for interactive systems -

Springer Verlag

[NAF 81] NAFFAH, N. - 1981

Le projet-pilote bureautique KAYAK

Bulletin de liaison de V'INRIA n* 69.

[RID 80] RIDDLE, William - 1980

PANEL ; Software development environments

IEEE Transactions on S.E.

[SMA 81] SM&LLTALK - August 1981

A language for the 1980's - BYTE

(SOR 79] SORKOWITZ Alfred - 1979

Certification Testing : A procedure to impose the quality of software testing -

IEEE Transactions on S.E.

[WAS 82] WASSERMAN Anthony and GUTZ Steven - March 1982

The future of programing - CACM.

noo_!m

I>-I

DISCUSSION FROM AVIONICS PANL FALL 1982 MEETING ON

SOFTWARE FOR AVIONICS

Session I : SOFTWARE (S/) TECHNOLOGY (TUTORIAL) - Chan Dr. A. A. Callaway (UK)

Paper Wr . - AVIONICS SOFTWARE: WHERE ARE IE?
Presented by - Dr. W. Ware

Speaker - D. H. Weiss

Comment - I notice that you pointed to the development of expert systems as a way of improving

the information management handling problem in the cockpit. I wonder if you see anything in the
software engineering technology that will help with the problem of developing software that is

easy to change?

Response - There are things around that might contribute to that. However, I don't think one can
develop a recipe that says we if we do the following things we will be on top of that particular

issue. Dr. Sundberg's paper identifies an obviously important step. Standardizations are also

an important step. There are a lot of bits and pieces which are also important steps. In the
whole they will all contribute to that end goal that you have identified. But there are not any
magic bullets on that issue or any other issue in the software business.

Paper Nr. 2 - AVIONICS SOFTWARE DESIGN

Presented by - Dr. D. E. Sundstrom

No Questions

Paper Hr. 3 - Cancelled

Paper Nr. 4 - S/l DEVELOPMENT: DESIGl AND REALITY
Presented by - Dr. H. Von Groote

No Questions

Paper Nr. 5 - iSCOT DEVELOPMENTS TO IMPROVE SOFTWARE STRUCTURE 02D INTEGRITY

Presented by - Dr. H. R. Simpson
Speaker - Dr. D. J. Martin
Ccmment - MASCOT, I believe, was originally aimed at large, asynchronously operating systems. I

am not sure of the usefulness in the highly synchronous, sequential processing of the flight

controls task. Could you please coument?

Response - MASCOT was created some 10 years ago to deal with the problems of large distributed
processing systems for ground applications. Modern avionic systems are approaching the

complexity of these earlier ground based systems and the method can be used to advantage. The
IASCOT software structure can also give benefits in essentially sequential systems where the

intercommunication data areas can be used to compose a very strong form of partitioning between

different elements of the processing task thus enhancing testability and flexibility (see
Computer Bulletin, March 2982, for example). In smaller applications of MASCOT it will be
necessary to tailor the kernel to avoid unnecessary overheads.

Paper Nr. 5 - MASCOT DEVELOPMENTS TO IMPROVE SOFTWARE STRUCTURE AND INTEGRITY
Presented by - Dr. H. R. Simpson
Speaker - J. Whal lIy
Comment - What is the official MOD(UK) view on the proposed extensions and what are the

implications for MqSCT with the advent of AOA?

Response - The proposed extensions will shortly be put before the MASCOT technical management

committee. If adopted by the Committee (after review and an aiendment as necessary) they will be

incorporated in what will probably be known as MASCOT I1.
MASCOT is a language independent method with a formal means for expressing the design and

supported by certain software construction and test tools. In principle the ADA language can be

used with MASCOT although it must be said that the tasking features of ADA are in some conflict
with the MASCOT approach to parallelism (as explained in the introduction). However this

difference is not sufficient to rule out the possibility of an effective combination of the

IASCOT design method and the ADA prograiming languages.

Paper Nr. 4 - VERS UN VERITABLE ATELIER DE LOOICIEL AVIGNIGUE Presented by - 9. Bracon

Speaker - Unknown
Comment - Est-ce quo vous pourriez nous dire ou en est votre developpement actuellement?

Response - Comm jc viens de "ecrire, ce sont les risultats d'une £tudc qui a conduit a une

sp6cificaton globale que nous considerons cMMe une action un peu federatrice sur tout ce que

nous faisons dans I domaine du g4nie logiciel, maim nous n'avons, pour l'instant, pas depasise
le starg de cette specification. Par contre nows etprons bien qu'en fonction des actions qui

seront lancies en particulier par Ies pouvoirs publics franjais dans ce domaine, nous aurons
l'opportunith d'entamer lea devel$oppemets de ce type.

Paper NW. 6 - VERS UN VERITABLE ATELIER DE LOGICIEL AVIONIUE Presented by - 0. Bracon
Speaker - N. P. Haigh
Comment - The °AIGLE" system contains a large data base. Would you care to c€ment on the
security aspect with regard to unauthorized access?

nI , •ilr

Response - Oui, nous avons envisage d'avoir des sicuritis a ce naveau Ii, c'est i dire qu'aI y
aura des mats do passe, il y aura un certain nombce do proc~dures do reconnaissance do
I'utniiateur. Chaque utilisateur devra ei-tre declare. Jo ponso quo, i cot egard, nous aurons une
politiquo rolativement classique sur ce qui so passe sur les systies do temps partaqS, on n'a
pas do specifications tres pricises do ce point 11.

REQUIREMENTS DECOMPOSITION AND OTHER MYTHS

Dr. T. G. Swann
Marconi Avionics Ltd.,

Elstree Way,

Borehamwood,
Herts.

WD6 lRX

SUMMARY

A myth is a traditional fiction that reveals a greater truth. This paper is concerned with the procurement
of large, innovative, systems - why do we never get what we want? The problems are often blamed on certain
types of faults in the requirement specification and the design process.

Requirements specifications are discussed and it is seen that they are far more complex than we are asked
to believe. It is argued that the description of design as Requirements Decomposition is more than a
simplification: it is positively misleading. Similarly the virtues of good specifications, such as
completeness and formality, are not just pre-requisites for success: they are unattainable ideals. It is
concluded that many traditional maxims, though valuable, should not be taken too literally. They are, perhaps
myths.

1. INTRODUCTIORN

A myth is a traditional fiction that reveals a greater truth.

Once, long ago, a powerful king wished to buy a toy. He described his requirement like this:-

"I want a toy plastic car, to give to my son on his fourth birthday - one of those brightly
coloured plastic ones. It must be safe as he might chew it. Keep it secret, don't let him
know".

All the king's ministers were appalled at the careless informal style of this document and resolved to tidy
it up before passing it to the executive office of the civil service. Each had a suggestion for improvement.

i) The word "toy" is vague and hard to define, surely the essence here is that it should be
small and cheap.

ii) We do not need to say who the car is for, or tat it is a birthday present. These are
irrelevant to the specification.

iii) There is no need to specify "brightly-coloured", all such toys are brightly-coloured.
This is putting in too much detail.

iv) The sentence would then read: "One of those plastic ones". This is a redundant, as plastic
has already been specified.

v) There is no need to mention the possibility of the toy being chewed. There are regulations
for toy safety that include this.

vi) If the toy is kept secret, then the soni would not know of it. The injunction "Don't let him

know" is therefore superfluous.

The revised specification read:-

"A small, cheap, plastic car is required. It must be safe. Keep it secret.

A sufficient, formal statement expressing all the necessary aspects of the requirement with no irrelevant
detail. Naturally it was several months before the king discovered the existence of a secret project to
develop a small, cheap, plastic automobile that set new standards in passenger safety.

What went wrong? At first sight this seems a trivial story. But, if we examine each of the six amendments
in turn, we see that none are outrageous. They are all perfectly valid and could be supported by
convincing arguments. If, instead of three lines, the specification were 200 pages, the amendments might
pass unquestioned.

I believe that things go wrong for more reasons than are generally acknowledged. And the most important
reasons lie in an area scarcely touched by existing methodologies, namely the Very nature of language and
formal notation.

Ii

7-2

This paper does not attempt a deep study of the many philosophical questions that could be raised

(Marcuse H., 1964; Weinberg G, 1971; Woods W. A. 1981). It merely uses some elementary arguments to shed

light on a vexing, practical, problem.

2. PURPOSE OF SPECIFICATION DOCUMENTS

If we were building a small system, we might do all the design in a single session, write it down in a

single document and build the whole system ourselves. But life is rarely like that. In practice we must

write a variety of documents to suit the needs of a host of people. They will vary widely in content,

style, vocabulary and so on; from wiring schedules, that refer to some specific technique or machine tool,

to explanations written in simple language for the benefit of the customer's management.

Among the documents, we identify some that embody the design of the system. These form a hierarchy or

pyramid which, read from the top downwards, describes the design in more and more detail. And we expect

them to be written in that order, starting with an overview of the design and ending with many detailed
descriptions of local features.

But this does not mean that the actual design work is performed topdown. On a major project the design
path will be paved with feasibility studies and working papers. Many high level documents will be written
with quite specific design details already in mind.

The documents in the pyramid can be regarded as both specifications of what has been designed and require-

ments to be met by further design. They therefore tend to be called wither Specifications (specs.) or

Requirement Specifications. Their authors emphasise the "Specification" part, to show how much design work

has been done. Their readers, the design teams for the next level down, emphasise "Requirement" to show

how much is still to be done. And rightly so, for there is no guarantee that this"Requirement" can be met
at all.

The specs., then, have several distinct purposes. They capture or describe the design for the benefit of

the authors (designers). They convince the customer (the level above) that the designers have understood

his requirement: or at least they describe what he is going to get. They communicate the design to other

design teams, who may know nothing about it. These others must be able to distinguish what has been

designed, what remains to be designed and the various constraints on design.

If a problem occurs and the design must be changed, it must be possible to see the origin of each part of

the design and hence the impact of any change. In this context, the design can be seen as a hierarchy of

decisions: this many modules, that sort of interface, and so on. The decisions may stem from the customers

requirements, working papers or designers' hunches. Often they will be purely arbitrary. But whatever the
origin, the specs. are more than just a description, they are a living record of these design decisions

and their consequences.

As design proceeds, more and more people become involved, and nct just in design. Test engineers need to

know which microprocessor will be used, how much BITE there will be, and so on. Production need to know
how many circuit boards there will be. Training officers need to know how the system will ppear to the

users. Above all Company Management need to keep track of the project timescale and budget. It has been

said that, at the early stages of a project, the prime purpose of the documents is to allow Management to

estimate the resources that will be needed.

3. INFORMATION

When all the purposes are spelt out, it seems remarkable that we even attempt to compress so much into a

single series of documents. An even more remarkable notion is that the whole hierarchy is generated by the

decomposition of a single document: the Specification.

The conventional story is that we take this document and expand it into a number of lower-level documents,

each containing more detail. The process is repeated until we arrive at the lowest possible level, binary

code, say, or circuit diagrams. But this cannot be the whole story. The Requirement Specification for a

project may be only 100 pages while the lowest level of documents is several thousand. They contain more
information.

Of course "number of pages" is not a very good measure of quantity of information, but it serves to illustrate

the point. Even allowing for repetition, the same idea occuring in many documents, there is still a great
disparity.

Where does all this information come from? It is not as if we can examine documents under a microscope to

reveal greater detail. No, the information is added by the design process. Decomposition is a myth.

Design means making decisions, adding information, creating order out of disorder.

So perhaps we should be concerned not with specifications as such, but with the information flow they imply.
(Parnas D.L. 1971). One of the prime functions of a specification must surely be to direct this information

gathering activity. If we can understand this activity we will learn a great deal about writing specifications.

3.1. Requirements and Design

The requirement for a new product or system rarely springs to life as a precise, well thought out idea.

Initially there will be only some human "need" which is perceived, and expressed, in terms of existing
familiar things. Delagn, in its widest sense, is the job of taking this "need" and producing a product

to satisfy it.

7.3

At first sight we might imagine that this was a well defined, if difficult job. The person with the
need (the customer) writes down what is wanted in a Requirement Specification. Then swt'one else (the
contractor, engineer) builds it.

But things are not that easy. Suppose a customer expresses the need for a control c- to control the
movements of a fleet of delivery trucks. He has said what is needed "a control centre , and what it is
to do: "control the movements etc". But this brief description cannot be "decomposed" to produce a
design, there is simply not enough information. No-one really knows what is wanted, someone has to find
out. Or rather someone has to specify the need, and this means making decisions.

It is clear that even writing down the requirements is going to involve some decisions. There has already
been an implicit decision to have a control "centre" rather than a network, say. We would expect further
decisions such as: "it shall control all vehicles in the London area" and "it shall perform the following
functions". But can we, as designers, ask for more detail of these functions? And more detail? Can we
ask for them to be expressed as computer programs? I believe that we cannot ask for any more, simply
because no-one knows any more about what is wanted. If they did they would not need us to design it.

The customer can see problems and he can describe these problems. But this may not even suggest a solution.
Indeed there may be no solution, it all depends on how the problems are expressed. Even if we believe we
can see a solution, we have no guarantee that it can be realised with available technology.

The design process is esssentially iterative. We must float a few ideas, evaluate them, modify them, and
slowly turn them into concrete design. We are changing Our, and the customer's, world view no less.
Before, we saw a world with problems. After the Requirement Specification is written we see a world with
the new product and fewer problems:-

BEFORE

0

AFTER

This is a leap of imagination. But unless we are also gifted with amazing insight we still cannot say, in
detail, what is in the "Box": that is a matter of design decisions. We can only define it in terms of the
new behaviour of the world around it and its interaction with this world. We have taken some decisions,
as can be seen in the picture, but we have not yet designed the box. The functions to be performed only
exist as high-level, human ideas. And these ideas cannot, somehow, be analysed to discover the low level
detail. That would be magic

Historically, software design has always started with a System Analysis phase. This is because many
business systems are intended, in some way, to replace existing, manual clerical systems ihich must first
be analysed to find out what they are and how they work. The analysis is then a major component of the
Requirement Specification. But it is only on,- component, and it must certainly not be confused with the
subsequent, design decisions. We can only analyse things that already exist, i.e. the world "before"
the new system. We cannot analyse things which are only ideas in the mind of the customer or designer.

.0

7-4

But we do need more information, and it can only come from the customer. If he wants us to do the design,

he must describe his need: not as design detail inside the "box", but in terms of the purpose for which it

was conceived i.e. going further out into the customer's world. Thus the system shall "save money",

"reduce delivery times" and so on. And these purposes, in turn, can only be explained in terms of still

higher level purposes: the company shall "make a profit", "increase local employment" and so on.

So the Requirement Specification is not a description of a product it is a statement of aims and intents
with the proposed system at the lowest level and no limit to the highest.

Somehow we must construct a system to satisfy the expressed needs. Certainly this will entail careful

reading of the Requirement Specification and consideration of its various parts, but if we have to choose

just one word to describe our activity then we should choose not "analysis" but "synthesis". The designers

job is not to analyse the requirements but to synthesise a design.

The designers must make decisions. And although these arise in response to the customers requirements,

they are not contained in it. Someone has to synthesise the design, that is make the whole host of
decisions that bridge the gap between the customer's purpose and the final nuts and bolts. They must

invent the details of the control centre functions, they must judge what is suitable hardware to implement

these functions and so on.

All these decisions are written down to form the hierarchy of specification documents. At the top are the
major decisions about the gross nature of the system, these lead to smaller-scale decisions and on down to

the final details. We can picture these decisions as a tree, where the "trunk" is the customer requirement
and the branches (or rather the branching points) reflect the hierarchy of decisions over successively
smaller areas of concern:-

requirement
(ideas)

c-design REQUIREMENT SPEC.

(decisions)

SPEC. LEVEL I

LEVEL 2

LEVEL 3

//
Note... Like all software or family trees it is drawn upside down, with the branches underneath.

The decisions in the tree transform human ideas at the top into engineering detail at the bottom. And
this shows the meaning of "requirement decomposition", in that the decisions form a structured list of
parts. Structured decomposition is a methodology in the sense that is shows us how to organise and

document our design decisions. Just as "genus" and "species" show us how to classify animals - but not
how to design one.

3.2. Information Balance

If we group the decisions into appropriate documents the result will be as shown above. And we can see

immediately why the higher level documents are thinner than the lower: they contain fewer decisions. We
can also see why the Requirement Specification itself should be very thick: it contains not just decisions
but an entire world view. And it is this that drives the decisions.

Iq

If we were engaged in pure, original, design then all the decisions (and hence the detail) would stem from
the customer's stated requirement. The decision that "the control centre shall contain computers, radios
and telephones" relates to the customer's description of the size of the vehicle fleet, etc. (For a smaller
fleet, a clerk with a bicycle would have sufficed.) The requirement "to increase local employment" must
also surely affect the design and will need elaboration in terms of budget and higher level aims. Even the
most trivial decision must come from somewhere. The tree has a constant cross-sectional area. If the
stated requirement does not cover a decision then we are, in effect, saying: "don't care".

If all goes well, we can trace each statement in the requirement to a set of decisions and each decision to
a set of statements in the requirement. And if this is true there will be, in a crude sense, an information
balance. A complex requirement, say, will have a correspondingly large number of decisions in the
specification.

But this is never strictly true. No design is wholly original. A manufacturer will always try to sell a
product that has already been designed. And rightly so, for by reducing cost and risk the existing product
may well meet the customer's higher level needs. The decisions in the stated requirement are only the
customer's attempt to meet the designers half way.

In reality the requirement does not attempt to encompass all the design detail. Instead it refers to other
documents such as working papers and lists of stock items. For example, if we buy a car, the salesman
assesses our requirement in terms of the size of our family, the thickness of our wallet, our social
aspirations etc. These are translated into a simple formula such as "Model A, 4 doors, 16occ". And this
is the Requirement Specification received by the factory.

Clearly it does not pretend to contain the amount of detail necessary to build a car. That occupies several
rooms full of paper. Instead it merely calls on the stock items provided by the factory. It could probably
be encoded in just 6 digits.

The real Requirement Specification to which the cars are built is a far larger document (or pile of documents)
It is this hidden document, with its attendant studies and reports, that is used to design the car. Once
designed, minor variations can be called up by just the "Customer Specification".

So we can formulate a more general law of information balance: a Requirement Specification must contain as
much information as is novel or non-standard in the final system. Any less is an invitation to guesswork.

4. THE PERFECT SPECIFICATION

We are often told that good specifications are complete, formal, non-redundant and unambiguous. We are
also told that all requirements should be testable. Tet us see, then, if we can test this requirement for
good specifications.

4.1. Completeness

Consider the information tree above. At the top is the Requirement Specification: an explanation of what
the customer wants in terms of his own aims and purposes. We have already noted that there is, in principle,
no upper limit to this explanation.

However much we are told, questions or problems will always arise that can only be answered by referring
back to the customer. And they can occur surprisingly late in the day. If we discover that our truck
control-centre customer wishes to transport valuable cargo, it might only mean encryption on the telephone
lines and passwords in the software: it might mean relocating the whole centre to a more secure building
and redesigning the software. The excuse would be that it did not seem necessary for the designers to know
the nature of the cargo. At this point a good system designer would wonder what else he had not been told.

So completeness at the highest levels, though desirable, is impossible. We do nct have the patience or
the paper to write the history of the universe.

But what about the design specifications? Surely these can be complete if we describe the control-centre,
the telephones, the computers, the programs, all down to the very last detail? In practice we do not even
try. We specify a certain type of computer, but leave the internal details to the manufacturer. We
specify a certain quality of paper, but again leave out the details. The specifications are packed with
details, but only describe the novel, non-standard features. The rest calls for stock items in stock
situations. The bulk of the system is specified just like the saloon car: "Computer Model A, 1 tyte,
4 discs".

Of course the real system contains more detail than even the manufacturers of the stock items can define.
The complexity of any real object is infinite. A microcomputer and a piece of impure silicon, say, are
both infinitely complex - but the microcomputer has the impurities in useful places. In either case the
exact shape, size, position etc. 411 require an infinite sequence to define them. If we only specify a
finite amount of information we are, again, specifying "don't care" for the infinite remainder.

The list of things that could be specified is endless. How much we choose to say is determined not by
"completeness" but by the law of diminishing returns. Beyond a certain point it is not worthwhile
specifying any more detail. Where this point lies depends on many factors, not least the time and money
at our disposal and the risk of boring the recipient.

So even the detailed specifications are not literally complete. And as we saw above, all these documents
have many more purposes than merely describing design. The information tree is an oversimplification.
Somewhere in the hierarchy between customer and designers will be the documents that we really need to
build the syster including at least one that can form the basis of a contract. These much certainly be
complete, but in the sense that they describe all the things we need to know, sufficiently for us to
proceed with design.

Imm m mmI~

7.6

This is a different, less formal, meaning of the word complete. Literal completeness is a myth. The
true measure of a specification is not completeness but whether or not it is cost-effective.

4.2. Formal Languages and Meaning

We have seen above that, to make documents manageable, we do not try to put all the detail into the
specification. Instead we leave it in supporting documents such as other manufacturer's codes of
practice. Instead of calling for a car of a certain "style", "power" and "size", all open to inter-
pretation, we say "Model A, 4 doors, 160Occ". This is a formal specification language, and it overcomes
the traditional language barrier by means of formal syntax and semantics. Each term is defined in the
supporting documents which are open to the customer and manufacturer alike.

It is even possible nowadays to perform computer analysis of such languages. A car manufacturer can
analyse the customer specification to check for consistency (and completeness) and may even pass the
result directly to an automated production line. Yet, for some reason, this is not hailed as a major
breakthrough in the automation of system specification and design. Why not?

The answer is simple, but instructive. When we buy a car we know that other cars, very similar to the
one we "specify", have already been designed, built, tested and (we hope) sold to satisfied customers.
We are only specifying a minor change to the assembly of stock items. The formal terms are merely
pointers to other documents where the real specification details are held. It is these documents that
give the formal terms their meaning. The syntax of the language is controlled by the design engineers
who restrict it to defining cars which they have already designed and tested.

If we want a system with novel, untested features we cannot procure it in this way. We cannot just
specify a "control-centre" as these words are not backed up by supporting documents. Only the customer
knows what they mean, the system has not yet been designed.

As design proceeds we can certainly make many formal statements, calling up stock items such as computers
and telephones. But the novel features, that make this system different from all others, cannot be
described in this way. Whatever terms we employ, the words can only be defined, or understood, by
reference to the Requirement Specification. And this in turn, is only understood by looking further
out into the customer's world. The meaning of our words rests ultimately in natural language and
human ideas.

Suppose, then, we are asked for "Car Model A, 4 Doors, converted for disabled driver". The first two
parameters are formal pointers to stock items, no problem, only the third is informal and must be
referred to the customer. But we cannot simply cut the spec. in two parts, feeding "Car Model A, 4 Doors"
to the production line and designing the rest ourselves. 1he presence of this one novel feature throws
the whole design into doubt. We have to find out exactly what "Model A" means to see if it can be
converted. We can no longer merely convert the formal parameters into a string of digits for computer
processing, we have to study their definitions. And these too rest ultimately in natural language and
the infinite complexity of real objects.

Certainly the term "4 Doors" can be understood, but only in the sense that it gives us a mental picture
of the car. The words contain the germs of ideas, "semantic hooks" which grasp at a variety of informal
images in the human mind. And if the words are chosen carefully they can be of great value. They allow
us to think in high level ideas by providing "handles" to manipulate the real, underlying definitions.
But we must not confuse the informal image with the definition of the real object. The final car, after
conversion, may have three doors or five - but it will still be labelled "4 Door" on the production line.
By allowing these "semantic hooks" on a formal word, we are deliberately being informal in the interests
of cost-effective communication.

The use of these "hooks" is already a familiar technique in computer programing, where identifiers are
given "meaningful" names. In this case, the names are equivalent to comments in the program and we can
demonstrate this by editing all the names to random text strings before compilation. The program is
rendered meaningless to a human reader but there is no effect on run-time behaviour. This demonstrates
again the differences between the formal notation of the programming language and the intended real
effect of the computer system as implied by the variable names.

Of course once the design is complete, then all the words can be given formal definitions merely by
pointing to the finished system. But by that time the problem has been solved and the greatest need for
communication and rigour is gone. It is no breakthrough to formally specify a system that has already
been designed.

It might be argued that there are other means of conveying meaning, mathematics for example, that are
strictly formal. But on reflection we see that mathematics only describes formal relationships between
abstract objects. For example Vl - V2 describes an abstract operation on two algebraic quantitities.
If we dish to compare the velocities of two real objects must first define the objects, define their
velocities, decide on Newton's or relativis' c laws, and so on. he translation from a real-world
problem to a mathematical model requires a leap of imagination and a lot of 'ext to describe it. The
translation back, from a computed result to its significance in the real world is even harder. We do
not live in a world of certainty and billiard-ball dynamics, we live in a world of uncertainty,
approximations, and systems that we do not understand. We can, and should, use the notations of
mathematics to help us describe relationships. But we must remember that the formality is at best an
analogy and at worst a cosmetic.

4.3. Redundancy and Ambiguity

We have concluded that the meaning of any specification rests ultimately on natural language words. But
what do these words mean? Words by themselves have no meaning. Weaning is introduced by putting

together groups of words to elicit appropriate responses in human brains. To reach a wider audience,
or achieve a more precise meaning, we need more words without li"it. Many quite simple ideas need
whole books to explain them, merely because they conflict with our stock set of mental images.

This puts redundancy and ambiguity in a new light. In the literal (trivial) sense, redundancy means
having things which are not necessary, ambiguity means having more than one possible meaning. We can
reduce both by being more concise and formal. But if we do this crudely, by throwing out the explanations,
then we throw out the meaning too, the baby goes out with the bathwater. In the end we have just
mathematical equations with no ambiguity and no meaning either.

We do want to reduce ambiguity but not at the expense of the overall meaning. If we want to be understood
we must explain ourselves, that is say the same thing in different ways. We do not just write as much
as is necessary for one explanation, we write as much as is necessary to be understood. The spec. that
explains something three ways is like a triplexed "redundant" computer system. If is proof against a
whole class of errors. (Patterson D. A. 1981.)

Once again, we must write the amount that is most cost-effective. The unambiguous spec. is a myth.

5. STYLE

The perfect specification is complete, formal, non-redundant and unambiguous. But we have seen above
that these are not themselves formal and precise terms. We cannot interpret them in their literal,
mathematical, sense. It is more constructive to think of them as indicators of good literary style:-

- "Complete" means that it includes all relevant information, ideas, and explanation.

- "Formal" means a formal prose style with no colloquial phrases or jargon.

- "Non-redundant" means it does not bore the reader with repetition.

- "Unambiguous" means that everything is adequately explained.

This does not imply that we should be deliberately imprecise. On the contrary. Even the simplest idea
can be very hard to explain. We need all the help we can get if we are to cormnunicate anything at all.
And this means careful definition of terms, formalised diagrams and notations, painstaking attention to
detail, and so on. This is all good style (Henninger K.L, 1980).

Indeed, wherever possible we should be strictly formal, in the mathematical sense. If we can capture
the essence of some mechanism in a formal analogy, i.e. a nkithematical model, then we have gone a long
way towards describing it - provided we flesh out this backbone with sufficient words of explanation.

What we must avoid is the compulsive brevity that gives the illusion of perfection, merely by thruwing
away all the bits that do not fit in with this idealistic aim.

We may then avoid the "defensive author syndrome":- A beautiful document in elegant, precise English
is presented for design review. What happens? The whole day is spent explaining the meaning of the
document, word by word. At the end of the day everyone understands it and agrees that it is a precise
description after all. No one suggests it is deficient and the author departs without changing a word.

This is an elementary law of human behaviour. If people believe that what they are writing is formal,
unambiguous and complete, they do not surround it with explanation. Once we are freed from t~is
belief, we can see why it is that we are always misunderstood. We can then take practical steps to
remedy the matter.

The most important of these is to tell people everthing we can about their task, and this involves more
than is at first obvious. Designers need to know who the customer is, why he wants the product, and
so on and so forth. In particular, where there are working papers etc., these should be treated as part
of the Requirement Specification. If designers do not have the information from these papers, they will
make it up themselves by guesswork.

We must remember too that documents contain far more information than they show at face value. Good
designers are also good at "reading between the lines" to assess the thinking behind each statement.
If explanations are inadequate or missing then they will invent these too by guesswork. Even good
designers are only human.

And since we are communicating with human beings, we must not forget the practical observation that, in
..n appropriate context, one informal phrase may give more enlightenment than a page of careful prose
(or pictures). Often, understanding only comes when we are given a verbal explanation, face to face,
with full vocal inflection and waving of arms. How we can assimilate these into a specification system
is a problem yet to be solved.

6. CONCLUSION

We can at last explain the moral tale told at the start of this paper. What the king wrote, then, was
not a formal requirement specification, it was a cost-effective document designed to direct the procure-
ment of an item in the real world. And in this extreme case cost-effectiveness dictated an informal
style throughout.

I ,

A

7-8

Unfortunately, misled by the myths of their time, his ministers made ihree grass mistakes. First they

tried to make it into a "functional requirement specification" by chrowing away the "irrelevant", non-

functional explanations. Second they tried to make it formal by throwing away the informal "semantic

hooks". Third they tried to make it concise by throwing away the redundancy and omitting any further

explanation. Taken literally the myths are recipes for disaster.

REFERENCES

Henninger K . L., 1980. "Specifying Software Requirements
for Complex Systems New Techniques

and

their Application", lEE Trans. Soft. Eng.

Marcuse H, 1964. "One Dimensional Man", Routledge and Kegan Paul.

Parnas 0. L.. 1971. "Information Distribution Aspects
of Design Methodology",

Proc. Int. Fed. Inform. Processing
Conf.

Patterson D. A., 1981. "An Experiment in High Level Language Microprogramming and Verification".

Comm. ACM.

Weinberg G. M. 1971. "The Psychology of Computer Programming".

Van Nostrand.

Woods W. A. 1981. "procedural Semantics as a Theory of Meaning",

Bolt Beranek and Newman Inc.

a.)%

PRACTICAL CONSIDERATIONS IN THE INTRODUCTION

OF REQUIREMENTS ANALYSIS TECHNIQUES

BY
C. P. PRICE

D. Y. FORSYTH

British Aerospace Public Limite Company
Aircraft Group

Warton Division

Warton Aerodrome
PRESTON
PR4 lAX

United Kingdom

SUMMARY

It is likely that the coming decade will witness a wider use of requirements analysis techniques in the
development of avionic systems. They may be employed in the production of software requirements in
particular or the development of higher level system requirements.

In general such approaches may be said to consist of a methodology to be used in the production process,
software tools to assist in analysis and the existence of a specific target software design interface
such as language and architecture.

The predicted quality and productivity improvements will only be attained if the selection of tools ani
techniques is tempered by practical considerations. This paper discusses the main issues any organisation
contemplating the use of requirements analysis techniques will have to consider. They include the scope
of application, system or software, the special needs of users, attributes of the methodology, the level
of automation and the means by which they can be introduced to a project. The latter includes training,
development of appropriate examples, project route map and support.

As an illustration the approach developed and used by the Warton Division of British Aerospace, Semi
Automated Functional Requirements Analysis (SAFRA) is briefly described. In SAFRA, Controlled Require-
ments Expression (CORE) is the method of production embracing data collection, system analys~s and
notation. Storage and validation of the description is achieved using the Problem Statement languaqe
and Problem Statement Analyser (PSL/PSA) of the Unviversity of Michigan's ISDOS project including a
system description language, database management system and a suite of appropri te reports.

Software design utilises the Modular Approach to Software Construction Operation and Test (MASCOT)
methodology with its rationale for module inter-communication, control, scheduling etc. Coe~ing is
arrived at through formal procedures which link the CORE diagrams with the U.K. standard CRAL 6f via
PSL.

Two case histories of applying SAFRA are presented, one fora small task and preliminary results on its
use in a larger project.

i. SAFRA OVERVIEW

SAFRA suggests a specific approach to requirements and software design and encompasses a number cf
methods and tools to aid the engineer in this task. A phased life cycle approach to system develop-
ment is advocated as shown in Fig. (1), with techniques and tools applicable to each phase.

The method used by the engineer to develop and express his requirement is Controllel Requiremenits
Expression (CORE), a new technique developed jointly by BAe Warton Division, and Systems Designers
Limited CORE is a method for the assembly and analysis of information relevant to a requirement
with anleasily understood diagrammatic notation.

Validation and storage of system and software requirements and design documentation is achieved by
islng the University of Michigan's Problem Statement Language and Problem Statement Anal ser (PSL,,'

PSA). The continued use of the CORE notation is made during the software design phase with storage
using PSL/PSA but aimed at the use of a rationalised executive and High Order Language. The former
is the Modular Approach to Sof'ware Construction Operation and Test (MASCOT) (1) and the latter is
the U.K. MOD Standard CORAL 66. A further assumption is the use of a commercially available MASCOT
based software development system.

To support the use of SAFRA in a project environment, guidelines are available suggesting basic
Configuration Control procedures for the management of the data base and associated documentation.

CONTROLLED REQUIREMENTS EXPRESSION (CORE)

2.1 General

CORE is a method of analysing and expressing system or software requiement in a contrclled and
precise manner. It enables a subject requirement to be expressed as either a number of lower
level requirements or as a component part of some higher level, (Fig. 2). A lower level require-
ment derived using COts may in turn h, zul.ncted to the method to produce a hierarchy of further

Iu

2.1 General continued

levels. The lowest is that at which the full method need no longer be applied, and basl soft-
ware design may proceed. Further decomposition through detailed software design continues to
make use of the notation.

2.2 Diagrammatic Notation

CORE diagrams utilise boxes to represent processes and arrows to cepresent data. The :a;racs
are time ordered from left to right and thus the box order specifies the sequence in wnich the
processes must occur.

Synbol free boxes -oown in parallel represent indeterminate order and overlapping boxes indicate
a number of identical processes occurring concurrently. All data entering a CORE diagram is
referenced to a source and all output data to a destination.

Data arrows may also be used to describe repetition, selection and conditior. One emerging from the
top of a process box indicates that this process is functionally equivalent to that referenced
by the arrow. Those appearing at the bottom of a process box indicate the mechanism that performs
the process. Iteration is shown by an asterisk in the top right-hand corner of a process box and
mutual exclusion by a small circle in the top left-hand side. Fig. 3 sux, arises the main features
of the notation.

2.3 The Method

The method comprises eleven logical steps which r~ust be applied in total for each level of require-
ment. There are three stages for each level of decomposition summarised as:

- Gather Information
- Propose Relationships
- Prove Relationships

Information is gathered with respect to a number of sub-divisions of the problem, referred to
as tdewpoints, in terms of input and output data and gross functions. This information is
refined by a data decomposition step which specifies in more detail the data already tabulated.

Relationships are proposed between inputs and outputs from each viewpoint in turn as well as for
data flowing across the viewpoint, and these are termed 'Single Threads'. The relationships are
assessed in two ways:

- The inter-relationship between viewpoints are examined and where specific links exist
new diagrams in the form of 'Combined Tbreads' are constructed.

- Threads represent particular paths through system operation and do not depict parallelism
or the operational time ordering of processes. This is achieved by the construction of
a 'Combined Operational' diagram. Both of these will lead to iteration through the
previous steps prompting a more detailed examination of the single threads for correct
combination and in order to establish operational relationships.

2.4 Node Notes

This is not a step in the method as such but simply a means by which a small amount of english
text may accompany any CORE diagram. Node notes provide simple descriptions of data and process
names and may include design related informatinn such as constraints, assumptions or decisions.

3. SMALL PROJECT CASE HISTORY

3.1 Introduction

By early 1980 the initial CORE development phase was complete and it had been used within the
development group on anumber of tasks to exercise and evaluate the method. The tasks had been
undertaken in a sympathetic environment and it was not known how the method would prosper when
subjected to the constraints of a real project. We were particularly interested in how diffi-
cult it would be to transfer the method to a project team and to this end a small task sponsored
by the Royal Aircraft Establishment was undertaken which required engineers, unfamiliar wich
software or CORE, to generate the software requirements for a Fuel Management System (FMS).

3.2 CORE Transfer

In order to transfer the CORE method to this and other projects a one week CORE course had been
developed with an appropriate blend of

- formal lecture

- tutorial exercise
- workshop practice

The formal lectures provided a complete overview of the method and detailed definitions of each
step.

The tutorial exercises w re designed to bridge the - between the formal definition and practical
application.

The workshop practice gives the student 'hands on' experience &Asd requires that he generate the
requirements for a simple Vehicle Performance Monitoring System through two levels of decomposition.

3.2 CORE Transfer continued

The initial course was given to several engineering staff, two of whom were scheduled for the
FMS task, by three members of the COPE development team.

3.3 The FMS Task

The FMS had two principle objectives:

- To develop the software requirements for the system
- To explore, at a technical level, the feasibility of using CORE outside the development

environment

A team of three engineers was formed to undertake the task consisting of two fuel system experts
and a CORE specialist. The latters' role was not only as consultant on the method but also as a
requirement producer. It is worth noting that an engineer, trained in the use of CORE, is able
to produce detailed requirements for systems outside his own specialisation by assuming the role
of an analyst and using people or documentation as a source of specialist information.

3.3.1 Start-Up

Prior to embarking upon any requirement exercise it is necessary to establish the exact
nature of the problem and the strategy by which it will be solved. With CORE this involves
establishing a customer requirement and preparing a route map through that requirement
and its sub-parts to the point where software design may begin.

The FMS customer requirement consisted of a simple hardware description detailing fuel
tanks, fuel pumps, valves etc., along with a statement of the major system functions such
as refuel, defuel and leak detection. In common with most customer requirements this
document was not generated in a structured manner and addressed many levels of detail.

. route map through the problem was prepared (Fig. 4) which indicated that three levels
of decomposition would be necessary

t
o provide a functional software descrrction. I-vel I

would restructure the customer requirement, remove any ambiguities and ascertain whether
the requirement constituted a viable system. Level II would confirm the validity of level I
and provide a stepping stone to the detailed software requirements generated at level III.

3.3.2 Level I Aplplication

Level I was undertaken to define how the customer's view of the fuel system operated and
communicated within its immediate environment. This was achieved by taking the require-
ment, establishing its direct interfaces and then defining precisely how all thence inter-

faces and the requirement operated together.

The project team undertaking the task encountereda number of problems and these are dis-
cussed under the following headings:

- Iteration
- Functional thinking
- Information limiting

- CORE is an iterative method and will not progress unless descriptions are valid where-
as conventional approaches allow progress to be made regardless of validity.
Conventional experience leads engineers to assume that once a requirement is expressed it
is correct and requires little or no modification. When a problem was encountered in
CORE (i.e. the method enforced iteration), the initial reaction was to assume that the
method wis inadequate. This syndrome can only be overcome by providing specialist
support through the first level of decomposition and it is interesting to note that the
it usually disappears at subsequent levels.

- Functional thinking proved to be a difficult concept to adopt, particularly by hardware
engineers, who were inclined to provide hardware solutions before the problem had been

defined. This tendancy is understandable as hardware system architectures and computing
capacity are often defined before the functional or software requirements are generated.

CORE demands that the information contained within one level of decomposition be
limited to an amount that can easily be controlled by the persons producing that level.
This is of particular importance in the early stages of a project as too much infornation
will cause an unmanageable information explosion in the later stages. The most obvious
way of limiting information is to consider only that information which is of immediate uae.
Engineers have a natural affinity for detail and will, if unrestrained, enter a problem
in a maze of detail most of which is superfluous to the immediate task.

3.3.3 Levels II and III, Application

Level I had restructured the customer requirement and proved it to be viable by establishing
its interfaces with the outside world. Level II took this restructured requirement and
decomposed it into its subparts to provide a detailed lescriptlon of the FMS in isolation.
This description proved that the interfaces defined at level I could be maintained by the
system and provided the basis for the level III decomposition process. Level III transcends
basic software design and did not require the full CORE method to achieve a hlerarchic
decomposition of the level II subparts.

3.3.3 Levels II and III, Application continued

Apart from some assistance being required in the early stages of level II both levels
required little support demonstrating that a complete transfer had taken place, success-

fully, within a small p~oject environment.

1.4 Management of FMS Task

In the interests of solving transfer problems the management of the -MS task was undertaken at

local rather than project level and limited to the establishment and maintenance of milestones,
allocation of manpower and review/approval.

3.4.1 Milestones

Establishing the milestones at the onset of the task highlighted some hitherto unexposed
problems. The CORE method iterates and no step in the method can be said to be complete
until all steps have been undertaken. This makes it meaningless to allocate completion
milestones to individual CORE products within a level of decomposition and implies that

the smallest work unit to which milestones can be applied is the level itself. Unfortu-

nately, this is not easily defined as it can vary in depth and scope, the exact details

of which are dependent upon system complexity and available manpower.

Previous experience, albeit in the development environment, had indicated that a level

of decomposition took approximately three months to complete and so this figure was
tentatively allocated to each level. In the event the total task took ten months, four
months for level I and three months each for levels II and III.

This and previous development tasks indicate that the three months period is a constant
for any one level of decompositionThis has been substantiated in subsequent applications
and it is interesting to note that whilst system complexity and manpower allocations
effect the depth and scope of any One level they do not appear to affect the time period.

As stated previously CORE iterates and therefore milestones which mark the completion of
a step cannot be set, this does not, however, prohibit the setting of milestones which
indicate when a task is to begin. Each step of the method can be allocated a start date
within a period and although none of these steps will be completed until the period has

elapsed it provides management with a very good indication of progress.

3.4.2 Allocation of Manpower

Initially three engineers were allocated but part way through level I it became apparent

that the task was unnecessarily overmanned and one engineer was removed. The new manning
level proved to be consistent with that required of a conventional approach. Subsequent
applications have confirmed that the number of persons required to undertake a CORE

exercise is, in general, the same as that required for a conventional approach.

3.4.3 Review/Approval

Because the task was under local management control the review and approval procedures
were somewhat limited. They did, however, demonstrate that persons unfamiliar with CORE
could, with guidance, quickly come to terms with the notation and provide *aluable comment
on the CORE products.

3.5 Configuration Control

The FMS task was not subject to the rigorous configuration control procedures and standards

normally imposed at project level and it was left to local management to maintain basic standards.
Whilst this approach ensured that the FMS technical objectives were not jeopordised by unwieldy

standards procedures it did little for the configuration control aspects of the task. At this
time experience with PSL/PSA was limited although a procedure for encoding CORE diagrams into

PSL had been evolved and the usefulness of some of the many PSA reports had been identified, It
was clear that this area required further work and an informal one man PSL/PSA configuration

control function was established to operate in parallel with the FMS task.

PS/PSA was introduced into the FMS task once the initial level I data/process relationships had

beeni established. All CORE diagrams produced up to this point were manually encoded into PSL

and then entered into the Divisional IBM 3032 to form the initial FMS data base. Consistency
clecks were undertaken using PSA and the results fed back to the FMS engineers. Unfortunately,
tnis process took a considerable time and the FMS engineers, eager to progress, took the

opportunity to perform their ow manual consistency checks and continue with the method. The
iterative nature of CORE resulted in significant changes being made to the initial data/process
relationships and consequently the FMS data base bore little resemblence to the level I descrip-

tions at the time of issue. It was obvious that both the ,oint of entry was incorrect and that
the process itself was too slow. Whilst nothing could be done at this time as regards speed it

was clear that the point of entry could be adjusted. The frequency of change occurring during
the production of level I made intermediate application of PSL/PSA useless. The requirement

remained for a data base providing a useful and accurate master record of the design and it was
considered that this could only be usefully achieved if the PSL/PSA tasks were deferred until
a complete level had been produced. This philosophy was applied successfully to the remainder

of level I and subsequent levels allowing consistency checks to be undertaken in retrospect for
each level of decomposition as well as providing a complete record of the FMS design.

The exercise demonstrated to:,! SAFRA could be istal led in a small project environment success-
fully and that the procedures evolved for its transfer were practicable.

The applicaton of SAFRA although sucessful, had revealed two areas which required furthe-
development:

PSL/PSA procedures
CoRE documentation

- The FMS exercise showed that the existing PSL/PSA procedures were best deferred to the end
of a level. Whilst this approach is sat Itfactory f, r small tasks it was considered that large
complex tasks, involving significant amounts of data, would require consistency checks to i-
undertaken in the early stages of a level in as near real time as possible.

- Approximately 40* of the total effort on the FMS exercise was expended on the manual production

and maintenance of CORE diagrams and notes. It was clear that significant benefit would
result if this task were reduced.

Both of these areas were procedurally correct but unsatisfactory due to the manual nature of
their implementation and in early '81 a development programme was undertaken to provide an
automated aid which would:

- Generate and edit CORE diagrams
- Generate notes and reports
- Translate CORE diagrams into PSI
- Execute consistency checks.

4. SAFRA DEVELOPMENT STATUS

Experience on the FMS and other small tasks undertaken using SAFRA highlighted areas within the SAFRA
project that required further development. Before discussing the large project case history a brief
account of these developments and their status in relationship to the point of entry will now be
given.

The three major areas of development were:
- Coftware Design
- PSL Interface Package

- CORE Work Station Requirement

4.1 Software Design

A set of procedures have been developed which enable CORE diagrams, at the detailed software
design level, to be translated into the programming language CORAL 66. Th procedures also
capitalise on the use of MASCOT, which advocates a structured approach to software design.
Many of the concepts of system partitioning, particularly relating to MASCOT Activities and
their associated data relationships, were found to be closely allied to those used in CORE
thus providing some measure of correspondence between CORE and MASCOT diagrams. These
procedures have been developed and evaluated over the last two years and are expected to be

transferrable into a project in the near future.

4.2 PSL Interface Package

To gain maximum benefit ffom using PSL/PSA, particularly on a large project, the mechanism by
which information is entered on to the data base for storage and analysis must involve a high
degree of automation. This was evident from experience on the FMS task where CORE diagrams
had to be manually encoded into PSL input files. As a consequence, a PSL interface package
was developed. This allows the engineer to transfer the information contained within CORE
diagrams into a loeal file, using a terminal, under the direction of software generated cues.
A useful degree of syntax checking is provided as well as automatic production of all '-he
PSL language elements, but the package is not directly linked with the data base for inteirity
reasons. This package became available in early 1982.

4.3 CORE Workstation Requirement

Experience on the FMS task highlighted four areas where automation was desirable if not essential,

namely:

- The production and editing of CORE diagrams
Consistency checking

- Automatic translation of CORE diagrams into PSL input file
- Report generation

A detailed requirement, expressed in CORE, was developed for a workstation with the objective
of automating as many of the CORE tasks as practicable. The requirement is being implemented
in three phases: - CORE diagram editor

- Automatic translation of CORE diagrams into PSL/PSA
- Automatic production of CORAL 6(C from CORE diagrams

5. LARGE PROJECT CASE HISTORY

5.1 Introduction

SAFRA has more recently been introduced to the production of mission Avionic and Utility system
and software requirements for a new military aircraft.

The basic design philosophy adopted encouraged the development of a fully integrated Avionic
and Utilities system using distributed processing. The Utilities system comprises Power plant
control, Secondary power, Environmental control, Hydraulic and Fuel management which communicate
via a dedicated Utilities serial data highway. The Avionic system encompasses a sensor suite
providing sufficient information to allow basic navigation, detection of hostiles, and a
comprehensive weapon delivery capability. In order to reduce development timescales and costs
and provide some degree of commonality with current production aircraft existing sensors had
been considered, where appropriate. The Avionic and Utility system software is required to
execute the following basic functions;

- Elaboration of raw sensor data
- System and Cockpit executive moding and control
- System testing.

This project is still at a very early stage of development but some observations can be made

about the introduction of SAFRA to a task of this size.

5.2 The Problem

The Aircraft Operational requirement, expressed in english details the operational and perform-
ance capability required by the customer for the aircraft he wishes to procure. The response
to this document the proposed hardware system architecture (see para. 5.1) is a document simi-
larly expressed in english. The information contained within these documents crosses many
levels of detail, has little structure and can be found to be both ambiguous and inconsistent.

Real world constraints dictate that this type of documentation exists at the start of the
system and software definition phase and the problems facing the requirement specification team
as a result can be summarized as follows:

- The documentation does not attempt to express, or allow a natural
entry point to the development of, the software requirements

- Conformance between the two documents cannot be demonstrated.

- Neither document can be shown to represent a complete or consistent
system requirement/description.

SAFRA was introduced specifically to overcome these problems and we will now consider the

approach adopted.

5.3 Approach to Problem Entry

Any method of decomposition relies on the highest level of description, from which all subsequent
levels are derived, being consistent and complete. If the detailed system description is based
on an expansion of the operational requirement and hardware system architecture, as described,
latent requirement errors would remain undetected and multiply at subsequent levels. In order
to overcome such difficulties CORE was introduced to the project and the first level of
decomposition was set the following specific objectives:

- Add structure to (and thus help to validate) the proposed
hardware system architecture

- Identify the major software elements of the system thus providing
a platform for the development c f the detailed software requirements.

A route map was prepared (Fig. 5) and the level I viewpoint selection shown was aimed at satis-
fying these objectives. Viewpoints VOl and VO4 isolate those areas of the system that were
either selected hardware or aspects of the system outside the influence of the requirement
specification team. V02 and V03 includes all system operational test and moding software as
yet undefined, these being the subject viewpoints 'o be further decomposed. The route map also
shows that on completion of level 2 all software requirements are combined to produce an overall
software operational diagram thus providing confidence that all software specified for the air-
craft is compatible and consistent. It will be noted that the route map shows an input to the
overall software operational daigram from the aeromechanical systems in V04 thus allowing
integration of software requirements produced in CORE by engineers working on the Utilities system.

This overall strategy also allows the proposed hardware system architecture to be described in
a consistent and unambiguous manner and provides a document which can be realistically assessed
agal .st the customers operational/performance requirements.

5.4 Project Staff Training

Project staff can be placed in one of three catagories:

- Requirement producers
- Requirement interpreters at a technical level
- Requirement interpreters at a management/customer level.

5.4 Project Staff Training continued

At the technical level requirements expressed diagrammatically in CORE and supported by node
notes, have been accepted as the means of recording and communicating information. However,
circumstances dictate that requirements expresssion at the project management and customer levels
should follow the more conventional approach and be expressed in english.

Ambiguity can be resolved by reference to the CORE documentation, and these english descriptions

do not compromise the quality of the authoritative CORE version stored on the PSL/PSA datt: base.
This situation was not totally unexpected as it would be unrealistic to assume that CORE diagrams

would be acceptable as an unsupported statement of requirement at all technical and managerial

levels within the project. Electrical circuit diagrams for example are a medium for express

design but they are only acceptable at a specific technical working level.

In order to satisfy the needs of producers and interpreters of requirements expressed in CORE
two courses were prepared:

- A modified one week CORE course
- A one day CORE appreciation course

The one week course was a refinement of the one first developed for small projects with the same

basic outline and objectives. Attendees of this oourse were prospective requirement producers
or those requiring a detailed knowledge of the concepts of CORE. The latter included engineering
representatives from equipment suppliers who were required to supply a product in response to
requirements expressed in CORE.

A one day CORE appreciation course was also introduced aimed specifically at project management.
This course had three objectives:

- Provide an appreciation of the method and an understanding of the

CORE notation

- Suggest areas that must be considered in planning a strategy

for the management of CORE products.

- Ensure that the project staff fully understand the role SAFRA

was expected to fulfill.

5.4.1 Personnel Requirements

A system requirement specification team was formed to develop level 1, consisting of six

engineers, two of whom were CORE specialists. The remaining four were systems engineers

experienced on current production aircraft but unfamiliar with the method. Here it must

be stressed that CORE replaces none of the engineering skills necessary to develop good

systems and hence the quality of personnel required in the systems design team is
consistent with that needed for a conventional approach.

5.5 Level i Application

Level I was required to express the proposed hardware system architecture in a structured manner
and gathering this information was achieved by applying the first four steps of the method.

This demanded that all project information sources be identified such as air vehicle specifi-
cations, existing hardware documentation and hardware/software specialists. Inconsistencies

and omissions in the proposed hardware system description, highlighted during the production of
the level, were resolved by referring these queries to the customer and system specialists. The
completed level I represented a validated, unambiguous and consistent system description which

could be provisionally approved at the technical management level. The hardware system descrip-
tion was subsequently updated to reflect level I and issued in draft for review across all
project levels.

The validated level I provided the project with a stepping stone to demonstrating conformance
between the customer operational requirements and the proposed hardware system architecture

expressed in CORE, essential tQ the validity of software requirements generated at subsequent

levels. Assessing level I as a response to the operational requirement was not an easy task.

In common with many documents of its type the information it contained crossed many levels of

detail ranging from broad statements such as a required mission success rate to a specific hard-

ware equipment selection. The approach adopted was to assess each combined thread and operational

diagram, in turn, against the operational requirement, queries were referred back to the customer

and, where appropriate, diagrams changed and performar.ce criteria added to the node notes

accompanying each diagram Level I, now reflecting a validated hardware/software system des-

cription conforming to the customer operational requirement, was exposed to formal technical and

standards reviews and subsequently PSL encoded for storage and analysis on the PSL/PSA data base.

5.6 Project Milestones

Level I took 6 months to complete which was predictably longer than the earlier assertion that a

level of decomposition takes approximately 3 months irrespective of task complexity. Involvement

by the requirement specification team in peripheral tasks such as the production of sub-system

english descriptions, project review meetings and technical/standards reviews accounted for the

additional 3 months required to issue an approved level I.

-~~~~~~ ~ ~ --------------------

5.7 Technical Review

The review of a level of decomposition was approached in 3 stages:

- CORE Standards review

- Internal review

- Independent (customer) System audit

CORE standards review requires that each CORE diagram is assessed for the approved use of
notation, corect annotations and that each step in the method has been correctly applied.
Each diagram carries the standards reviewers signature who is a member of ths project
standards management group and independent of the CORE producers.

The internal review serves to ensure that the level under consideration is an accurate inter-
pretation of how management and specialists within the project envisage the system. To this
end the level was partitioned into areas of specialisation such as Navigation, Weapon Aiming
and Power Generation and issued, in draft, for comment. The reviewer was provided with the
operational diagram and those combined thread diagrams impacting on his specialist area. In
addition the diagram originators were available to support the review activity if they were

required. All the diagrams relating to a particular subsystem were identified and reviewed by
the specialists collectively and comments minuted and issued to the requirement specification

team. This process iterates until an agreed representation is reached and approved.

5.8 Data Base

The PSL/PSA data base is used for the storage and analysis of approved CORE products and
standards to control all aspects of the handling were introduced accordingly. The
complete and technically approved level I was encoded in PSL, using the PSL interface
package (ref. para. 5.2), comprising Tabular entries, Data decomp.sitions, Combined
Thre-'s and associated nude notes. The task of encoding the data set into Ps- was
undertaken by non-technical personnel and took approximately four weeks to complete.
The moi;, problem encountered is highlighted by examination of the table below which
presents a brief analysis of the data base size and error count.

DATA BASE S IZE

NAME TYPE TOTAL

PROCESS NAMES 177

DATA NAMES 547 SOTMNPS

TOTAL NAMES 724 14,5OO LINES

ERROR SOURCE

LEVEL I INCONSISTENCIES/ 15
OMISSIONS

CORE TO PSL 70

TOTAL ERRORS 8

Genuine data set errors such as naming inconsistencies and omissions accounted for only 17% of
the total errors detected by PSA, the remaining errors being directly attributable to the manual
transfer from diagrammatic information to PSL. These errors were either misinterpretations of
CORE diagrams or simply misread names. Notational idiosyncrasies from one diagram producer to
another can cause confusion when read by a third party, and are difficult to control by the
introduction of standards done.

The workste'ion will enforce such standards automatically but the errors represent only about
0.6% when expressed on a percentage cf the total number of lines of PSL.

6. CONCLUSIONS

The main conclusion that can be reached from the experience of applying SAFRA, particularly to the
larger tasks, it is that unless adequate preparation is made prior to starting a requirement specifi-
cation task the gains to be made by a .pting methods such as CO'E will be lost. In summary these
considerations should include:

- Staff training
- Project needs for requirements documentation
- Project standards
- Route map from operational to software requirements
- Interfacing computer based tools

7. ACKNOWLE:)CEMENTS

The authors wish to acknowledge the support of the Flight Systems Department of the Royal Aircraft

Establishment in the development of SAFRA and British Aerospace for the opportunity to report this

work.

8. REFERENCES

1) MASCOT a Structured Software Design Mehodoloqy for Real Time Systems.

The official handbook of MASCOT Published by MASCCT
Suppliers Association Dec. I980.

~-io

94-10

CORE/PSL

CORE/PSL TOOL

MASCOT

CORE/PSL

DESIGN

DETAILED PSL/CORAL
DESIGN

Fig 1 M S OCODE MASCOT

A CONSISTENT SET OF TEST

TOOLS FOR EACH PHASE [AINTENAEN
I~I

DEVELOPMENT

CONTROLLED CORL DA CAN BE EXPRESSED

REQUIREMENTS

EXPRESSION -AS A COMPONENT PART HIGH

OF A HIGHER LEVEL REOT

CORE REQUIREMENT

OR
LOWER LOWER LOWER LOWER
LVL LEVEL LEVEL LELFig 2 RETLVEL LEE

FI 2LEO REOT REOT T

-AS A NUMBER OF LOWER
LEVEL REQUIREMENTS

* TO PRODUCE A HIERARCHY OF
REQUIREMENT DOWN TO BASIC DESIGN ISSIC IC SICD Ds E' IGN DSG

FUNCTIONAL
EQUIVALENCE

CON TION
0 D

SOURCE 1 INPUT DATA - PROCESS OUTPUT DATA C DESTINATION

CONDITION

Fig 3 + IEAILIMI J

THE CORE NOTATION

ROUTE MAP

OT.E I I THROUGH FMS
AIRCRAFT 1 ENVIRONMENT 1

SLTESLEVEL 1

BOUNDING THE PROBLEM

IALLIED IIAEI!
COMMAND SSE

LEVEL 2

SYSTEM / SOFTWARE

REQUIREMENTS

FMS
OLY

Fig 4 'SOFTWARE CONT&MS

LEVEL 3

j SWDETAILED SOFTWARE

REQUIREMENTS

S-I A

ROUTE MAP THROUGH LARGE PROJECT

ALLIE CQ9AANOALLIED
CCMMAND

GROUNDOUN CREREWTE

ENVIRONMENT'
ENVIRONMENT

LEVL 0SYSTEM OPERATIONAL REQUIREMENTS

REQUIREMENTS

MPUTATIONS &

V03 V~aCONTROL

LEVEL I

WAVEFORM CAAROCTRI

IGENERATORI SYSTEMS

CONTRO MODIJ SYSEM L J

Fig 5SYSTEM /SOFTWARE
OVERALLREQUIREMLENTS

WFG RADA OE NAV EXEC olsp UIL MISC

CoMTL MOOWOG

LEVEL 3 DETAILED SOFTWARE REQUIREMENTS

THE A-7E SOFTWARE REQUIREMENTS DOCUMENT:

THREE YEARS OF CHANGE DATA

Louis J. Chmura and David M. Weiss
Computer Science and Systems Branch (Code 7590)

Naval Research Laboratory
Washington, DC 20375

United States

SUMMARY

A major product of the Naval Research Laboratory's Software Cost Reduction proiect is the
software requirements document for the A-7E operational flight program. The document,
which was first published in November 1978, is intended to serve as a model for specifying
complex software systems. We have carefully tracked changes to the document. The data
have consistently suggested that the specification has several desirable qualities, for
example, it is easily maintained and is remarkably free of inappropriate implementation
detail.

1. INTRODUCTION

1.1. General

Basili and Weiss (1981) as well as Fryer and Weiss (1981) have reported earlier on change
data being collected to evaluate the software requirements document (SRD) for the A-7E
aircraft (Heninger et al. 1978). The SRD is a product of the Naval Research Laboratory's
Software Cost Reduction (SCR) project. Here, we present a more recent picture of the data
and, where possible, compare with other published data. In preparation for this paper, we
have reexamined all submitted change report forms for consistency and completeness of
information. This has resulted in the reclassification of some earlier data with variable
effects on the earlier published observ. .ns.

The remaining three sections of this introduction review the SCR project, the SRD, and

goal-directed data collection for those who are unfamiliar with these topics.

1.2. Software Cost Reduction (SCR) Project

Since January 1978, personnel at the Naval Research Laboratory (NRL) and the Naval Weapons
Center (NWC) have been redeveloping version NWC-2 of the operational flight program (OFP)
for the A-7E aircraft using such software engineering techniques as information hiding
(Parnas 1972), abstract interfaces (Parnas 1977), cooperating sequential processes
(Dijkstra 1968), and resource monitors (Hoare 1974). The A-7E OFP is part of the
Navigation/Weapon Delivery System on the A-7E aircraft. It receives input data from
sensors, cockpit switches, and a panel with which a pilot keys in data. It controls
several displays in the cockpit and positions several sensors. In all, twenty-two devices
are connected to the TC-2; examples include an inertial measurement set providing velocity
data and a head-up display. The head-up display projects symbols into a pilot's field of
view,, so that he sees them overlaying the world ahead of the aircraft. "he OFP calculates
navigation information such as present position, speed, and heading; it also controls
weapon delivery, giving a pilot steering cues and calculating when to release weapons.

The A-7E OFP is an operational Navy program with severe memory and execution-time
constraints. The'code consists of about 12,000 assembler language instructions for the
IBM System 4 PI model TC-2 computer. The TC-2 has 16K bytes of memory.

The goals of the SCR project are (1) to demonstrate the feasibility of using the selected
software engineering techniques in developing complex, real-time software and (2) to
provide the Navy with a model for the design of avionics software. One of the reasons for
choosing to redevelop the A-7E OFP is thq challenge of showing that any memory or
execution-time overhead incurred by using the software engineering techniques is not
prohibitive for such real-time programs. A second reason Is that maintenance personnel at
NWC feel that the OFP is difficult to change; the claim for the selected software
engineering techniques is that they facilitate the development of software that is easy to
change.

The A-7E SRD (Heninger et al. 1978) Is the first major product of the SCR project. More
recent products of ongoing software design include a guide to SCR software modules
(Britton and Parnas 1981), interface specifications for the device Interface module
(Parker et al. 1980), specifications for the function driver module (Clements 1981),
specifications for the extended computer module (Britton et al. 1982), and specifications
for the shared services module (Clements 1982).

The projected completion date for the SCR project is September 1985. As of the end of
1981, approximately 10 man-years of technical engtneerina effort have been expended on the
redevelopment.

I L J _

1.3. A-7E Software Requirements Document (SRD)

The SRD is an attempt to provide a complete and concise description of the A-7E'S OFP
requirements. No other such requirements description exists despite the existence of a
working OFP. The SRD is also an attempt to improve upon present methods of specifying
software requirements. Foui principles motivate the document: (I) state questions before
trying to answer them, (2) separate concerns, (3) be as formal as possible, and (4)
organize according to OFP outputs (Heninger 198C). The resultant organization is shown in
figure 1.

Personnel at NWC who are maintaining the current A-7E OFP have been active consultants and
reviewers of the document, both prior to initial publication and subsequently. The
document has been under configuration control since it was first published in November
1978.

As of the end of 1981, approximately 2.5 man-years of technical engineering effort has
been expended on the document: approximately 1.5 man-years on producing the original
document and the remaining 1 man-year on changing and issuing three updates.

1.4. Goal-Directed Data Collection

The opportunity to apply recent software engineering technology liberally to the
development of a complex system is rare. Though true evaluation of the result must wait
until delivery of the software, we believe it would be unfortunate to wait until then.
From the start of the redevelopment, we have collected data to permit evaluation of the
project and the products in the interim.

The data collection methodology being used is goal directed (Weiss 1981). nriefly, it
consists of the following five elements.

I. Identify Goals. The data collection effort can be geared to determine how well
the goals for a product or process are met. Twelve goals drive data :ollection for
the SRD. Six are original goals for the document (Heninger 1980).

1. Specify external behavior only.
2. Specify constraints on the implementation.
3. Be easy to change.
4. Serve as a reference tool.
5. Record forethought about the system life cycle.
6. Characterize acceptable responses to undesired events or errors.

Three other goals apply to requirements documents in general.

7. Be correct.

8. Promote detection and correction of errors.
9. Be useful.

Another three concern the software development process.

10. Discover effective ways of finding errors.
11. Characterize changes.
12. Characterize errors.

2. Determine Questions Of Interest From The Goals. The answer to each question can
then help measure how well a stated goal has been obtained. For example, given the
goal that the SRD be easy to change, a reasonable question would be:

Are changes confin-d to a single section of the document'

Such a question suggests that data be collected on how many sections were modified for
each requirements change.

Figure 2 is a complete list of questions for the SRD.

3. Develop A Data Colltction Form. This is an iterative process. The form is best
tailored to the product bengi-stji ied and to the questions of interest. Figure 3 is
the change report form (CR) cuzrently used to request and record resolution of
changes to the SRD.

4. Develop Data Collection Procedures. Procedures for collecting change data are
best part of normal configuration control procedures.

5. Validate And Analyze The Data. Reviews and analyses of the accumulating data are
concurrent with software development. We have found that validation of the data
should occur weekly. The validation should include examining the forms for
completeness and consisency. Sometimes it is necessary to interview the originator
or the person making the change to obtain omitted data or to resolve problems.
Validation of A-7E requirements change forms has several times detected incomplete
changes.

2. A-7E SOFTWARE REQUIREM4ENTS CHANGE DATA

2.1. Background

There are 343 change report forms (CRFs) that were generated against the SRD from November
1978, when it was first published, through December 1981. Only 284 of the requested
changes have been resolved (i.e., carefully analyzed and formally accepted or rejected) by
the end of 1981. Specifically, 276 have been accepted; 8 rejected (only 2 of which were
rejected because the change was deemed not worth the effort.) We have validated the 176
accepted CR~s. We feel most confident in using the data to answer the following six
questions from figure 2.

I. Is the requirements document easy to change?
2. Is it clear where a change has to be made?
3. Are changes confined to a single section?
4. What use of the document reveals the most errors'
5. How many errors are found in the document,
6. What kinds of errors are contained in the document'

It is important to understand what we believe properly constitutes a "change." For the
SRD, we define a change to be an alteration to a baselined version. We consider two
changes to be the same if they have the same cause and are written against the same

version of the SRD. As an example, connecting a new device to the A-7E computer might
require numerous update- to the SRD, but all the updates would ma~e up a single change. A
change that is a completion or correction of a prior change is a separate change.

Occasionally, a CRF is submitted containing two changes. When this happens, we generate a
second CRF and separate the two changes onto the two forms. For example, if the following
correction was submitfed on a CIF, we would generate a second CRF. The first would
address just the ambiguity, the second would address the misspelling.

"The last sentence of the description is ambiguous. Replace it with Note
also that the word descripter is misspelled."

If two CRFs are submitted that are different parts of the same change, we merge the two
CRFs.

We consider that there are two classes of change data: error corrections and non-error
corrections. An error correction is either an original error correction (i.e., the first
correction ef the error) or a completion or correction of a previous change. In terms of
figure 3, the CRF for an error correction would have one of the two first two boxes in
item 4 marked and the second page filled in. Hereafter, we use the term error to refer to
error corrections and the term modification to refer to non-error correctTon. The
following table shows the number of errors and modifications reported and accepted each
year.

YEAR CHANGE ACCEPTED

Change Class 1978 1979 1980 1981 1978-1981

Error 4 72 97 74 247

Modification 0 5 13 11 29

Total: -T 77 TV 85 276

The small number of modifications can be explained by the fact the the SCR project is a
faithful redevelopment of version NWC-2 of the A-7E OFP.

There are eight classes of requirements errors- clerical, ambiguity, omission,

inconsistency, incorrect fact, information put into wrong section, implementation fact
included, and other. The classification scheme is generally in terms of cause; that is,
we classify errors according to their causes, not according to their symptoms.
Accordingly, we use the following definitions for the different error classes.

Clerical Error: An error resulting from a mechanical transcription
process from one medium to another (e.4., keypunch error when copying from
handwritten to computer-processable form).

Ambiguity: An error resulting from an author's inability to distinguish
clearly among several alternatives. Note that an ambiguity might result from
unavailability of information, carelessness, or other reasons.

Omission: An error resulting from an author knowing necessary information
but not including it in the document.

Inconsistency: An error resulling from authors of tv'o or more different
sections of the document believing contradictory statements. "he result is that
two different parts of the document contradict each other.

,mr -

AD-A12 131 SOFTWARE FOR AVIONICSIUP ADVISORY ROQUP FOR AEROSPACE i
RESEARCH AND DEVELOPMENT NEUILLY-SUI-SEINE (FRANCE)
JAN 83 AGARO-CP-330

UNCLASSIFIED FIG 9/2 NL

liiI"/1.1MIIIIIII

11 1.2 .
-L

I III IL III

111 i iMli 1.2 5 11111 1.4 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Ol STANOAROS- 96- .

Incorrect Fact: An error resulting from an author having the wrong
information. The result is that the document contradicts other sources of
information.

Information Put Into Wrong Section: An error resulting from improper
separation of concerns, such as including a description of the data available from
a radar in the same section as a description of the computer interrupt structure.

Implementation Fact Included: An error resulting from an author including
information about how to implement a requirement.

Other: An error resulting from some cause other than those specified in
the foregoing.

Note that determining the cause, and hence the class, of an error sometimes requires the
help of the authors of the document. Furthermore, there are some errors for which the
proper class is not completely clear. To reduce the number of such situations, we train
all data analysts to use the same classification criteria and use more than one analyst to
review questionable cases. We estimate that fewer than 5% of the changes may be
improperly classified.

The statistics we present on the effort required to design changes follow from the times
supplied in item 5 of the requirements CflF. The times are those that technical persons
expend on understanding and specifying (i.e., designing) changes in sufficient detail so
that an editor or typist can update the document maintained on a word processor. Thus,
editorial and secretarial time are not included.

We classify the effort expended in designing changes as follows:

Class Design Effort (e)

Trivial (T) 0 e I work hour (wh)
Easy (E) I wh e I work day (wd)
Moderate (M) I wd < e I work week (ww)
Difficult (D) I ww e 1 work month (wm)
Formidable (F) I wm e

It is interesting that, of the 276 accepted changes, none have been Difficult (D) changes
and only 2 have been Formidable (F) changes.

2.2. Is the document easy to change?

Figure 4 is the distribution of effort for designing most of the changes to the SRD.
Excluded are changes to correct clerical errors because such changes typically involve
simple fixes such as correcting misspellings or punctuation. Excluded also are change
completions, though the efforts for change completions have been added to the efforts
reported for the corresponding original changes. The fact that 14% of the changes
required a day or less to design, together with the fact that only two requested changes
were rejected because the efforts to make them seemed unjustified, suggest that the SRD is
indeed easy to change. What's more, the contrasts between figure 5 and figure 6 suggest
that recent changes tend to be even easier than earlier changes.

Figure 7 is an alternative for figure 4. Changes to correct clerical errors are again
excluded, but change completions are included. Because the majority of the change
completions continued the work initiated by two formidable changes, the distribution of
figure 7 is close to that of figure 4.

Actually, the general form of figures 4 through 7 is to be expected; it seems to be
characteristic of accepted changes in general. It is quite similar to figure 8, a
distribution of effort to design software changes for a NASA software development project
(Weiss 1981). It is also similar to the distribution of working time to correct errors
during test and integration as presented by Shooman and Bolsky (1975). The simple fact of
the matter may be that a software project simply cannot survive if personnel tie
themselves up with making too many time-consuming changes; potentially difficult or
formidable changes will tend to be rejected unless there is no other way out. What is
remarkable about figures 4 through 7 is that only two requested changes have been rejected
because they were deemed not worth the effort.

As a note of caution, recall that the SCR project is different from many
software-production projects in that it is a faithful redevelopment of an existing OFP.
The variety of changes for the SRD is less than for many such documents. For example, the
OFP interfaces have not changed because of the introduction of new interfacing equipment.

2.3. Is it clear where a change has to be made?

Of the 276 requirements changes, 70 correct clerical errors. Of the remaining 206
changes, only 23 (i%) are change completions. This small percentage by itself suggests
it is clear where requirements changes have to be made. Another measure suggests the
same: Of the 206 changes, only 35 (171) required examination of more sections than were
changed.

Figure 9 shows the yearly percentage of changes that required examination of more sections
than the number actually changed. The trend is not encouraging. Recent changes, which
tend to be easier as noted in section 2.2. are nevertheless requiring the examination of
more material. One explanation for the trend may be the fact that the original authors of
the requirements document no longer design most of the changes; persons less expert in the
document have taken their places. Another explanation may be simply that recent changes
are more subtle than earlier changes. We will have to wait to see which explanation
applies. If the trend slows or stops in the future, then the first explanation would seem
to hold. If the trend continues, then the second would seem more valid.

2.4. Are changes confined to a single section?

There are 183 changes excluding change completions and clerical errors. If we combine
change completion data with the corresponding original changes, then 40 (22%) of the 181
changes involve more than one section. Figure 10 plots this statistic over the years.
Together these numbers indicate that, early on, changes tended only slightly to be
confined to one section. More recently, confinement to one section tends to be the rule.

2.5. What use of the document reveals the most errors?

Of the 74 errors corrected in 1981, 18 are clerical. The distribution of ways in which
the remaining 56 nonclerical errors have been detected is given in figure 11. The
distribution clearly shows that, in 1981, the SCR project was heavily into design. Figure
12 shows that design activity has been the primary way in which errors have been
detected. Although not surprising statistics, they are nevertheless encouraging because
they indicate that the SRD is being heavily used by designers. Apparently, the document
is meeting two of the goals stated for it: (1) that it be useful and (2) that it serve as
a reference tool.

The cumulative distribution of figure 12 should be of special interest toward the end of
the SCR project. If the requirements document is of high quality and if the approach
being taken to software development is successful, then relatively few nonclerical
requirements errors should be reported as a result of testing. In other words, the
distribution of figure 12 should retain its same general shape.

2.6. How many errors are found in the document?

There are 247 requirements errors that were corrected from 1978 through 1981, 70 (28%) of
which are clerical. This seems to be a small number of nonclerical errors considering
that the SRD contains approximately 600 pages. The error-per-page ratio is only 0.30.

Bell and Thayer (1976) report on 972 problems with a B-5 level software specification that
comprised approximately 2500 pages. About 50 (5%) are problems of new or changed
requirements, which cannot occur in the A-7E OFP redevelopment. The remaining 922
problems yield a problem-per-page ratio of 0.37, which is not very different from the
above ratio for the SRD. But the problems reported by Bell and Thayer are the result
largely of two formal requirements reviews conducted during system development. They
comprise some fraction of the total number of problems found. Thus, the actual
problem-per-page ratio is likely much greater than 0.37.

2.7. What kinds of errors are contained in the document?

The distribution of error classes in 1981 is shown in figure 13; in 1979, figure 14;
cumulatively, figure 15. Except for some variation in the percentage of inconsistencies,
there is little difference in the distributions. The data suggest that the requirements
document is much more precise (has relatively few ambiguities) and somewhat more
consistent than it is complete and correct. Perhaps most remarkable is that there are no
errors of the type -inclusion of implementation facts." The authors seem to have
succeeded extremely well in their goal of specifying external behavior only.

It is also interesting to note that the percentage of clerical errors found has remained
constant with time. Of the 70 clerical errors so far found, only two were introduced by
earlier changes.

3. CONCLUSION

We have two objectives in monitoring changes to the SRD. The first is to test the
feasibility of goal-directed data collection. The second is to measure the success of the
document's authors in meeting their objectives. This second objective is important
because one of the main goals of the SCR project is to produce a model for engineering OFP
software. The SRD is an important part of that model.

Our work has shown that goal-directed data collection can be feasibly integrated with
traditional configuration control activities. The major difficulty is that there must be
constant careful attention to ensure accurate information; that is, validation must be
concurrent with data collection.

Our analysis of the three years of change data suggests that the authors of the SRD have

ii i , II I I I

A'1

9-6

successfully met some major objectives. In particular:

I. The document seems to be easily maintained, even though a growing percentage of
recent changes requires the examination of more sections than those that must be
changed.

2. The document seems to be well structured. Changes tend to be confined to single
sections.

3. Based on comparison with published data, relatively few errors have been found to
date.

4. The document is remarkably free of ambiguities and inappropriate implementation
details.

5. The document is a living document. It has been heavily used during design.

These are of course interim results, and data collection will continue throughout the SCR
project. Nevertheless, the change data from the start has consistently supported this
positive evaluation of the SRD (see Basili and Weiss 1981). There do not appear to be any
significant trends in the data that suggest the conclusions will change.

4. ACKNOWLEDGEMENTS

Special thanks go to Paul Clements who patiently answered our seemingly endless questions
about submitted CRFs. Miss Tamara Lewis is responsible for the high-quality histograms,
which she produced despite problems with our home-grown plot package. Of course, we owe
much to all those who have patiently filled out CRFs and continue to do so.

5. REFERENCES

Basili, Victor R., and Weiss, David M. 1981.
Evaluation of a Software Requirements Document By Analysis of Change Data.
Proceedings, Fifth International Conference on Software Engineering, pp. 114-171.
Long Beach CA: IEEE Computer Society.

Bell, Thomas E.; and Thayer, Thomas A. 1976.
Software Requirements: Are They Really A Problem?
Proceedings, 2nd International Conference On Software Engineering, pp 91-68. Long
acCA: IEEE Computer Society.

Britton, Kathryn H., and Parnas, David L. 1981.
A-7E Software Module Guide.
NRL Memorandum Report 4702. Washington, DC: Naval Research Laboratory.

Britton, Kathryn H.; Parnas, David L.; and Weiss, David M. 1982.
Interface Specifications For The SCR (A-7E) Extended Computer Module.
NRL Memorandum Report. Forthcoming. Washington DC: Naval Research Laboratory.

Clements, Paul C. 1981.
Function Specifications for the A-7E Function Driver Module.
NRL Memorandum Report 4658. Washington DC: Naval Research Laboratory.

-- - 1982.
Interface Specifications for the A-7E Shared Services Module
NRL Memorandum Report. Forthcoming. Washington DC: Naval Research Laboratory.

Dijkstra, Edsger W. 1968.
Cooperating Sequential Processes.
Programming Languages, ed. F. Genuys, pp. 43-112. New York: Academic Press.

Fryer, Sandra R., and Weiss, David M. 1981.
Evaluation of the A-7E Software Requirements Document By Analysis of Change Data: Two
Years of Change Data.
Paper presented at the 15th Annual Asilomar Conference On Circuits, Systems, and
Computers, November 1981.

Heninger, Kathryn L. 1980.
Specifying Software Requirements for Complex Systems: New Techniques and Their
Application.
IEEE Transactions on Software Engineering, vol SE-6, no I, January 1980.

Heninger, Kathryn L.; Kallander, John; Parnas, David L.; and Shore, John E. 1978.
Software Requirements for the A-7E Aircraft.
NRL Memorandum Report 3876. Washington, DC: Naval Research Laboratory.

Hoare, C. A. R. 1974.
Monitors: An Operating System Structuring Concept.
Communications of the ACM, vol. 17, no. 10 (October 1974), pp. 549-557.

Parker, Robert A.; Heninger, Kathryn L.; Par:ias, David L.; and Shore, John E. 1()80.
Abstract Interface Specification for the A-7E Device Interface Module.
NRL Memorandum Report 4385. Washington DC: Naval Research Laboratory.

Parnas, David L. 1972.
On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, vol. 15, no. 12 (December 197?) pp. I051-101p.

-1977.
Use of Abstract Interfaces in the Development of Software for Embedded Computer
Sys tems.
NRL Report 8047. Washington, DC: Naval Research Laboratory.

Shooman, M. L., and Bolsky, M. I. 1975.
Types, Distribution, and Test and Correction "imes For Programming Errors.
Proceedings -- 1975 International Conference on Reliable Software. SIGPLAN Notices,
vol 10, no 6 (6 June 1975) pp 147-357.

Weiss, David M. 1981.
Evaluating Software Development By Analysis Of Change Data.
Ph.D. Dissertation. Technical Report TR-1120. College-P-ark: University of Maryland.

0. Introduction: A description of the document organization, an abstract for

each section, and a guide to the notation used.

I. Distinguishing Characteristics of the TC-2 Computer

2. Input and Output Data Items: Description of the information received and
transmitted by the computer, organized according to device, one subsection
per device connected to the computer.

3. Modes of 0peration: States of the program corresponding to aircraft
operati conitions.

4. Time-independent Description of A-7 Software Functions: Each function
description characterizes one or more output date items and specifies the
conditions under which they are updated.

5. Timin Reuirements: Timing requirements for all functions described in

section

6. Accuracy Constraints on Software Functions

7. Undesired Event (UE) Responses: Desired behavior of the system when
undesired events occur.

8. Reuired Subsets: Useful subsets of the system obtainable by omitting
parts o the code.

9. Possible Changes: Possible future modifications to the OFP.

10. Glossar: Glossary of acronyms and technical terms used by the A-7
community.

11. References

Indices: Alphabetical indices to data item descriptions, mode overviews, and

Dictionary: Definitions of standard terms used in the mode (section 3) and
function section 4) descriptions.

FIGURE 1. Sections of the A-7E Software Requirements Document

1. Is externally-visible behavior only specified without implying a
particular implementation?

2. Are the appropriate external interfaces specified?

3. Are the external interfaces specified correctly?

4. Is the document easy to change?

5. Is it clear where a change has to be made?

6. Are the changes likely to occur predicted correctly?

7. Are changes confined to a single section?

8. Is the proper set of undesired events described?

9. Is the notation used unambiguous?

10. Which sections have the most errors?

11. Where do the most changes have to be made?

12. Which type of tables has the most errors?

13. Does the document contain unnecessary information?

14. What use of the document reveals the most errors?

15. Are sections 3 (Modes) and 4 (Functions) consistent with each other?

16. Is the dictionary complete, correct, and consistent with the rest of the
document, and will it remain so?

17. Which subsections of sections 2 (Data Items), 3 (Modes), and 4
(Functions) are most error-prone?

18. How is the document being used?

19. Why are changes being made?

20. How many errors are found in the document?

21. What kinds of errors are contained in the document?

FIGURE 2. Questions Underlying the Change Report Form (CRF) for the A-7E
Software Requirements Document

.,1

0 11~ .1A

E1 0 0000 11

H .1
.,Coo*1

07 1i0)R CHANCES -. - AN

H H
A 4 A

1 S l
2- -- ---

) Irl. I FW E T

FI&Wf 4. Fffo.I E-o 6,% ci .I.I. FTIEf 7. FffoIto Ds. .. Cos FE.Iudinq
Er sd O.og. oop 8-1961) C. Ia bErg: (1078-1981)

o,

>FCHANGES co

1: H
A A40[

o oo

FIF.. S. tHfoet t Olg E.eWg.. Eo~dClIc1- FISLMI B. 9ELI Effoot f.D .. g..
Fr'..o- o. C 108l ti9e9) (Elgor 5.8 foo II

o 77 CHANGES

F ar

Triosail E." thd-g4. Olffieolt Fftbl. 1978-9 l9s 1991

FION 6. Effort w.C.p EI.c-.lFOK .f-at u

E-WdCh,,_M

41

1979-79 19M 96

TIME PERIOD

FlawE II. Perceefeqe of Dh.o. Illeq i-.
Thee Om'. Seofic (10)76-1961)

90.

70' FRR100"S

OE90'
F R

A so,
NO

OR 40'

L 20'

Ic- 0 0-2 -

R-,.. R.,.. leo-
1 1

"r od I q Test 00
A by b, fes-. Rf.... R fe..e Rf...

L "whtor" tt-fbtho- Refe.-eSEOFDEVT

FISLK ~ ~ ~ L 11. ofNl 113Ml -IW 1)t

0

F

C R
L R

R Ra

L 3N

L C'

Reds. Recies T-l 0 -

IN C(F 0In0atM

Fa iCO1. DvtoH... of RelrnlEr... (1978-1981)

74 FRORS

F 60

E 0

08.

0. 0 0

FIRM 3. E Eo. I CLASS

7*. FROIRS

F So

6 34

03

-t y Fact Sect "I - ttc
Fact

FIRM 14. Eu- ...- l. (1970-1979)

t 247 FRORS

03408... 13Fi

FIRMF IS. &-c Clecee. (1978-1981)

10-1

D. L. A. 0. :UN SYSTEWf DAIDE

A LA DEFIN[TION DE LOGICIELS AVIONIQUES

Sylvia CRENUT-MARTIN et Franqis DOLADILLE

Electronique Serge Dassault

55, Qual, Carnot

92214 SAINT CLOUD

Tfil. :602.70.17. / 602.50.00

RESUME

Cet article dficrlt les grandes lignes du syst~me D.L.A.0. (Dfafinition de Logiclel Assistige par

Ordinateur). dont l'objectif eat d'aider A 1lslaboration de spficifications de iogiclei temps

rfiel, et en particuller de logiciel avionique. 11 prfisente tout d'abord lea buts de i'gtude et

is dfimarche qui a 6t suivie pour les atteindre :analyse du processus de dgfinitlon applique

par l'ESD pour le logiciel des calculateurs embarqufis, analyse des besoins des utilisateurs et

des systbmes existants.

Les solutions retenues sont ensuite dfiveloppges en soulignant plus particulibrement les points

suivants:

- simplicitfi de miss en oeuvre :S.O.S., saisie des informations assistge par loutil,

- facilit6 de construction de documents.

A terme, le syst~me dolt s'int~grer dans un ensemble coh~rent d'outils couvrant lea difffren-

tea 6tapes du cycle de vie du logiclel ;les probl~mes posfis par l'intfigration avec un sysame

d'aide A is conception sont 6voquis.

I INTRODUCTION

La tailie et Is complexitt, sans cesse croissantes, des logIciels d~veioppss dans la dernigre

dgcennie ont mis en 6vidence l' importance primordiale de la phase de d~tinition dans le cycle

de vie d'un logiciel. Certaines mesures effectuges sur de gros projets 'BOE 781 (ROF 821 per-

mettent ainsi d'estimer que le coflt des seules erreurs de dtfinition repr~sente en movenne Ie

tiers du coOt total du logiciel.

A l'origine de ces erreurs, que lion peut r~pertorier en diffrentes cat~gories :imbiguItc,

om ission, Incohgrence, sursp~ci~ication, inconqpr~hensthilitA,.,se trouvent 4videmnent

la complexit6 et Ie volume des sp~cifications, mais leur cause immddiate tient souvent A

l'absence d'outils sp~cifiques A cette Lstape de dAfinition et en part iculler 1'Llcriture des

sp~cifications en langage naturel [KEy 79].

Cette absence de moyens automatiques eat part icul iarement ressentie par tous ceux qui ont a

divelopper des logic lels complexes :Ia d~finit ion du calculateur principal d'avions milital-

res peut repr~senter plus de 2000 pages de texctes et de schhmas. Lea modifications apportAes

a~rc sp~cifications InItiale4, pendant la phase m,4me de r~alisation du logiclel, y aunt tr~s

nombreuses (de i'ordre de 1000). Ces mises A jour sont d~licaten du fait d'une stricture .1e

documents mal adaptge A l'69valuation de i'impact de ces 6volutions sur I'ensemble du

logic iei.

V'est pourquoi I'E.S.). dfiveloppe actuellement dans It cadre de deuc contrats, lPun avec la

Direction des Recherches, Etudes et Techniques (DRET), lautre avec l'Agence Spatisle Euro-

pfienne (ESA) un systame dont l'objectif principal eat d'offrir un support simple et facile A1

mettre en oeuvre pour Ia phase de definition de logiciels. Ces travawc sont Ie rcsultat d'une

collaboration avec Ia SNIAS-DSBS et visent A sat isfaire lea besoins de diff~rents industriels

dens des contextes vari~s (11 eat A noter que Ie syst~me, dgveloppf aujourd'hui en rranqa Is,

peut Otre, par des modifications mineures, adapts A1 is langue anglaise).

IT OBJECTIFS

Les objectifs qua dolt atteindre un systAme d'aide A is d~ftmit ion sont multiples

- Accroltre is qualit6 de Is ap~cification , c'est-A-dirn r~duire de fa~on importante lea

erreurs citgea ci-dessus. Le systame doit offrir A l'utilisateur un "langage- simple, auti-

risant de nombreuac contr8les mais luf permettant 6galement de micuK analyser ses besoins.

- Faciliter lea mises A1 jour, c'est-A-d ire prendre en compte en tempa rfiel routes les

modifications, les contr8ler, dstecter laura r~percussions at fiviter qu'elles ne rendent In-

correct It reste de Ia spficification.

- Fournir une documentation fiabie et adaptse aux besoins des diff~rents utilisateurs. Le sys-

Okie dolt offrlr des documents A is demande qui satisfont l'ensemble des points d- vuc

pour Ie documsent de spifications, qui eat Ia plupart du temps Ia base contractuelle

d'engagement entre Ie rfalisateur at le demandeur de logiciel, 11 eat indispensable

d'aaaurer une trLs grande lisibilitf qui permetre a un non - Informaticien de s'engager.

D'autre part, 11 eat Evident qua l'uttlitf et donc l'efficacitE d'un tel syst~me sont Il-es

tre's 6troitement aux avantages ergonomiques de ?a interfaces il1 eat donc Indispensable qua

Is systilme fournisse A son utilisateur nine structure souple mats efficace done des fonctions

simples afs faciles A mattrc en oeuvre.

Pour satisfaire ces objectifs, La d~siarche suivie lors de la d~finition du systime D.L.A.0. a

coosist6

1- A cinisir comae th~me d'aypfrimentation un document de sp~cificatiuns acistant dust le

contenu soft repr~sentatif des principam. problarses renconcr~s lots de lIa dftfnitiun Je

logiciels completes. L'4itude de to document a petals, d'une part d'en analyser les d -fauts

et leurs causes, d'autre part d'identifier La forme d'un cecce de sp~cification et la na-

ture des concepts qut y 6taient traitfzs.

2 - A interroger des r~dacteurs de sp~cifications, utilisateurs potentiels du systame, pour
connaltre leurs besoins.

3 - A 6tudier lea syst mses existants (15001 [TEI 771, SEM [ALP 801, SUIT [SOP 76[.

ZAIDE (CHE 80],...) pour identifier les knuells A 6viter et pour voir dans queule mesure
ces syst~aes pouvalent satis faire les besoins mis A jour lors de I'6tape pr~cidente.

Cette dlmarche, quf a permis de dresser un bilan d~tatIL& des besoins r~els d'un industriel en

matiare de d~finition do logiciels, a mis en 6vidence les soudis fondamenrauc des utilisa-

teurs:

*facilitE d'approntissage et d'utilisation do systlme. notamnet Au niveau du langage,

*bonne lisibilit6 des documents produits, possibilit6 d'6ditions graphiques du type

SADT on R-nots [ALP 76],

*adaptabilitf? du langage acm probllmes traltbs.

Vest en fonction de tea soucis que nous avons d~fini D.L.A.O. dont certa ins aspects sont dS-

veloppls c 1-deasous.

II-LE SYSTEME D.L.A.0.

3.1. Le langage

11 a kt6 6laborE A partir d'une analyse des documents de splcIfication de logicils temps

r~el dfiveloppgs a1 VESO chacun des concepts qul Sitair manipultl dans de teis documents a

fItS identifiE et eat mc primg dana le langage. L'objectif fitait de trouver un rompromis

satisfaisant entre formalisme, lisibilitl et facilitE d'emploi. 11 a Srit trouvtl en rldui-

sant A 5 lea types d'objets A d~finir. La spkcification se prksente cmmd une suite de

dlifinitions d'objets de ljun des 5 types suivants

Les informtiona Ce sont lea donolies opfirationnelles manipulies dans le logiciel.
Ehemple :"Mode de fonctionnement du radar" est une donolie oplrationnelle en entrle

du logiciel dont on ecploirera lea diffhrentes valeurs :tfilfiuftrie Air-Sol, visua'-

lisation du aol,... pour ia spficification.

Leas interfaces :Ce soot les supports physiques des informations.

temple :L'information 'Node de fonctionnement du radar" est implumentlie par

l'interface "Node radar", qui est un champ de 10 bits.

10-4

Lea !6v&nementa Ce aont lea faits ai~atoires ou non, fiventuellement accompagnfis

d'informationa, auxquela le logiciel doit rfiagir.

Ikeple :La "pasaage du radar du mode t~l~m~trie Air-Sol au mode Visual isation du

aol" eat un 8ivfnement, le logiciel doit en effet dana ce caa effectuer certainea

initialiaationa at dea traitementa apficifiquea au nouveau mode.

*Lea Atata Ce aont dea enaemblea de proprittfa vfirififiea par le logiciel I un inatant

donnA.

Ekemple :Au tempa t, le logiciel eat dena l'un dea fitata aulvanta mode

Navigation, node Air-Air. mode Air-Sol.

*Les tralmenta Ce soot lea fonctiona accomplies par le logiciel.

Lesaeamplea qui suivent (dfifinitions aucceaaivea d'une information at d'une interface)

aont prlilev~s dana un logiciel avionique. Ila ne tiennent pas compte dea facilitfis de

aaiaie offertesamu apicificateur (cf. 3.2.), ni des possibilit6s d'6iditiona fourniea par

Ie aysama (cf. 3.5.)

Dfifinition d'une Information

Latitudemdditionnelle :INFOR14ATION

SYNONYM! ecart-de-latitude

ENTREE

REEL

UNITE dagre

DOMAIN! DR VARIATION 1-180, 180)

VALID! SI coordonneam-but - vallde I

D~finition d'una interface de type message

central._inartielle_6 :INTERFACE

MESSAGE

ENEREIUR centrala-inartialla

RECEPTEUR calculateurl,

calculataur2,

pilota-automatique,

radar.

viseur

6,25 HZ

CARACTERISATION C commande label 88, commnds complemntaire 13C

LOWGUEUR 80 BITS

COMPOSITION

NOT validite -centrala-inertielle

atat-central. inertielle

DOUBLE-NOT modecantrala inartielle

10-5

3.2. Fac ifis de saisle

Lore de l'ecacotion de clacune des fonctions offrtes par le systbme. 1'utilisateur dis-

pose d'un certain nombre de facilit~s de niveau ganfiral ;en particulier, il peut avoir

recours, A tout moment, a un 'S.O.S. , pour lul ecpliquer le fonctionnement du systbme

quand ii le dasire ;de mame, il peut dfifinir et utiliser des macros, aussi bien au ni-

veau du langage de commande (Interpraiteur SHELL d'UNIX [BOU 78]) qu'au niveau do langage
de spficification, ce qui lui 6vite ainsi certaines tftcbes rE-pftitives (procfidures de com-

mandes 00 dfifinitions d'objets souvent utiliskes).

D'autre part, pour Ia saisie interactive des sp~cliications, il eaiste, outre on mode

"lbre" dans lequel la seule assistance apportfie Mar le systame eat le S.O.S., on mode

"assistfi". Dane ce mode, l'uttlisateur est guidfi pas A pas dana Ia rbdaction de s spkci-

fication grace A on .leu de questions/rbponses.

L'enchatnement de Ia saisie eat assurE par le systbme en fonct ion des options choisies

par l'utilisateur. L~a syntaxe du langage lui est alors Marfaitement transparente.

Le passage d'un mode A l'autre peut se iaire A tout moment. Bans le cas d'un passage mode

libre - mode assistfi, le systbme se branche directement au questionnaire nfcesa ire A la

poursuite de lsaspficification.

L'ecemple ci-dessoos pr~sente un court ec~nario d util isation du mode assist& pour on ob-

jet de type information (fin de dfifinit ion).

Cheque figure symbol ise on ficran:

- Ia partie supfirieure de Vficran est rfiservfie au systbme pour pr~senter Ia sp~cification

indentfie, rappeller la fonction en coors

- Ia partie inffirieure permet B1 l'utilisateur de fournir le tecte de as spl-cification 00

de r~pondre awz questions posfies par le systbme et de slecter Ia fonction en cours;

lea notations utilisfies soot lee suivantee majuscules pour lee afficmges du sysatme

et minuscules pour celles du spficificateur, le---signifie transmission.

but-de-preparation :INFORMATION

SYNONYhE but-prep

ENTREE

ENTIER

DOMAINE DE VARIATION [1,63]

Slea buts 93,94 soot pour le moment en reserve

FONCTION :DEFINITION MODE ASSISTE

L' INFORMATION EST-ELLE PARAMETREE PAR LF TE14PS ? 1

1 - 001

2 - NON

LCOMMANDE

10-6

butde-preparation INFORMATION

SYNONYME but_prep

ENTREE

ENTIER

DOMAINE DE VARIATION [1,63]

* lea buts 93,94 sont pour le moment en reserve *

PARANETRE PAR LE TEMPS

FONCTION DEFINITION MODE ASSTSTE

.

DES CONDITIONS DE VALIDITE SONT-ELLES ATTACHES A

L'INFORMATION ? 2 (
1 - Oul

2 - NON

COHO(ANDE

but-depreparation INFORMATION

SYNONYME but_prep

ENTREE

ENTIER

DONAINE DE VARIATION [1,63]

* lea buts 93,94 soot pour le moment en reserve a

PARAMETRE PAR LE TEMPS /

FONCTION

MISE EN GARDE L'ORJET CHANGEMENT BUT EST

UTILISE ET NON DECLARE

VEUILLEZ LE DEFINIR

COMKOAIDE

FIN DE DEFINITION AVEC DIAGNOSTIC

3.3. Ms I jour

L'un des buts du systes est de fciliter lea alses A jour et, en particulier, d'fviter
que des modifications anarchiques a% rlpercusslons sal d6finies provoquent one dlgrsds-

tion du teats Gerit. Pour cels, A diuque mise I jour, is systle contr6le is tinte modi-

fii (lea contr8les 6tant de slae nature qu'en salsle : cot~rence, complitude) wmle tussi

visusliso I' ipact de I& modification, c'est-&-dire l'ensble des objet. en relation

avoc l'objet modifif, ce qul perset A l'utUtiateur de cerner cospIttement le* rtporcus-

@ions do s" miss A jour, qu'l1 pout valider ou non.

i aIi

10-7

3.4. Bibliothlque de apficifications

11 arrive souvent que lea spficifications de deuc projets diff~renta sient des parties

communes, notainent dana le cas de logiciels avioniques oi lea missions A remplir sont

souvent de m~ine nature. Il eat donc intfireasant de pouvoir r~cupfirer tout ou partie d'une

spficification d~ji ecistante plut8t que d'avoir A Ia rfifcrire. A partir des spficifica-

tions archivaes dans lea bases de donntes projet, on vs done cr~er des bibi iothAques de

spficifications fiquivalentes aut bibliottques de modules en programmation.

3.5. Editions

11 ec late deuK typea de documsents fournis par le syst~me

tea ±4ditons ponctueles, qu1 peuvent @tre demand~es A tout moment por l'utiliateur

pour obtenir le ou lea renseignements ap~cifiques n~cessaires A Ia poursuite de son

activitfi. L'emploi d'une base de donnries comme structure d'archivage permet l'acc~s at-

lectif A toutes lea informations relatives A un probl~me particuliler et facil Itent

grandement le travail par rapport A Ia documsentation sur papier utilisfie aujourd'hui ox)

it eat difficile de rassembler tous ces 6K1haents.

Ces Editions, qui travaillent directement A partir des objets contenus dana Ia

spacification, permettent d'obtenir diff~rents types de sortie:

- Edition de la sphcification d'un o bjet :trois formats peuvent Atre demand~s

squelette syntac ique seul, avec comentaire et "en pseiaio-fra~a is", le syat~me

ins~rant des bribes de phraes atx endroits voulus.

- Edition de rif~rences croisfies :ripondant auK requL'tes du type "Quels soot lea

objets vfirifiant telle ou teile propri~tfi ?"

- Arbre de dficomzoS-ition des Aivgnements ou-des-in format tong, ui montrent la con-

struction de ces objets A partir d'objets de plus baa niveau

- iagrasmme d'enctmlnenent des traitemenjs (de type K-nets)

- Fluc de donnfies, qui montre comment circulent et oia sont filaborfies les donn~es.

- Diagramme d~at, qui symbol ise graphiquement lea transitions entre fitats

L'±4_ition dju d2cjissentd rfgrence, qui est la plupart du temps Ia base contractuelle

d'engagement entre le demandeur et le ralisateur de logiciel et qui doit donc tStre

aussi lisible et gusti proche que possible des documsents actuels de ep~cification.

Pour cela, un outil docusentaire, simple at facile A mettre en oeuvre, a ftt d~fini. U

permet A l'utilisateur de construire son document come ilIsl d~sire A partir des 6ll-

menta docissentaires conatituts par les Editions ponctuelles. Grace A cet outil, la ges-

tion de Is "structure" documentaire eat totalament indfipendante du contenu du document.

La construction du document peut se faire sous le contr8le d'un plan-type qui eat liii-

m~ine d~fini par un utilisateur privil~git pour ctzque projet, suivant leg standards ME-

thodologiques employ~s. Get outil, vu as glnlralitl, peut s'appliquer A ctmcune des

phanses du cycle de vie du logic iel.

Le tecte qul suit eat un ecemple de documentation fournie par le systtme :il eat consti-

tuk de 2 chapitres ;le premier eat une gidition du type diagramme d'6tat (lea
4
t~ats et

lee &vlnements qui interviennent dane leura transitions sont prtcis~s avant Ie diagrasme

proprement dit) , le deo iQme, est constitul par la sp~cification d'un objet de type

traitesent.

Exemple de document 6dit&

CHAPITR!E I

RECALAGE PAR PASSAGE A LA VERTICALE

1.1. Etats poasibles

Durant l'inlcution de cette fonction, is systbae eat done l'un des ciaq fitats dfifinis ci-

apr~s:

1 Recalage par passage a is verticals avant designation du but avec des

coordonnees but vat ides

2 Recalags, per passage a Is verticale avant designation du but aver des

coordonnees but invalides

3 Recalage par passage a Is verticale spree designation du but avec des

coordonnees but vat ides

4 Recalage par passage a is verticals spree designation du but aver des

coordones level ides
5 Racaisge non selectionne

Les tvtnements qul interviennent dane lea transitions entre *tat* sont lea suivants

A Changement but aver coordonnees but valides

I Changement but avec coordonns but fnvalldes

C Premiere designation

D Appui sur touche ANNULATION ou VALIDATION recsiage

E Appul sur touche VERTICAL

I2
EhiS~OSETERAT EAAEVRIA

1.2.~~~~ NaBedstrieet

TRATE 5N reaaeprpsaEa avria

Seepricipl D ca otr ue ont

TRANSTIOt SNR souss LaAG touRheICALCA

SRITE leN ssT eet asi
4
a recalage par passage a la erticalea~tdsga

S a or s iples cogictfiie eftue s ctin suze

- .oype d recalage ertica

3. decito quan a pal leoeme pre..iereu esignation

-ifr aios en elogeieutedeborepanfratio rers prtrd position avioncodnes ubtok

coorut dtonneesdlu

4.an Sqsus d apparal VICn~etA ppirtu eANlAINo AiMINrc

St r le syst lise pass done i~tat recalage nonpsag Is eec l avone.sins

1-10

IV -LIAISON AVEC LA CONCEPTION

L'E.S.D. d~veloppe figalement on aysthme d'aide I la conception des logic lels. Ce systame eat
Ie support d'unae mithode diriv6e de celia des machines abstraites [GAL. 781 en prenant en coup-
to on environnement tempB-rael. 11 eat donc Indispensable de liar lea dewK syages, cela eat
fait actuellament grice I des relations difiniea manuellament par l'ut ilisateur entre lea ob-
jet& manipul~a dana Is aphcification at ceut *anipul~a dana la conception. Gr~ce A cea
liaisons, on obtient one traeabilit6i minimum entre lea deuw

6
tapea, qoi peut 6tre intireasante

notamment en cas de modification d'une partie des spficifications. 6.n effet, dana cc cas,
le systlhme fournit l' impact do lasmise I jour, et permet A l'utiliaateur de connaltre lea 616-
ments de conception qoi nt nuaceptibles d'Evoluer.
Une 6tude eat en coors poor analyser I&a aisabilitS d'une automatisation de la misc en place
de ces relations, qui peruettrait sinai une intfigration totale entre lea dewK systbmeg.

V -CONCLUSION

La systimuc qua noua venona de d~crire apportera one aide significative I sa utilileateurs poor
l'analyse des problbmes de d~finition do logiciel. Il peruettra on accroisscucnt de Is qualitfi
des docuents produits sinai qu'une facilitO et one aliret* de itisc 41 jour. 11 rendra diaponi-
bles at fiables lea informations relatives A1 la apficification et facilitera leur
communication.

La d~finition du syst~me eat aIntenant teruin~e, Ia phase de r~al isation eat en coors. La
systlme sera intlgrl I l'atelier de g~nie logiciel AIGLE an coors d'Atude (projet coun awK
sociftts ESO, SNIAS/DSBS. STERIA (BRA 82])

BIALIOGRAPNIE

(ALF 761 M.W. ALFORD, I.F. BURNfS

"R-nets :A graph modal for real-time so ftware requirements"
Symposiu on Computer software Engineering.
Polytechnic - Institute of New-York

1976

"Software requirements engineering methodology (SEEM) at the age of four"

PrALPdng COOjA 80. LP

19T

-U - I

[BOE 781 B.W. BOEHN

Software Engineer ing

Ecole d'tt informatique IRIA, EDF, CEA. PARIS

Juillet 1978

[BOB 821 B.W. BOEHM

"Les facteurs du co~t du logiclel"

Technique et science Infornatique n'l

Janvier 1982

(BOU 781 S.R. BOURNE

"The Unix Shell"

Bell System Technical Journal Vol. 57 N
°
6 part. 2

Juillet-Aont 1978

[BRA 82] G. BRACON

"PrEsentation de l'atelier AIGLE"

Actes des J.I.I.A. - Paris (A paraltre)

Juin T982

[CHE 80] S. CHENUT, J.M. NERSON

"Le systbme ZAIDE ; conception gfnfrale"

Note EDF HI/3468-01

Juin 1980

[GAL 78] H. GALINIER , A. MATHIS

"La mchine abstraite comme unit& de conception, implantation et modification de

programmes"

Ecole d'Et8 Informatique CEA, IRIA, EDF

Juillet 1978

[HEY 79] B. MEYER

"Sur le formalisme dans lea spfcifications"

Atelier logiciel n
°

23 - Note EDF HI/3206-01

Aoit 1979

[SOF 76] SOFTECH Inc.

"An introduction to SADT Structured Analysis and Design Technique"

Document SOFTECH n* 9022 - 78 R

Novembre 1976

[TEI 77] D. TEICHROEW, E.A. HERSHEY III

"Computer - aided technique for structured documentation and analysis of informa-

tion processing systems"

IEEE Transactions on Software Engineering - Vol SE 3 N* I

Jsnvier 1977

I

)

THE MENTOR APPROACH TO REQUIREMENTS SPECIFICATION

D. Jordan, B. Hauxwell,
Marconi Avionics Ltd.,

Elstree Way,
Borehamwood,

Herts.
England.

SUMMARY

Requirements Specificatio: methodologies and documentation s',stens which are carre:.tl, ava ilal :- aloyt a
range of differing viewpoints on the system development problem. Each is oriented to enabling the user
to specify efficiently some particular aspect of the target system, and each places particular emphasis
on certain features of the system.

At Marconi Avionics we believe that the role of an automated documentation system should be to accommodate
all information relevant to a szstem design, to check rigorously that information for consistency, and to
make it visible in a range of reports which individually provide various emphasis on the information.

To this end we are developing an integrated system, MENTOr,for the development of engineering designs and
documentation. MENTOR is intended to assist development teams in the qathering of information, definition
_f terms, and development of designs for avionics systems. The system has the following major features:-

a) A new specification method which guides the user in the decomposition of his problem by partitioning
the behaviour of the target system among a number of operational capabilities.

b) A specification language NATITER (A NATural TERminology) which is intended for use by any personnel
involved in the system development and is sufficiently flexible to accommodate all functional
documentation for the target system.

c) An advanced algebraic analysis technique whicn enables the MENTOR system to perform a powerful dynamic
consistency analysis of the evolving specification, and provide valuable feedback to the development
teams.

I. INTRODUCTION

In recent years a wide variety of techniques have been proposed in an attempt to inject a degree of
methodological rigour into the systems engineering process. These proposals have ranged from the rather
esoteric, formal specification and program tr-nsformation techniques (Jon 1980, Ham 1976), to the pragmatic,
documentation oriented approach of a number of semi-formal documentation methodologies(Tho 1976, Jac 1975)
and Engineering Design Documentation systems (Tei 1976, Day 1977). Each of these schools can offer some
valuable assistance in the generation of effective system designs, however the more formal techniques in
general have little direct relevance to the day to day engineering process, and will, we believe, prove
difficult or impossible to integrate into the procedures involved in the development of large systems in a
commercial environment.

At Marconi Avionics we have been investigating the relationship between formal and semi-formal techniques
in some detail, and we have concluded that a broadly based approach is feasible. In outline, this approach
would allow for development and evolution of system concepts in a structured documentatior-oriented fashion,
but would nevertheless provide a degree of formal verification sufficient to give confidence in the
correctness of the designs which are achieved. We are currently engaged in the development of an
Engineering Design Documentation System, MENTOR which embodies this app-oach to the specification and
verification of systems.

At its core MENTOR is a database system for the maintenance of engineering documentation in much the same
spirit as 1SDOS (Tei 1976) and SDS (Day 1977). MENTOR, however, supplements this information management
capability with:-

a) A method for the top-down evolution and structuring of system specifications, with emphasis on the
separation of concerns in the analysis of required behaviour and the specification of operational

design.

b) A semantically processed specification language, NAT'ER, which captures the specification, in detail,
for representation on the MENTOR database, and

c) A new and powerful technique for consistency analysis, based on a formal interpretation of the HATTER
language primitives, and implementing a concept of logical flow, developed from the recently described
theory of flow algebra (Mil 1972).

In addition MENTOR will provide a comprehensive report generation package for the retrieval of information
from the database, and will provide facilities for security management, and completeness monitoring.

The completeness monitoring facility will be linked to the consistency checking mechanism, and whenever
insufficient information is available to complete the structures anticipated by the consistency checking
process, so that a consistency check cannot be completed, the completeness monitoring facility will prompt
the user to provide the missing information.

I[

It is nowever, the central language analysis and verification capailities cf t-he MENTOR system, tot- .er
with the MNTOR specification technique which form the substance of thnLs paper. The next section comprises
a discussion of the capabilities required in the area of language analysis, and ab introduction t t-e
technique of language analysis which we have adopted in the MENTOR system. Sir seguent sections trear toc
MENTOR specification technique, and the verification of systems by flow -c-1l analyss similarl.

2. THE NATTER SPECIFICATION LANGUAGE

In order to discuss meaningfully the capabilities of a specification language, it is necessary to ad-t
some position on the nature and role of the specificatlons which are to be prepared using thc anuage.
One view which is widely held, is that a full functional reguirements specification, statini in ietall
the behaviour to be implemented by the system, should be provided. Furthermore this vie- hld tat t6 .:
requirements specification should be completely neutral, to, the extent that nc feasible .lesvi. shoud
excluded.

While we have a certain amount of sympatic nfith t-i, -es-i!1,:.,we feel ti-it it is verstated, ii reari
to the practicalities of the systems engineering discipline. To put st baldly, we believe that there is
a wide gulf between the products of engineering design on the one hand, an those algorithmic problems
which can be precisely specified in a formal, design free manner, on tne ouier.

Looking at this from another angle, we would say that the elucidation of detailed system requirements is
a central part of the engineering process, and that the generation and evaluation of dessgns is an
essential technique in this process. We therefore take the view that the specification language is
essentially a design documentation tool. We do however recognise that the documentation of design
characteristics must be correlated to the requirements of the application, so that the language must be
sufficiently powerful to support a detailed external view of the behaviour offered by the system.

Any terminology which is designed to provide this comprehensive capability will have a great deal in
common with natural languages as they have been used for engineering documentation. If, however, as
in the MENTOR system, it is required to provide automatic tools to facilitate the engineering process,
we must confront the fact that the specification language must be accommodated to the system by some
measure of formalisation. There is however a well known risk in the formalisation of natural languages,
in that it can be difficult to confine usage of familiar natural language terms within the limits of a
rigid formal syntax.

Nevertheless, in view of our overall approach, we believe that it is imperative to ri.tain much of the
vocabulary and some of the style of natural English in the specification language for MENTOR. Therefore
we have specified the use of semantic techniques of language analysis in order to retain also some of the
flexibility which characterises the natural language. Thus the MENTOR specification language NA'TER
(a NATural TERminology) does not have a rigid defined syntax, and any statement is regarded as syntactically
valid, provided that it can be reduced to an appropriate set of semantic relationships.

Broadly speaking this is possible only because NATTER is restricted in its expretsive power to be a
terminology for descrioing the behaviour and operation of systems of processing capabilities. Only a
limited number of types of object need to be recognised, and only a limited range of interactions and inter-
connections between documentation objects require to be specified. Furthermore, strict naming conventions
for documentation objects can be adopted in order to facilitate the processing of noun phrases.

Nevertheless the use of semantic techniques lends to NATER the flexibility to be used in a natural way for
the preparation of engineering documentation. While retaining the capability to generate a fully detailed
model of the meaning of the documentation to be maintained on the system database.

The output of the NATTER language analyser is called a second order entity/relationship model of the
meaning of the input statements. Noun phrases in the input statements are processed to generate unique
names for a set of named entity nodes, and these nodes are interconnected by a network of relationships
which represent the verbs and other connective phrases in the input statements.

Both the entities and the relationships which form the primitive components of the entity relationship
model have associated type attributes, and the semantics of the NAT ER language are defined as constraints
on the association of entities with relationships depending on their type attributes. Relationships are
only permitted to be specified between objects of appropriate types, and the appropriate types for each
relationship are defined by means of a schema which is associated with the relationship type. The semantic
processing of MATTER therefore consists of the use of the relationship schemata associated with the
connective phrases in the input statement, to derive a consistent allocation of the noun phrases to
appropriate object types.

In principle this scheme can accommodate the processing of arbitrary input statements to generate an
equivalent entity/relationship model, however its use with NATIER is restricted to provide only sufficient
capability for an engineering design terminology. Nevertheless, in order to accommodate both the
specification of designs and the explanation of those designs in terms of the behaviour which they implement,
this capability extends to the ability to process statements of causation, inhibition and consequence which,
in many cases, must be modelled as relationships acting upon other relationships.

It is this feature, that some relationships act upon others, which is referred to as the second order
characteristic of the entity/relationship model. We have however found that in all such cases it is
appropriate to regard one or other of the entities participating in the acted upon relationship as mediating
the action. This mans that the second order characteristic can be conveniently handled in MENTOR by a
technique of parameterisation. Consider, for example the relationships

A derives Bs and, C causes A to derive B.

In this case the action implied by A derives B is under the control of the process entity A, therefore we
model these relationships in MENTOR as

A(N) derives B; and, C causes A(N)

Where N uniquely identifies the relationship A derives B among all the relationships in which A participates.

3. THE MENTOR SPECIFICATION METHOD

We have supplemented the powerful NAT'ER language analysis capalility of *.e MENTOR system with detailed

guidelines for the structuring of system specifications. Ttese guidelines comprise the MENTOR specification
method, and amount to a top-down, abstract machine approach to specification generating very strongly
structured engineering designs. The central idea in this specification technique is to separate tcce
concerns of how the system is required to behave, and how it will operate in order to achieve that behaviour,
in terms of the independent behaviours of a number of contributory processes and the control flows amongst

those processes. In order to achieve t..- separation of concerns, without prejudicing the further detailed
analysis of the requirements of the application, we recommend that a certain attitude be adopted towards
the role of a process in engineering design. A process is to be regarded as adding to the system toe
capability to take account of some natural subdivision of the interactions in the system's environment. It
1- a % central concern the responsibility of maintaining some set of entities in an appropriate relation-
ship to be a meaningful model of si.ne aspect of the activities which the system is required to control.

Adopting tns approach means that, typically, each function provided by the system requires the collaboration

of several processes. Conversely each process may be required to perform a number of different actions in
support of various functions. This means that it is necessary to specify precisely the circumsta-ces in
which each action is performed, so that each process has its own behavioural specification in terms of
conditions recognised and actions performed in response to those conditions. This amounts to an explanation

of the role of the process in the management of the systems operating environment.

Operational processing sequences among processes can be specified by indicating the consequence of
particular actions as conditions becoming true, which then act as the stimulus for subsequent actions.
Additionally triggering actions may be specified between processes, wherever it is necessary to activate

an idle process to perform some action.

We believe that this comprises a fully general approach to the specification of engineering designs, and

that by employing this method in conjunction with the NArER specification language, documentation of a
high quality can be generated which parallels and quite closely resembles the best specifications in
natural English.

The main purpose of the NATTER language, however is to make engineering specifications machine processable,
and one of the results of the specification method outlined is the generation of specifications of sufficient

detail to support an automatic consistency analysis.

4. VERIFICATION OF SPECIFICATIONS BY FLOW LOGIC ANALYSIS

The MENTOR system will not, in any sense, guarantee that a design is appropriate for a given application.
To look for such guarantee would in fact be misguided, since there can be no rigorous way of determining
what would be an appropriate response by the system in any circumstances which might in nractice arise.
The determination that the behaviour of a system fulfils the requirements of the application is a process
that we call validation, and however the behaviour of the system is defined, validation is ultimately a

matter for human judgement. There is, however, another a pect of the verification of systems which is
amenable to automation. That is, establishing that the operations of the system do in fact conform to and
achieve some specified behaviour. In other contexts this activity has been called program proof, but in
the context of the MENTOR system it is more anpropriate to regard it as a dynamic consistency check of the

specification.

To appreciate why this is so, it is necessary to uiderstand that the documentary form of specification
supported by MENTOR is one that is designed to facilitate the validation process. There is at no point
a full formal specification of the behaviour of the system, but instead a succession of abstractions of

that behaviour which encompass and progressively delimit the application which the system will fulfil. In
effect this refinement is achieved by incorporating specific assumptions about the intended application
in the specifications of system operation. But because of the hierarchical nature of systems it is
possible to make contradictory assumptions at different points, leading to inconsistencies between the
operation of separate parts of the system. This is the sense in which the automatic verification
technique in the MENTOR system is called consistency checking.

The technique which we have developed to perform this analysis is based on the concept that the instantaneous
state of a system can be represented by the current truth assignments of a system of predicates (truth
functions) which specify the states of individual entities in the system. Flow logic is a technique which
enables us to model the evolution of truth assignments in such a system, dependent on the correlations
between predicates implied by the relationships specified in the system description.

Meaning representations (i.e. representations of meaning) for relationships in flow logic specify these
correlations between predicates, and are subject to algebraic manipulation conforming to a system of

axioms known as the laws of Flow (Mil 1978). These axioms have the effect that each relationship is
perceived as having an imutable intrinsic meaning, while permitting the manipulation of meaning
representations in such a way as to derive representations of the effect of relationships acting in concert.

_ |lm

o. le e an representation is eq.iivalent to i n=Ler of interccnn.ecte state On.

..t, ; it' at cs t f e system considerej. Eazh state -.f the n ,:nq rerreertat.-,
r tatements which in enera. kscrlie the chnan .e, s state of to., curt ,t:: .

,ita- atel witn chanqes of state if the system. In fact aC. -tatement :as t:.e ieneri. It si

:.:A -F whre n, if it is present, denotes the hypothesis that the state 3f e irt2'.

rha,,aes, initiating a change of the partial state of the system. A, if it i- resent, dentes t..e

rinent t: at -ertain otoner state changes occur amongst the ;participatan, nttec :n Tt i nsetuenc .
. . .. ,esi 51 T, which i-, always present, denotes the conclusioni that the system evolves to a ne.

irt i at t crresponding to a qiven, transformation state of the feann representat!on.

If the hypotnesis is absent from a statement then toe transformation is such that it ma,, ccur

siuntaneously, while the absence of an argument has no particular significance.

In some statements, the transformation T, instead of identifying a state of the meaning represe-tation,
may be set to the null value, 0. Statements of this form effectively assert that the state change, h,
cannot occur while the system is in the corresponding partial state, and that an attempt to cause n to
occur in that state comprises a pitfall which is to be avoided. For this reason we pronounce the value

0 as "pit", and use statements of this type in such a way that if,and only if, a system of relationships
is inconsistent then at some point a transformation to 0 must be realised.

The flow operations which we use to manipulate the meaning representations of flow logic are specifically
designed to treat the transformation value 0 in such a way as to facilitate the identification of
circumstances in which an illegal transformation o 0 cannot Le avoided. In fact 0 is analogous In its
treatment to an algebraic zero so that the meaning representation for an inconsistent family of relation-

ships reduces to 0. However the main benefit of this approach is to identify an intermediate level of
latent inconsistency.

A latent inconsistency occurs whenever some partial state of the system is found to lead inexorably to a
transformation to 0, and must therefore be avoided. The significance of these states is to impart a
direction to the process of consistency analysis, and their effect is to minimise the amount of processing
required to establish that a proposed update is consistent with a known consistent database. It is there-
fore feasible with a suitably structured database to verify interactively the consistency of each state-
ment input to the MENTOR system, and to maintain the system database at all times in a consistent state.

When an inconsistent update is proposed the MENTOR system will not update its database, but will print an
appropriate message together with a trace of the flow analysis which detected the inconsistency. By
expressing this trace in terms of the relationships considered, rather than the details of the flow logic,
it will amount to an explanation of the specification error and will therefore facilitate the
rectification of the problem

5. CONCLUDING REMARKS

The MENTOR approach to systems development is essentially a specification technique which relies heavily
on the use of a computer tool to provide a range of valuable clerical and logical tasks. In developing
the concepts for the MENTOR system we have drawn together a number of threads of contemporary research
and, we believe, have indicated the direction in which systems engineering practices must evolve.

It is to be anticipated that as time progresses more and more sophisticated techniques will be added to
the central core of methods outlined here. For example we can foresee the day when systems like MENTOR
will have the capability to enter into dialogues, and to explain the purpose and design of systems in a
more natural way than is currently possible. Indeed the catalogue of possible developments seems almost
limitless.

Only time will tell which tools and techniques will prove cost effective in the long run. However tools
and techniques they are, and they will do nothing to alter the fact that systems engineering is a
specialist human activity. The human engineer is the most valuable resource in any systems development
activity, his inventiveness is and will remain indispensable. Our objective is to provide a tool with
sufficient specialised knowledge of the engineering task, to act as a guide, and mentor to systems
development teams.

It will take a system of an entirely different order to achieve more than that.

- -t -'1

REFERENCES

Jon 1)SO C.B. Jones "Software Developments: A F gorous Approach
Prentice Hall International, Eaglewood Cliff . J.1380.

Ham 1976 M. Hamilton, S. Zeldin. "Higher order S-ftware - A M,-htodolc-, for esl:nuoo
Software" IRF: lrans. Software Eng. pp 3 - 32, Marc: Ir,

Tho 1376 M. Thomas. "Functional Decomposition: SADT".
Infotech conf. on structured design. Amsterdam October I -

Jac 1975 M. A. Jackson. "Principles of P'rogram 7esign."
Academic press New York, 1975

Tei 1976 D. Teichrow, E. Hershey. "PSL/PSA: A Computer Aided Techniue for Structurel

Documentation and Analysis of Information Processing Systems".
2nd Int. Conf. Software Eng. October 1976.

Day 1977 C.G. Davis I C.R. Vick. "The Software Development System".
IEEE Trans. Software Eng. pp 69 - 84. January 1977.

Mil 1978 R. Milner "Flowgraphs and Flow Algebras"
Report CSR-5-77. Computer Science Dept. Edinburgh Univ. Revised December 1.' .

The Computer Aided Specification System Easy

Lutz Hirschmann / Niels Christensen

mbp Mathematischer Beratiunqs-
und Proqrammierungsdienst GrmbH

Se ierteichstr. 47
0-4600 Dortmund,

Federal Republic of Germany

Abstract

Easy is a formalism which support the description of the specification in a simple semiformal manner and emphasises
the use of data types. It is our view, that a specification should not only be precise, unambigious and complete, but is
also a document which serves for the communication between people (software engineers). We use the term
specification to describe the result of the system design phase i.e. for the description of the decomposition of the
system into modules and the interaction between these moduls.

A specification written in Easy consists of packages which provide the encapsulation of logically related information,
data and functions. Packages communicate by interfaces which consist of procedures, types and constants. Objects of
the export-interface are resources implemented in the exporting package and are made available to other packages.
Objects used from other packages are listed in the import-interface. Restrictions in the use of exported procedures
must be mentioned in the description of the procedui., or (preferably) in the paragraphs "sequence" and "error".

A sofware tool - Easy Tool - has been developed to support the use of Easy. It checks specifications for syntactical
and semantical correctness, consistency and completeness, supports the editing, stores and maintains specifications in
a data base and generates several crossreference lists. Future versions of the tool will support the transition from
specification to implementation to make sure the program matches the specification.

Easy has been used in several industrial prolects. Some of the experience is reported in the final chapter.

1. Requirements for a Specification System in an Industrial Environment

Since there is no general agreement about the term "specification" it seems advisable to start a paper about a
specification system with our definition of this term. A possible, though very rough software development life cycle
would contain the following:

activities and intermediate results

requirements analysis

i P- requirements definition

system design

i - specification

module deiuand

programming
I - coded module

integration

1 - 4 complete program

use and maintenance

Specification in this sense denotes the result of the activity "system design", i.e. the decomposition of the whole
system into modules and the definition of the interactions between them. The specification is the starting point for the
programming phase and the basis for integration.

A specification language is a formalism to describe the specification.

In the field of programming languages a certain consensus has been rearhed. Current research work in language design
is directed towards the development of formalisms in which the other results (not programs) of the software
development life cycle can be expressed. At least for system and real time software development we consider this
approach as being quperior to the attempt to formalize the activities of the software life cycle e.g. programming, as is
described in /ack 15/.

Specification languages are a topic of current research in computer science. However, improvements in software
quality, development time and man-power effort as a result of their use in practical applications may already be
expected.

12-2

A specification language should support the following concepts

information hiding
completeness of interfaces
implementation independency

However, the crucial criterion for acceptance and usefulness of a specification language is its practicability in an
industrial environment.

In detail, practicability imposes the following requirements on a specification language.

- It must offer significant support for real world problems. The degree of formality of a really useful specification
language has to be determined carefully and must not prevent its applicability to complex problems, on the other
hand completely informal specification techniques have been proved not to be useful. A perfect specification of a
stack does not imply the applicability of the formalism to a project with 100,000s lines of code.

- It must be usable by dp industry professionals with average qualifications. Not all of them have recently
completed their PhD in axiomatic semantics, thus the specification language must be easy to learm and use.
Furthermore, it should be easy to read since communication among the project team is based to a large extent on
the specification.

- It should improve the quality of the software but there must be a reasonable trade-off between the costs of
writing the specification and the qains in later development phases and maintenance.

Experience has shown that recent research results, P.g. from Guttay /Gut 77/ (algebraic specification) or Parnas
/Par 78/, are not applicable in practice, although we do consider them to be very important.

The current challenge to industrial software engineering is the application of new research results in a less formal but
more practical manner. This approach is represented in our specification system Easy. Like most of the recent
specification techniques, e.g. /Koch 79/, it is based on the principles of abstract machines and abstract data types.

2. Concepts of the Specification Language Easy

A specification in Easy consists of packaes which provide the syntactic frame for the decomposition of the system. A
package is a static construct to describe the modules obtained by decomposition of the whole system and encapsulates
logically related information, data and functions. Easy packages ere not nested.

The interaction between packages is defined by interfaces which consist of procedures, types and constants. Objects of
the export interface are resources implemented within the exporti.,j package and are made available to other
packages. Objects used from other packages are listed in the import interface.

Procedures are defined by their name and their parameters. Each parameter has a name, a type and a biding mode (in,
out, in-out) and controls the data flow between packages. Access to a package's data from outside can only be
performed by using exported procedures, thus hiding the representation of local data as has become standard for
abstract data types.

While the syntax of procedures is precisely formalised, no definite formalism is required for the semantics. The
insistence on a formal operational or even on an axiomatic semantical description would not correspond to the required
practicability of Easy. Therefore the effects of an exported procedure are normally described in "careful natural
language" although Easy also permits other notations.

Since Easy supports the concept of abstract data types, the package interface also contains types. A package which
imports procedures that access a data structure must also import the types of the accessed , lements. Some types such
as integer or character may be declared as default and then need not be passed through the interfaces. Types are
specified by their name and an informal description.

The types of parameters of imported procedures and the types of imported constants must be imported by the package
which uses them, so that it is clear from the specification which data structures are used within each package.

The import of a data type into a package allows the declaration and use of objects of this type within the
implementation of this package. This also applies, of course, to exported types. As for procedures and constants, two
types are equivalent if they have the same name.

Constants are defined in the interface description by their name and type.

Once the export-import relations have been specified, possible restrictions in the use of exported procedures have to
be given. The Easy specification therefore contains two paragraphs called 'sequence" and "error". The "sequence"
paragraph describes the order in which exported procedures may be legally called, whereas the "error" paragraph lists
general limitations, restrictions and the error handling routines of that package. As is the case for the description of
the effect of exported procedures, no particular formalism is required for these two paragraphs, e.g. for the definition
of sequence restrictions a graphical notation for path expressions could be used.

The following example is intended to give an impression of Easy. It is an artificial ex;,ple, it is not complete, real
world problems usually lead to much bigger package specifications and it is impossible to demonstrate all features of
Easy with one example.

Example for a package specification in Easy.

Declared implicit types:
integer
#1 string = character string of variable length

PACKAGE Radiocomm
VERSION 0
FROM 01 June 82
BY C. Hart

TERM INOLOGIE
msqg logically connected string of information from one sender to one destination.

msg-block: physically connected string of information of fixed length, can be port of msg or may contain several
msg's.

disabled: disabled communication indicates either hardware problems or restrictions due to jamming, radio silence
or specific order.)

DESCRIPTION
This package provides the service procedures offered by a simple radio communication utility. It deals with a
single-layer network without priority scheme and fixed participants addressed by a destination code. Therm is an
acknowledge/validate shakehand to ensure the arrival of messages.

Queue-handling, channel-control, en/decoding and network command are supposed to be contained in separate
packages.

EXPORT
PROC \mit (IN port-no: home

destination,
IN string: message,
OUT result-Xmit: result,
OUT integer: msg-id)

DESCR: Put a message in the sending queue; get result indicator and associated message-identification.

TYPE result-Xmit
DESCR: possible states:

o.k.
communication disabled
destination port disabled
not ready
invalid home port
invalid destination port

PROC validate (IN port-no: home,
IN integer: rnsg-id,
OUT result-validate: answer)

DESCR: validate whether message has arrived and was acknowledged by addresses.

TYPE result-validate
DESCR: possible states:

- msg arrived & acknowledged yet
- not arrived yet
- not acknowledged yet
- invalid home port
- msg-id unknown or invalid
- msg lost

PROC receive (IN prt-no: home,
OUT port-no: from,
OUT string: message,
OUT result-receive: result,
OUT result-receive: msg-id)

OESCR: Receive first message from arrival queue or result "no msg" if there is none. If the msg received
previouply had not been acknowledged yet, it will be delivered again.

TYPE result-receive
DESCR: possible qtats:

o.k.
no msg in queue
acknowledge missing - same mag again
disabled communication
invalid home port

PROC acknowledge (IN port-no: home,
IN integer. msg-id,
OUT result-acknowl result)

DESCR: Acknowledge (receipt) msg in order to remove it from arrival queue and allow validation for
sender.

!

12-4

TYPE result-acknowl
DESCR: possible states:

o.k.
unknown msg-id
invalid home port

TYPE nsq-block
DESCR: Formatted and encoded information block ready to be xmitted across the channel.

Length = msg-block-length;
More layout description of msg-block ...

CONST integer: msg-block-tength,

max-msg-id

IMPORT # Al A use abbreviated form of proc imports # A

FROM queuing:
PROC insert
PROC remove
PROC createqu
PROC deletequ
PROC qstatusof (IN queue) RETURN qstatus
TYPE queue
TYPE message
TYPE receipt
TYPE qatatus
TYPE result-q

FROM channelctl:
PROC primary-ch RETURN channel
PROC alternate-ch RETURN channel
PROC activate-ch (IN channel, IN msg-block, ?)
PROC ch-status (OUT ch-quality, OUT jamming-level, ?)
TYPE channel

TYPE ch-quality
TYPE jamming-level

FROM cypher:
PROC encode
PROC decode
PROC setcode
TYPE code

FROM netcommand:
PROC current-net RETURN net
PROC current-code RETURN code
PROC silence RETURN deg-of-silence
TYPE net
TYPE port-no
CONST net: basic-net
CONST integer: max-port-no
TYPE deg-of-silence
CONST jamming-level: max-jamming-level

SEQUENCE
for sending:

1. Xmit C.. out integer: msg-id ...)

2. (optional)
validate (.. in integer: msg-id,

(out result-validate ..)
2. can be repeated until result-validate "meg arrived yet"

for receiving:
1. receive . out result-receive ...)

repeat until result-receive = lo.o
then obligatory:

2. acknowledge

ERROR
Use errors (= sequence/id/data errors) end/or transfer errors (: comm.disabled, channel malfunctions) are
reported in the various result parameters.

ENDPACK rsdiocomm

For the specification of the interaction between packages the import-export relationship is adequate. However, this iL
not the case at the periphery of the system, i.e. between the system and its environment, for example dialogues and
interrupts. This kind of communication is specified in Easy in a special paragraph called "external" which contains
parameter specifications denoting input or output entities.

Easy provides adequate language constructs to express the use-relation (by the export-import interface) and the data
flow between packages (by the binding mode of procedure parameters), hut no language Lontructs are offered to define
the control flow because control flow is considered an implementation rather than a specification matter.

Conforming to this philosophy, Easy does not (yet) contain any constructs for the specification of processes. It is
thought that realtime applications are best specified by the encapsulation of data structures as recommended by the
package concept. Generally, a wide choice of possible process definitions exists in such an application, and it seems
inadvisable to restrict this choice prior to implementation. The strict observance of the abstract type principle
automatically takes care of many common real time problems (e.g. shared data can only be manipulated by a dedicated
handler). It is not even necessary to use visible semaphors.

Easy does not differentiate between different types of packages (e.g. function packages or data packajes) and does not
insist on a specific allocation of packages (e.g. strong hierarchy). Although it is recommended that the import-export
relationships should form a hierarchy of abstraction levels, this is not a restriction. A v.ide applicability of L asy is thus
ensured.

3. The Tool for Easy

To support the use of the specification language a tool has been developed which performs the following functins:

Aid for the Writing of the Specification

A dedicated editor serves to create and maintain syntactically correct specification texts.

To reduce the work of writing the specification, the types of parar.eters of imported procedures and the types of
imported constants can be imported automatically. To import a procedure it is sufficient to mention the procedure
name (parameters can be omitted).

In order to use the advantages of the specification system during the design process (in a phase where the specification
is necessarily incomplete) certain parts of the specification can be left undefined.

For imported objects the name of the source package may be omitted and be inserted later by the tool. On the other
hand all exported resources of a package can be imported simply by giving the package name and asking the tool for an
automatic import. However, this means that precision and distinctness of the interfaces suffer considerably and it is
advisable to use this facility with care.

Consistency Check

After a package has been specified and checked for syntactic and seine semantic correctness it will be entered into an
Easy data base. In the data base this package can be checked for semantic correctness against the packages, which
have already been entered. This includes checks for ambiguities in names of exported objects, whether all imported
objects are properly exported, and that no re-export (export of imported objects) has taken place.

Documentation Aid

Cross reference lists are generated for each package as well as for the whole system. With these lists questions like
"which packages are affected by the alteration of a certain exported object?" can be answered easily. This is
considered to be very important during development and maintenance of software since it is usually difficult to find
out the effects of changes on the whole system.
Formatted source listings of the specification and aggregated lists are available. Later versions will generate a
graphical overview of the whole system which will include the relationships between all packages.

Ensuring Integrity

A complete and correct specification still does not guarantee a correct implementation. The "classical" way to ensure
the correctness of the implementation is its formal verification against the specification. But with real world systems
of normal size, this is not feasible.

In any case, because of the informal semantic description in Easy formal verification can not work. However, the Easy
tool will offer a significant aid in achieving a correct implementation. The idea is to generate from the specification a
program frame" in the desired programming language, which ensures that the specified interfaces are obeyed in theimnplementation. Thus integrity of implementation and specification is preserved without losing the advantages of

having different languages for both purposes. It is advisable to distinguish between specification and programming
languages in particular for the following reasons:

programming languages with their rich set of control structures define how something is done whereas
specification languages provide only language constructs to express what has to be done and thus ensure the
implementation independency of the specification.

the package concept and abstract data types are very useful for the specification even if the chosen programming
language does not contain these features.

one standardised formalism can be used for the specification, no matter what programming language is used.

The mapping of the specification onto a program frame is relatively simple for modem programming languages like
Ada. For each Easy package an Ads package head is generated. Further information like imports are given as an Ada
comment. The mapping is more difficult in the case of older languages like Fortran or Assembler, where no user-

12-4

definable data types exist and where, with the exception of a few assemblers, there are no constructs to define the
overall structure of the program.

Even when older, but still wide spread, languages are used a specification with recent techniques is of particular value.
In the case of Fortran, Easy packages can be mapped onto subroutines and Easy procedures can be mapped onto entries
of these subroutines. Passing of parameters between entries can be performed either by entry parameters or by
common blocks. When common blocks are used, additional programming standards are necessary to avoid a loss of
security caused by possible but illegal access to the common area.

Before implementation begins, the representation of each exported type has to be defined and will be passed by the
tool to the importing packages. Then the generated program frame contains all the information needed by the
programmer to implement a subroutine corresponding to an Easy package.

The example given previously in this paper would be supplemented as follows:

ERROR..

IMPLEMENTATION
TYPE result-Xmit INTEGER

1. o. k.
2 = communication disabled

3 destination prt disabled
4 not ready
5 = invalid home port
6 = invalid destination port

TYPE msg-block = INTEGER (80)

ENDPACK radiocomm.

A,'ter the implementation parts of all other packages have been defined, the representations of all imported types of
the package "radiocomm" are known and the following Fortran program frame can be generated by the tool:

SUBROUTINE RADIOC
C
C PACKAGE Radiocomm
C VERSION 0
C FROM 01 June 82
C BY C. Hort
C
C DESCRIPTION
C This package provides the service procedures offered by a simple radio communication utility. It deals with a
C single-layer network without priority scheme and fixed participants addressed by a destination code. There is
C an acknowledge/validate shakehand to ensure the arrival of messages.
C
C Queue-handling, channel-control, en/decoding and network command are supposed to be contained in separate
C packages.
C
C The following types are used implicitly
C integer = INTEGER
C string = INTEGER(1)
C
C

ENTRY XMIT (HOME, DESTIN, MESSAG, RESULT, MSGID)
C
C DESCR: Put a message in the sending queue; get result indicator and associated message-identification.
C
C HOME type = port-no =
C DESTIN type = port-no =
C MESSAG type = string = INTEGER(1)
C RESULT type = result-Xmit = INTEGER
C MSGID type = integert = INTEGER
C

INTEGER MESSAG(1), RESULT, MSGID

With this information, a programmer should be able to start with the implementation of that subroutine and it is
ensured that the interfaces of the implementation conform with the specification. Moreover the code is annotated by a
lot of useful comments about identifiers and their data types which have been carried over from the specification and
which are very often not present In ordinary Fortran programs.

Besides this semi-automatically programming aid the rather simple mechanism of merging the specification text into
the program source has turned out to be useful. It enables quick "visual" validation of the Integrity of code versus
specification.

Easy strongly recommends that access to date structures should be specified using procedres which will be mapped
onto procedures or entries of the implementation language. But for performance reasons it is not desirable to make a

I -

procedure call for every data access. Future versions of the tool vill therefore offer more flexibility by mapping
procedures of the specification not only onto their implementation counterpart but also onto inline code or macros.

Development of the Tool

The specification of the tool itself has been carried out in Easy. Pascal was chosen as implementation language and the
data base is mapped onto single key isam files, so the tool is quite portable.

4. Practical Experience with Easy

Easy was used for the first tine in a multi-man-year project for the development of a railway control s)stem.
Although this is a somewhat different application area than avionics, the samrr- software problems are believed to be
encountered in this field. Thus our experence should be valid for avionic software as well,

Fortran had to be used as implementation language and a further requirement was that the system could easily be
adapted to new track structures and new operation conditions. This could only be achieved with a clean specification.

Positive Experience

The acceptance of Easy in the project team was good. The reasons were partly the enthusiasm of the team members
for new techniques, hut mainly the understanding, that something has to be done for the specification phase and that
this could very well be Easy.

Every team member had a good overview of the current state of the design since this was well documented in the
specification. It was considered valuable (not only by the project manaqement) to have the result of the system design
phase in a checkable form on which design reviews could he based. Thus the long "blind flighing" between problem
analysis and programming could be avoided. The requirement of clean and complete interface description imposed by
Easy revealed some design errors at an early stage when they could still be easily corrected. This should he considered
as a significant contribution to improve the quality of the final product and conforms to the demands of quality
assurance which require each intermediate product of software development to be a subject of review.

The standardisation of the specification achieved by the formal definition of the specification language improved its
readability for team members other than the author.

The precision of the semantic description of packages, procedures and types was much improved after a glossary had
been defined. An optional paragraph for each package, called "terminology", includes the glossary in the specification.
This glossary was not part of the first version of Easy.

It is difficult to say what or how much has been saved in software development costs by applying Easy since of course
one could not carry out the same project in parallel using "traditional methods". Compared to our initial estimates, the
specification caused more effort but the programming proved to be less expensive.

Big savings are expected during maintenance. If maintenance costs can be reduced by 50%, which seems to be
realistic, then we will have gained within 2 years after delivery of the system as much as we paid for system design
and specification in that project. Current experience shows that these optimistic expectations have been met. This is
mainly a result of the data encapsulation imposed by the Easy package concept.

Problems

When applying the specification language for the first time, a change of thinking habits was often necessary since Easy
requires a very systematic approach. Sometimes it was difficult to distinguish between the logical concept of package
and the physical concept of a load module. Therefore on introductory training course on the principles of Easy was
required. This problem can be compared with the problem when introducing new programming languages, e.g. Ada. "It
is not the goal to write COBOL-programs in Ada syntax but to write Ada programs."

The work of writing down all the details was sometimes considered as quite arduous in particular when the interfaces
were "trivial". On the other hand, the users often attempted to express more features (in particulir the control flow)
in Easy than the specification language has been designed for. To apply Easy effectivly, the programmers have to be
told what should be expressed in Easy and what not. Easy is not intended to be the universal notation for all aspects of
system design and specification.

In some cases, the transition from the complete specification to the program was still difficult, in particular when
specification and programming were carried out by different people. An Easy package provides sufficient information
to make use of its resources but not always to implement it. Since the person who carried out the specification of a
package has usually some ideals on how to implement it, she/he should include these ideas in the description part.

Final Remarks

A specification language is not a design method. A specification language can support heuristic recommendations like
those from Parnes /Par 72/ or Myers /My75/, but cannot be expected to replace a designer's creativity. Therefore Easy
does not contain a construct for refinements of packages (although a design by refinement of packages might be a good
method) and gives no guidelines in determining the optimal size of a package. If packages are too big, it often happens
that errors in the design are overlooked since too much is hidden in one package. If packages are too small, the
Interfaces can become so bulky and complex that everybody loses the overview of the system.

Further development of Easy will be concerned with the semantic description of procedures and types and the

specification of parallel processes. However it is difficult to find a formalism for these purposes which is precise as
well as simple to use in practice.

• aIa = m mm mmmmm~

I 2-8

Another possibility is the extension of Easy to a ful software engineering environment. Like the transition from the

specification to the program, Easy could support the transition from the requirements definition to the mectfication

by checkinq whether the requirements, for which an adequate notation has to be developed, are met by the

specification.

At present, we live in the age of "software engineerinq environment enthtisia
s m

(se), because these environments are

expected to improve software productivity. But attentio should be paid to the implications for the people involved in

the production of software.

-Biblography

Gut 77: GlIttag, J.V.'
Abstract Data Types and the Development of Data Structures

CACM 20/6, S. 396-404, 1977.

Jack 75: Jackson, M. A.:
Principles of Program Design,

Academic Press, London, 1975

Koch 79: Koch, W.*

SPEZI - eir* Sprache zur Formulierung von Spezifikationen

TU Berlin, FB Informatik, Bericht Nr. 79-22, 1979.

My 75: Myers, G.J.%
Reliable Software through Composite Design

Petrocelli/Charter, New York 1975.

Par 72: Pernas, D.L.:
On the Criteria to be used in Decomposing Systems

into Modules, CACM 15112, S. 1053-1058, 1972.

Par 78: Brtusek, W., Parnas, D.L.:

Using Assertions about Traces to write abstract

Specifications for Software Modules,

Proceedings on Information Systems Methodology,

Springer-Ver lag, 1978.

Easy Language Definition

Version 3.2, dated 1A.O4.1962

Contents

0l. Introduction
1. Global Structure
2. Package Header
3. Package End
4. Export Section
5. Import Section
6. External Section
7. Sequence Section
8. Error Section
9. Terminal Symbols I
inl. Terminal Symbols 11

0.nltroduction

This is a description of the SYNTAX and SE:MANTIC-S of the specification languaqe Easy. Easy is basically a
formalism for describing the results of the system design phase of the software production process.

Important featuires of Easy are

- onstructs for nodularisation,
-formulation of abstract data types,
-no ' Jnsti -cts for expressing algorithms and data representation.

The SYNTAX(of Easy is presented in a context-free van Wijngaarden notation:

-each sentence is terminated by periodY
-alternatives are seperated by semi-colon ;
-elements of a sequence are separated by comma

The SEMANTICS is described in prose.

The following hyper-rules are used:

ELEMENT OPTION: ELEMENT;.

ELEMENT SEQUENCE: ELEMENT;
ELEMENT, ELEMENT SEG(JNCE.

ELEMENT ENL*.IERATIOrk ELEMENT;
ELEMENT, , ELEMENT ENIMERATICN.

Terminal symbols and keywords are underlined.

1.Global Struc~ture

SPECF ICATION-PROGRAM: SI'ECFI7CAT IUN-PROG-F-fAOER,
PACKAGE-SPECFICATION SEQUENE,
S'ECIF CATIONPROG-ENEX

All the packages of a specification program are termed a "system of
fellow packages". The textual order of the package specifications is of
no conseguei.e

SPECFICATION-PROG4-FIADEL' SYSTEM-DESIGNATION
]IMPLJCIT-TYPES,
GLOSSARY O~PTION
DESCRIPTION OTION.

SYSTEM-DESlGI-ATION: SYSTEM NAME.

IMUCT-TYPESs DEFAULT-TYPES,
(TYPE -DESIGNATIN SEGtFNCE;
NONE).

TYPE-O)ESIGNATION; MAWE, D)ESCRIPTION (PTION.

Types specified with NAME are regarded in alI packages as i-plicitly
imrported (e.g. INTEGER, BOOLEAN).

Specifying NONE ecludes the usage of implicit types.

SPECFICATON-PROI'-IN[t ENDSYSTEM. AI

Name must be the same as the name given in SPECIFICATION-PROG-
H-EADER.

PACKAGE-SECFICATON-k PACKAGE-H-EADER,
(EXPORT-SECTOI.I It4ORT-SECTIO*
IPORT-SECTION EXPORT-SECTION),
EXTERNAL-SECTION OPTION,
SEQIX1NCE.SECTION OTON
ERROR-SECTION (FTION,
PACKAGE-END;
PACKAG-NANAE,
DESCRIPTION OPTION.

Using PACKAGE-NAME means that the package is described
elsewhere but is part of the current System too ("external package
definition").

2.Package Headear

PACKAGE: 1EADERs PACKAGE-MA~W,
VERSION SEQUENCE,
GLOSARY OPTION.
DESCRPTION OPT1ON.

PAIZKAGE-NA z PACKAGE. NAWf.

NAME must be unique within the system of fellow packages.

VERSIO.& VER"4 ORT-TEXT,

PY, SHORT-TEXT.

After FROM the data of the current version should be stipulated,
likewise after BY the name of the parson responsible.

GLOSSARYz TERMINOLOGY. DICTIONARY.

DICTIONARY: ELUCIDATION SEGREN(X.

ELUICN3ATIOI* DEFINIE10LIJK., DEF1NI:NS.

W?4"EDL#s NAE

DEFINIENSt TEXT.

Important concepts and exipressions (names, abbreviations etc.) that
occur in the description of the package and/or system may be
enumerated in the DICTIONARY.

The terms mentioned in the dictionary of a package may not coincide
with terms taken from the system dictionary.

OESCRWTSC T EXT.

3. Package End

Name must be the same as the name given in the PACKAGE-

HECADER.

4&. Export Section,

EXPOH 1-SE CTI~f* XPR
PACKAGE-NAME OPTION,
(EXPORT1-SPECIFICATION SEQUENCE;
NONE).

hthe E \POR T-SU-TJt.N those otje.- ts are teclared that areLt(
m-3de available to other pas-kaqes.

All objects exported fromr a ss stemp of fellov, packates are terroed
visible objects. The names of all visible objects ,ust be unique within
their category (e.g. as tope, constant etc.). Re-exportation, i.e.
exportation of objects that have been imported by the current
package, is not allowed.

"NONE" means that the current psaciage Ioes ot fiake an% Ohiects

available for external use.

PACKAGE-NAME: NAME.

In order to in'crease the legibilirv of the specification the namep of *he
package may be repeated here.

EXPORT-SPECIFICATION: EXP-PROCED*RE;
EXP-TYPE;
EXP-CONSTANT.

EXP-PROCEDEUlE: PROCEOUTRE-DEFINI lIO,4
DESCRIPTION OPTION.

PROCFDURE-DEFINITION: PROC. NAME,
PARAMETER-LIST OPTlION,
FLVJCTION-VALLE OPTION,
CONTROL-CLAUSE OPTION.

PARAMAETER-UST: J, PARAMEWER-SPEC,J.

PARAM0ETER-SPEC: PARAMETER ENIMRATION,

PARAMETER ENMERATION,,?.

The parameters of exported procedures serve to define the flows of
data between packages. The mechanism for passing the parameters is
not included in the language definition.

A "?" indicates that (all) parameters have not yet been defined.

PARAMETEMb BINOING-MODE,
PARAMETER-TYPE,
(:, NAME SEQLKENCF;).

All names occuring in a parameter list oust be unique within the
procedure.

Unnamed parameters nay be used, providing

a) only one parameter of this type occurs or

b) all parameters are unnamed. In this case assignment depends on

the order in which the parameters are specified.

BINDIN.G-MODE: IN;
OUT;
1N4XUT.

PARAMETER-TYPE: NAME.

PARAME:TER-TYPE must be a visible type, i.e. either exported by the
current package or exported by another package and imported by the
current package.

FUNxCTION-VALUE: RETSJ FL14CTION-TYPE.

FLUNCTION-TYPE: NAME.

FUNCTION-TYPE must be a visible type. If the function-vaIlue has
been specified, the procedure, having been called, returns a value of
the specified type.

12-12

CONTROL-CLAUSE:
(MAI; EX(TERNAL; HARDWARE).

CONTROL specifies whether the procedure is to be activated as a
main program, from outside the system or by a hardware mechanism.
If the CONTROL clause is not specified, activation from within the
system is assumed.

EXP-TYPE. TYPE -DEFINI TION,
DESCRIPTION.

TYPE-DEFINITION: TYPE. NAME.

Exportation of a type means that data structure defined in the current
package and designated with NAME will be made available to other
packages. Provided suitable access procedures are also exported
access to these data structures are possible. Direct access to the data
structure is not allowed (data abstraction).

EXP-CONSTANT: CONST
CONST-TYPE,:,
NAME ENUMERATION,
DESCRIPTION OPTION.

CONST-TYPE. NAME.

The type of a constant must he visible. The value should he given in
the description.

5. Import Section

IMPORT-SECTION Ir PACKAE-NAME OPTION,
(IMIPORT-SPECFICATION SEQLENCE;
NOWE).

Imported objects are resources that may be used by the current
package. Each imported object is exported by only one package within
a system of fellow package.

"Name equivalence" is valid for all objects pertaining to the same
interface, i.e. two objects are equivalent if they have the same name.

IMPOR T-SPECFICATIONt ORIGINATIN_-PACKAGE,
(IMPGRT-OBJECT SEQUENCE; ?)-

"?" specifies that the imported objects are still unknov~n and will be

defined later.

ORIGINATING-PACKAGE: FROM. (NAME,-;!,.).

NAME must refer to a package within a system of fellow packages. "?"

specifies that the originating package is still unknown and will be
defined later.

IMPORT-OBJECT: IMP-PROCEDURE;
IMP-TYPE;
IMP-CONSTANT.

IMP-PROCEDURE: PROCEDURE-JEFINITION,
DESCRIPTION OPTION.

The PARAMETER-LIST and the FUNCTION-VAI UE may be omitted

for imported procedures, no CONTROL-CLAUSE must be specified
here.

IMP-TYPE: TYPE-DEFINITON,
DESCRIPTION OPTION.

IMP-CONSTANT: CONST NAME E".I RATION,
DESCRIPTION OPTION.

The following objects are implicitly imported:

- these types that are specified as implicit in the SPECFICATION-PROG-HEADER;

- the types of imported constants, provided these types have not been explicitly imported;

- the types of parameters of imported procedures, provided these types have not been explicitly imported.

6. External Section

EXIERNAL-SLCTION EXTERNAL, PACKAGE-NAME OPIION,
PARAWTER-SPEC SEQUENCE.

The declarations in the L\TLItNAL section describe the flo of
information at the "periphery" of the system, i.e. between the
packages and the external environ ment. This serves as a description of
I/O and interrupts.

7. Sequence Section

SE QUENCE-SECTION: SEOUENCE. DESCRIPTION.

The SEQUENCE-SECTION contains sequencing conditions relating to
the use of exported procedures.

B. Error Section

ERROR-SECTION: ERROR, DESCRIPTION.

The ERROR-SECTION contains information relating to restrictions,
limitations and error handling for the package.

9. Terminal Symbols I

NAM: Character string containing alphanumeric symbols)escept for blank)
and starting with an alphabetic symbol. Hyphens are not significant.

SHORT-TEXT: A sequence of any symbols terminated by a line feed.

TEXT: A sequence of any symbols, including line feed, terminated by double
closing brackets:)).

The description should characterize the relevant ob)ect precisely
without however unnecessarily restricting its implementation.

The description may take one of the following forms:
formulation based on colloquial speech,
a notation using axiomatic or operational semantics,
examples of implementation,
graphics.

COMMENTS: Text between " and the end of the line is regarded as comment.
"Ar" within a description does not open a comment.

10. Terminal Symbols U1

A colon ":" preceeded by one of the following symbols, either directly or separated by one or more blanks, is
ignored, i.e. skipped over.

BY IN-OUT
CONST MAIN
CONTROL N E
DEFALLT-TYPES OUT

DESCRIPTION PACKAGE
DESCR PROC
EMNPACK RETURN
ERROR SEQUENCE
EXPORT TERMINOLOGY
EXTERNAL TYPE
FROM VERSION
HARDWARE
IMPORT
IN

The following special symhols are used:

(

)

I)2-

DISCUSSION FRO AVIONICS PANEL FALL 1982 MEETING ON
SOFTWARE FOR AVIONICS

Session 2 : SOFTMARE AND SYSTEM REOUIREMENT ANALYSIS - Chmn Dr. Ing. L. Crcvella (IT)

Paper Nr. 7 - REOUIREMENTS DECOMPOSITION AND OTHER MYTHS
Presented by - Dr. T. 0. Swann
Speaker - Dr. L. Crovella
Comment - You seem to be saying that formal methods are of very little value. Do you really Sean
this?

Response - No' Formal methods are valuable, and with today's large systems they are becoming
more and more essential. But, they are only one part of the design process - the tip of the
iceberg.
We so rarely know what we really want, that by the time we are able to write this down 4ormally,
the design work has nearly all been done.

Paper Nr. 7 - REQUIREMENTS DECOMPOSITION AND OTHER MYTHS
Presented by - Dr. T. G. Swann
Speaker - D. Weiss
Comment - What would a mathematician think of your desirable specifications'

Response - We think of mathematics as producing formal equations, proofs and so on. But a vital
part of mathematics is to describe what is going on, what assumptions have been made, what
conclusions can be drawn. So if a mathematician proves that E=Mc2, say, we would expect a whole
book of text to describe what is meant by the equation. Without the book we cannot make use of
the mathematics.

Paper Nr. B - PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REOUIREMENTS AthLYSIS TECHNIQUES
Presented by - C. P. Price

Speaker - Or. T. G. Swann
Comment - You use PSL/PSA to hold and aralyse requirements. Do you find the language and tooliet
restrictive'

Response - The mapping of PSL to CORE has presented fea problems and the comprehensive P -A
reports have fulfilled the majority of our needs so far. This is not to say that PSL/PSA could
not be improved. The ISDOS project is responsive to sponsors' needs and adopts a policy of
continual update.

Papet' Nr. 8 - PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REQUIREMENTS PtALYSIS TECHN1OLIES
Presented by - C. P. Price
Speaker - K. Pulford
Comment There are often formal models or paradigms which form the basis of many methods. Is
there one in SAFRA and what sort of model do you pass on to your engineers'

Response - As SAFRA embraces the complete life cycle there are several such models, t-0 for
requirements in particular there are two.
The problem statement language (PSL), employs the Entity-Relationship-Attribute model for system
description although to some extent this is not visible to the engineer as he works with the
core diagrams.
The core model defines processes as being connected via tightly or loosely *cupled data
relationships (Threads and associated Threads). The engineer using this model, ecamines the
behavior of the requirement in sequential terms (Thread Diagramsi and also for concurrency
(Operational Diagram).
There are other aspects to the model but time precludes them being discussed here.

Paper Nr. 8 - PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REQUIREMENTS ANALYSIS TECHNIOUES
Presented by - C. P. Price
Speaker - J. B. Clary
Comment - Could you please describe the 'CORE" work station more fully'

Response - The CORE work station is aimed at providing a single workplace for all phases 0
software development, including system and software requirements and up to system integration.
This is being achieved by integrating a new facility with an existing proprietary software
development system.

The new facility will have the following features;
I. Construction, storage and editing of all CORE diagrams
2. Automatic generation of PSL from the diagrams
3. Code generation from basic diagrammatic constructs

the first feature already exists and the code generation while initially aimed at CORAL is
likely to include PASCAL.

Paper Nr. a - PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REOUIREMENTS ANALYSIS TECHNIQUES
Presented by - C. P. Price
Speaker - Dr. D. J. Martin
Comment - How compatible is the CORE diagram notation with the currently well understood control
law diagram notation (i.e. blocks containing LaPlace transform filter descriptions, diagrams of
non-linearities and summation points)'

Response - Control law diagram notation is applicable to a specific area and level of systems
design. CORE adopts a notation appl:cable to all levels of system and software specification and
is independent of the type of system being described. More importantly the adopted CORE notation
contains features that are compatible with aspects of MASCOT diagram notation thus allowing CORE
requirement diagrams to be mapped directly into MASCOT design diagiams. In essence the notations
are complimenttry rather than being compatible.

Paper Nr. 8 - PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REQUIREMENTS ANALYSIS TECHIQES
Presented by - C. P. Price
Speaker - Dr. I. Crovella
Comment - On how many projects has SAFRA been used at B.Ae.-Warton?

Response - Over the past three years SAFRA has been applied to six projects and is currently
being used on a further three, one of which is a major aerospace project.

:iPaper Nr. 9 PRACTICAL CONSIDERATIONS IN THE INTRODUCTION OF REQUIREMENTS ANLYSIS TECHNIQUES

P: esented by - C. P. Price
Speaker - Pr. A. A. Callaway
Comment A lot of the emphasis you have given today is concerned with production of software,
software specifications, and a couple of times you even mentioned the automatic generation of
actual software. Of course today there is a lot more attention being paid in everything we read
to items such as higher integration, the US VHSIC program, the Japanese 5th generation project,
and similar programs in Europe, where there is going to be greater and greater degrees of

integration. We are going to be approaching putting whole systems onto ;ingle silicon chips. It
seems to me that such a technique as this might also have great potential in acting as a top
level design tool to get us down to a standard hardware description language level, rather than
a standard software description level. This could then be used as an intertace to some computer
aided design suite for the silicon. Would you care to comment on that?

Response - I think what we are trying to achieve in CORE, is as you say. We have to be able to
demonstrate conformance between the very top level and the lowest level, even down to basic
design. The notation allows us to express hardware, system description, software. We can
describe any type of system. I think that's where the flexibility of having the method
certainly helps us. At the lower levels, this conformance can be demonstrated.

Paper Nr. 9 - THE A-TE SOFTWARE REQUIREMENTS DOCUMENT. THREE YEARS OF CHANGE DATA
Presented by D P. M. Weiss
Speaker - Dr. L. Crovella

Comernt - Are there any other sources of data from different environments you can use to compare
with your data?

Response - The only other published data on requirements documents that I know are the result
of a critical design review. These data were published by Lipson et al and show similar
distribution to ours for errors. In ado uon, they found in a 2 or 3 day critical design review
as many errors as we have found in 3 years.

Paper Nr. 9 - THE A-7E SOFTWARE REQUIREMENES DOCLIENT: THREE YEARS OF CHNGE DATA
Presented by 0. H. Weiss
Speaker - R. E. Westbrook
Comment - The SRD is being updated to reflect the changes that have occurred in the A7E OFP

since 1978. Has any data on these changes been collected? If so, what is the distribution of the
data'

Response - No such data has been collected yet.

Paper Nr. 9 - THE A-TE SOFTWARE REOUIREMENTS DOCtIENT: THREE YEARS OF CIANE DATA
Presented by - 0. M. Weiss
Speaker - G. Sundberg
Comment - The error categories did not include desigi or requirements errors, These errors
sometimes do not show up until the operational phase. Do you intend to include these errors in
your study and track them once the system becomes operationall

Response - All errors shown were errors in the requirements document, Those errors in the
category 'incorrect facts' were indeed errors where the requirements were wrong.
Errors in design specification and code are being monitored as a separate part of the project.
However, it is not clear exactly what a 'design' error is, or how to distinguish such errors
from implementation errors. To do this one needs a clear definition of design, which is
currently a rather ambiguous term.

Paper Nr. 9 - THE A-7E SOFTWARE REQUIREMENTS DOCUIET, THREE YEARS OF CANGE DATA
Presented by - D. M. Weiss
Speaker - Dr. T. G. Swann
Comment - You state that there were very few problems caused by ambiguity. But I understand that
the specification was for a system that had already been designed and coded, so I would expect
few if any ambiguities to be left in it. Would you care to comient>

Response - The ambiguities referred to are ambiguities in the requirements document. This is a
now document, written for this project. A single requirements document had not heretofore

existed. Consequently, the existence of the code, while somewhat helpful in resolving answers to
questions about the system, had no major effect on the way the authors wrote the requirement.

Paper Nr. 9 - THE A-?E SOFTWARE REQUIREMENTS DOCUMENT: THREE YEARS OF CHANlGE DATA
Presented by - Dr. D. M. Weiss
Speaker - Hg. Cdr. S. Barker
Comwent - An analysis of eight years worth of program change data for the UK LINESTEAN' Air

Defence System has shoan three main things. Even after eight years, errors came to light
attributable to faults in the design phase; that during the initial (four) years simpler changes
having minimum system disturbance predominate, that later in the system life, far-reaching
changes are attempted. Thin last fact may explain the variation of the effects of changes in
/our Figure I0.

Response - Because the system on which data is being collected is not yet in the maintenance
phase, it is not possible to say whether we will see the same pattern as you. It will be
interesting to make comparisons when we are at the stage where we have comparable data.

Paper Nr. I0 - O.L.A.O.: UN SYSTEME D'AIE A LA DEFINITION DE LOGICIELS AVIONIOUES
Presenter - Ing. F. Doladille
Speaker - r. L. Crovella
Comment - La validation des sp6cifications par une maquette, n'est-ele pas un des objectlifs
interessants d'un systame d'aide i la specification'

Response - Cet aspeck n'etait pas un objectif initial du project D.L.A.O. cependant, nous
Atudions actuellement la possibilitd d'adjoindre au langage des constructions permettant la
generation de prototypes.

Paper Nr. 11 - THE MENTOR APPPACWH TO REQUIREMENT SPECIFICATION presenter - D. Jordan
Speaker - L. Skorczewski
(cment - The mentor methodology appears to consider only the case Ahere
definition/speciication starts with a clean sheet of paper and proceeds downwards in levels in
an orderly fashion - each element being expanded and analyzed for consistency/conformance as the
process progresses.
How does the method operate within larger real-time syctems where large elements of hardware (or
even software within hardware) are imposed as requirements by the customer from the start. e.g.
you will use the manufacturers inertial platform and his navigation software as part of your
system specification and design'

Response - It is true that the MENTOR approach is based on a hierarchical and predominantly top
down specification technique. However. this does not preclude its use in the situation which you
dencribe.
It is certainly the case that any formal verification technique requires a complete description
of all components within some validated system boundary. Where pre-existing hardware and/or
software is required to be incorporated this implies that a detailed interface specification, at
minimum must be provided.
When MENTOR is used ir, such circumstances it will be necessary for a designer to descrjbe in
detail how the existing components will interact with new software tu achieve the overall system
objectives. Such descriptions may be introduced at any appropriate level of detail.
Subsequently, subject to validation the specified component can be treated as an internal
interface to the new system.

Paper Nr. II - THE MENTOR APPROACH TO REQUIREMENT SPECIFICATION presenter - D. Jordan
Speaker - Dr. N. J. Cullyer
Comnent - Can you handle Robin Milner s predicate logic automatically within your tools'

Response - fes, The tools handle this automatically.

Paper Mr. I1 - THE MEJTOR APPROACH TO REQUIREMENT SPECIFICATION presenter - D. Jordan
Speaker - Dr. L. Crovella
Comment - What is in reality the status of this program, is it available'

Response All that we have is a number of standard and exper in, ental programs. We have just
recently embarked on a prototype integrated MENTOR system.

Paper Or. 12. - THE COMPLUTER AIDED SPECIFICATION SYSTEM EASY

Presenter - Pr. N. Christensen

Speaker - Unknwn
Comner, t - Your procedures and packages and other aspects sound very much like the ADA language
with its procedures and tasks packages and pr 'te and public etc. Would you care to comment on
that'

Response - Yes, there are some similarities with ADA or perhaps we should say that there are
some similarities with the state-of-the-art in making programing languages. But, I think there
are quite a lot of differences between EASY and ADA. There is the very important difference that
description in EASY is informal so that you have to do more handwork to get an operable program
than In ADA. The ADA demands more formal packaging of the descriptions and procedures. There
are other differences too. For example our intent is not to produce redundant information or
specifications. The program is encouraged to specify or to describe a procedure when he uses it
or when he defines it. Another thing is the aspect of human communications is different in ADA
and EASY, because we have quite a possibility of generating sorted lists and summaries. I am not
sure that ADA sorts at the moment contain the possibility to extract these lists. Of course you
can supply this information in an ADA program, too. But, only as comments.

Paper Nr. 12. - THE COMTPUTER AIDED SPECIFICATION SYSTEM EASY
Presenter - Dr. N. Christensen

Speaker - Unknown
Comment - Are there any mechanisms in EASY allowing for real-time and synchronization problems-

Response - No, there are not. This is intentional, I think one of the previous speakers, Mr.
Sundstrom dealt with general architecture of air-flight control systems. We think, as Mr.
Sundstrom said that everything that has to do with scheduling and tasking could be put in one

package and not be scattered over the entire system. Our attempt is not to specify scheduling

and such things in the packages, but to specify one package which will make tasking and
scheduling.

Paper Nr . 12. - THE COMPLUER AIDED SPECIFICATION SYSTEM EASY
Presenter - Dr. N. Christensen
Speaker - D. M. Weiss
Conent - What kinds of autonated consistency check ing have you bui t in

Response - KLe can prove everything which is specified formally in the speciflcatlon. This is

mainly that the parameters and the import and export definitions of the procedures +it together.
Of course, we can also prove there are no ambiguities and uniqueness o+ names ard that all
export procedures are used some where in the system, and that all import procedures are defined
somiewhere ir the system. For example if you have no constant for data t,.pes, where do you .*et

the data for these type;.

Paper Nr. 12. - THE CCIPUTER AIDED SPECIFICATION SYSTEM EASt
Presenter - Mr. N. Christensen
Speaker - K. Pulford

Comment - One remark. I think it is becomnr an occupational hazard these days in giving papers,

to be compared with the ADA prograling language or the ADA environment. I have an analogy,

which prompts the question.
One problem you have in ADA is the recompilation problem, when you actually compile several

units and you have to recompile, one unit invalidates several others. fou have this problem of

deciding which units are invalid. I think you have the same problem in EASY. Have you look:ed at

this problem'

Response - We are aware of this problem. But, because of the fact that we are not able to

automatically generate code, we are not able to tackle this problem automaticallv. What is very

important is that the affected specifications are documented. 14 you have a change you can then

see which packages or procedures are affected through the change. The other attempt we are

making on this problem is that you can implement procedures like interpoint in the language, and

define these in the implementation part of the specification. When you make a reference in your

sort then the actual specification car, be taken off the data base. This, of course only applies

to formal changes.

I I

TIlE IMPACT OF STANDARDIZATION ON AVIONIC SLFTWARE

J. P. ENGELLAND

GENERAL DYN.AAICS/FORT WORTH DIVISION
FORT WORTH, TEXAS, U.S.A.

1. INTRODUCTION

To get a realistic view of the impact of standardization on avionic software, it
is important to review the history of avionics in the last twenty years. In the early
sixties, avienics was just beginning to edge into the digital world. At that time,
systems were still predominately analog subsystems clustered around a central digital
mini-computer. (Reference Figure 1)

PCE NT R AL DIGITAL COMPLEX

CENTRAL
COMPUTER

5 VOLT PARALLEL
DISCRETE DIGITAL

OUTPUTS DATA

SIGNAL
5VOLT CONVERSION

DISCRETE UNIT
INPUTS

28 VOLT 2BVO
DISCRETE DISCRET

ANALOG ANALOG INPUTS OUTP
OUTPUTS INPUTS

SENSORS. DISPLAYS, AND OTHER]
AIRCRAFT EQUIPMENT

,ANALOG AIRCRAFT

TYPICAL CENTRALIZED AVIaYIC COMPUTER StEN

This computer still did what the analog computer it replaced did, but better, and
it could be easily changed! The software for these computers was painstakingly pre-
pared in assembler (sometimes even in machine) language, typically with little documen-
tation and even less concern about maintenance. Usually, because the computer memory
and throughput had been drastically undersized for the real requirements, the programs

became marvels of compact, efficient, tricky coding which only the author was able to
understand how they worked.

This era of avionic software gave rise to a number of serious problems. Several
of the software standards being promulgated today are legacies of the problems en-
countered with these early digital systems. However, in spite of all problems, the
digital systems were clearly demonstrated to be better and more capable and the move-
ment to digital systems accelerated.

With the advent of the micro-processor, it became practical to distribute a pro-
cessor into virtually every subsystem. As a result, it has become possible to imple-
ment nearly any logic or mathematical concept in the avionic system software (e.g.,
Kalman filters, digital maps, coupled fire/flight control). Avionic systems have, in
fact, reached the point where software is no longer simply a part of the system,
software is the system.

With software becoming such a dominant factor in avionic systems, it was in-

STD 1553, MIL STD 1589, MIL STD 1750, and MIL STD 1760) are now having ma3or impacts
on avionic systems and avionic software. These influences are the subject of this
paper. However, one must be careful not to attribute to standardization, changes
caused by other events.

1.1 NEW SOFTWARE CONCEPTS

Several key software features found in modern avionic systems are not results of
standards at all, but of design methodology advances. The two most significant of
these advances are adoption of structured programming concepts and introduction of
top-down design methodologies. In both cases, they were quickly recognized as sound
engineering approaches to software design and eagerly adopted.

Structured programming, in particular, has had a profound influence on software
design (Dahl, Digkstra, and Hoare, 1972). With its emphasis on use of sound program-
ming constructs and disciplined design of program flow paths, structureu programming
has become an integral part of every avionic system being designed today.

Top-down design methodology, as described in work done by Baker at IBM, has also
been widely recognized as a good software design and management concept (IBM System Journal,
1972). Such concepts as structured walk-thrus, program librarians and, of 2ourse,
top-down coding are being used in some form and combination in nearly all avionic
software being developed in the U.S.

1.2 HIGHER ORDER LANGUAGES

Another significant influence on avionic software has been the movement to Higher
Order Languages (HOL). Acceptance of HOL for avionic software did not really occur un-
til hardware with sufficient excess capability to permit the 10-20% coding inefficien-
cies associated with HOL was available. A number of languages have been used in em-
beeded avionic applications including FORTRAN, JOVIAL/J3B, and AEI. While none of
these languages is listed as a standard to be used for avionics, they have permanently
changed how avionic software is developed. In addition to supporting the top-down
structuring and structured programming concepts, they allowed movement of software away
from fixed-point data to floating point, caused emphasis to be placed on symbolic de-
bugging tools, and highlighted the need for better compilers and software development
environments. The impact of standardization with a single HOL (e.g., ADA) is yet to
be seen, although inferences from the use of current standards such as MIL STD 1589B
(JOVIAL J73) can be made.

First, use of HOL has increased programnmer productivity. This increased pro-
ductivity occurs in reduced coding effort. Some secondary benefits occur in the design
phase in that the HOL is a problem - oriented design medium. This allows the designer
to focus more on the function to be implemented and less on the details of the processor.

Second, use of HOL has increased initial code correctness. With a mature com-
piler, it is not uncommon to achieve execution of a flight program immediately upon
compilation as opposed to the typical three or four revisions necessary with assem-
bler programs to reach that same level.

Third, use of HOL has provided significant improvements in the quality of docu-
mentation. Since most HOLs are designed to be self-documenting, it is relatively easy
to generate good product specifications with accurate descriptions, equations, and data
base definitions. As an additional bonus, detailed accurate flow charts can be auto-
matically generated if contractually required.

A fourth impact of HOL, not as widely used in avionics, is that of HOL-level
software debugging. HOL debug tools allowing much of the software debugging to be
done at the HOL source level have been used extremely in commercial system and personal
computers (e.g., TRACE command). Their development and use is just now accelerating
in the avionics arena as better compilers, linkers, and loaders which support debug
options become available.

A counterbalancing impact of HOL upon avionics is the associated growth in the
amount and complexity of support software tools required. If standardization to a
single HOL really does lead to a single reusable set of support software that will be
the foremost contribution of standardization. Continued development and redevelopment
of support software can be avoided and original costs will be amortized over many sys-
tems.

1.3 SYSTEMS ATCHITECTURE

A final factor not related to standards which has had a major influence on

avionic software is the architecture of the systems. As systems have evolved toward

distributed processor networks, an ever-increasing design consideration of system and
software design is proper functional partitioning between subsystems, loose coupling
of system elements, and graceful reconfiguration/degradation of the integrated system
in the presence of failures. The present trend in avionics is toward hierarchical
systems architectures. Several systems already display a hierarchical structure
(Reference Figure 2). However, a number of initiatives are under way in which new

INERTIAL

FAAR NVGTION P HPOEA-U LATN

SYSTEM DISPLAY

MIL-STD-1553/1553B

FIRE STORES
CONTROL MANAGEMENT MIL-S' :)-}760

COMPUTER SYSTEM
WAOSINTERFACE

MIL-STD-1553/1553B

-4 Pp.., P

M' I.TI- LS PEC1IAL1,
FUNCTION URPOSIE E .W.
Dl.;,LAYS DISPLAYS SUBSYSTEM

FIGURE 2
TYPICAL AVIONIC SYSTEM ARCH1TECTURE

very widely distributed system concepts and architectures will be cxplored. These
initiatives focus on both physical interconnection techniques and corwunicaton proto-
eols. One of the significant initiatives currently in the works is the USAF PAVE
PILLAR Study. This effort is intended to define the shape of next qeneration avionic
systems architecture, hardware, and partitioninq.

2.0 IMPACTS OF STANDARDIZATION

If standards did not cause adoption of structured progra"mmnq or utilization of
top-down design, and did not foster evolution of system architec-ire, what then are
their impacts on avionic software? We will look at five standardization areas in the
remainder of this paper, analyze their impacts, and then look to the :t-.re.

2.1 DOCUMENTATION AND CONFIGURATION MANAGEMENT STANDARDS CAME FIRS':

Although the thrust toward avionic software standardization is generally per-
ceived as a rather recent event, in the United States at least, several key standards
have influenced software design and software documentation since the tate 1960s.
These standards (MIL STDs 483, 490, and 1521) required rigorous configuration ma:aqe-
ment, disciplined control of development programs, with formal reviews and audits, and
extensive documentation of software. These early standards provided a significant push
toward putting discipline and visibi-ity into software design and producing software
that can be maintained by persons other than the original developer. However, they
have not significantly affected the structure of embedded software or its reusability
across different avionic systems. The four key now avionic standards defined by the
U.S. Air Force, (Reference Figure 3), are having an impact on the structure of software.

PRIMARY SOFTWARE INTERFACE

*COMMON HOL FOR EASY MAINTENANCE

a COMMON SUPPORT SOFTWARE FOR
REDUCED COST

MIL
STD 1589

PRIMARY SUBSYSTEM PRIMARY WEAPON
INTERFACE INTERFACE

O EASY GROWTH OF SUBSYSTEMS * SIMPLE TO ADO NEW WEAPONS

S SUBSYSTEM INTEROPERABILITY S IMPROVED INTEROPERABILITY(USAF and NATO)

FIGURE 3
CURRED' SrANDARDS ARE AT KEY IN'TIRFACLS

2.2 STANDARD MULTIPLEX DATA BUS

MI, STD 1553 is a bus interface protocol and signal chiarac eristic stan:dard that
!as no direct requirements on software. However, it has Uroondly impacted software
structure in several ways. First, the standard provides a well-known stable communi-
cation interface for the embc lded software. As a result, alternate software approaches
for control and use of the MIT, STD 1553 interface have been tried and results r ,orted
in public forms (Sundstrom, Edwards, 1981). Because these reports do identify concepts
which work well, there has been significant convergence of software design for control-
let/terminals toward table-driven redundant channel configuratons with programmable
error handling.

Although the command/response nature of the MIL STD 1553 multiplex data bus is
probably its aost widely recognized feature, the feature which has the most profound
influence on software structure is the asynchronous nature of its data transmission.
To achieve data time consistency between subsystems on the bus hardware/software con-
cepts such as time-stamping (Brumback, 1982) have been adopted. In the example of
time-stamping, the system must contain a global time reference and the originatin;
processor must append to its data the time validity of that data. The impact on soft-
ware is obvious:

(I) The originator of data must encode and append the stamp to data,

(2) The data base must be designed with allocations for time stamps,

(3) The user of data must decode and use the stamr for extrapolation/
interpolation as manipulation of The data in Lis algorithms.

An impact perhaps not so obvious is that, because time-stamping is a tot,,]
system concept, all new equipment or weapons added to the system must either embraco
the same concept also or at least be compatible with it. This is an important con-
sideratien and impact for the designer of new add-on avionics indeed!

2.3 STANDARD HIGHER ORDER LANGUAGE (HOL)

Selection of a specific HOL as the standard, such as MIL STD 1589, has a rather
subtle impact on avionic software structure. The most visible impact will be on data
structures sinceeach language defines its data elements differently. (Ada with some
of its distinct data concepts will have a significant impact on data structures in the
software.) A more subtle impact is one of identifying those language constructs are
most code efficient and using them in preference to other constructs. This impact
will become significant but hard to measure if use of a standard HOL leads to wide-
spread use of a common compiler. Impact on the embedded computer operating system
design, such as foreseen with Ada, has not occurred with MIL STD 1589 since that
language does not contain real-time constructs. Until Ada is in full use, impact of
HOL standardization will continue to be improved code readibility and development with
potential use of a conmon compiler and support software tools across avionic systems.

2.4 STANDARD COMPUTER INSTRUCTION SET ARCHITECTURE (ISA)

The MIL STD 1750 ISA defines a standard processor instruction set which has
applicability to a broad rang, of embedded avionic processors. This standard can
quite correctly be viewed as an interface standard between the embedded computer
hardware and the avionic software. As an interface standard, it directly impacts
software only in the operating system kernels (interrupt handlers, timer and clock
routines, processor-controlled I/O, etc.). However, a synergistic result can occur
when MIL STD 1750 is used in conjunction with MIL STD 1553. This result is definition
of a common software structure and command pr,,tocol for operation of a MIL STD 1553
data channel by a MIL STD 1750 processor (Alford, 1982).

Results in this area have already proven to be beneficial for software develop-
ment. Even more promising, several manufacturers have expressed interest in imple-
menting a VLSI 1553 data channel device tailored to interface with this common MIL
STD 1750 interface. An exciting thought -- software actually leading hardware design.

2.5 STANDARD AIRCRAFT/STORES INTERFACE

MIL STD 1760, newest of the current standards, defines the total signal and power
interface between the aircraft and all stores carried on the aircraft from simple
ordinance to podded avionics. Since MIL STD 1760 uses MIL STD 1153 as its data inter-
face, software impacts of MIL STD 1760 will largely be the same as for MIL STD 1553.
A word of caution is due, however. The tim'-stamping considerations will also be true.
Consequently, smart weapons also must be designed to hive time-stamp compatibility.

3.0 A LOOK TO THE FUTURE

As the digital avionic systems continue to grow in capability, complexity and
mission and flight criticality, software reliability and maintainability will become
even more important than it is now. Accordingly, new standarcs will be established in
a number of areas. Several which appear highly probable are:

o Standard Mass Storage Data Interface

o Standard Operating System Environment (Interface)

o Standard 1750/1553 Channel Command Protocol

o Standard Reference Frames (i.e., Inertial, Earth Fixed, Body Coordinates)

o Standard Data Time-Stamp Reference Provisions

Standardization of application modules and algorithms is less probable in the near
term, since these modules and algorithms directly affect system performance. In many
cases, the aircraft capabilities and mission are doniinant factors in selection of
algorithms and application modules which meet specified performance requirements. Im-
position of specific standard algorithmic implementations could create significant con-
tractual difficulties in assessing performance responsibility if the resulting system
then failed to meet all requirements.

4.0 SUMMARY

Profound changes in avionic software have occurred over the past twenty years.
Many of these changes were not the result of standardization initiatives but rather
of hardware evolution and maturation of software engineering from an art to a disci-
pline, and growth of at ionic system architectures from centralized systems to distributed
networks.

I

Recent avionic standards, notably Ml!, SIDs I553, 1389, 1
7
30, and 1760, aIthouo:1

they are interface standards, are hivinu subtle but significant impact on avionlc
software structure. One of the most signi ficant impacts is that of system-wlde data
time correlation. With the current trend to independent development of sensors and
subsystems for multiple aircraft types, great care must be taken to ers:re comatib~lity
with the overall aircraft system is being designed into the new unit. Finally, more
new standards will be defined, however, these standards will turn more toward the pure
software relm rather than the hardware/software in'erface, witn attempts to standardize
key software interfaces.

BIBLIOGRAPHY

Alford, Steven, 1982, "A Common 1553B I/O Channel for the F-16", internal General
Dynamics/Fort Worth Report.

Brumback, B. D., 1982, "Time-Referencing of Data in an Asynchronous Envircnment",
Naecon Proceedings, Dayton, Ohio.

Dahl, 0. J.; Digkstra E. W.; and Hoare, C. A. R., 1972, "Notes on Structjred
Programming", E. W. Digstra in Structured Programming, Academic Press.

Sundstrom, Dr. D. E.; Edwards, Dr. J. A., 1981, "Inside MIL-STD 1553 - Efliclcnt
Embedded Protocols", Naecon Proceedings, Dayton, Ohio.

REFERENCES

"Chief Programmer Team Management of Production Programning", 1972, IBM Systen
Journal, Vol. I, No. I.

14-1

\da
® STATUS AND OUTLOOK

by

Lt (dt John F.Kramer. Jr
ADA Joint Program Office*

Arlington. Virginia
lUSA

The Ada Joint Program Office (AJPO) is attached to the Office of the Deputy Under Secretary of Defense for
Research and Engineering (Research and Advanced Technology). The AJPO is a small office comprised of a Director,
Lt Col. Larry L.Druffel. USAF: a Technical Director, Dr Robert F.Mathis and three Service Deputy Directors, one from
each of the Military Departments.

1. INTRODUCTION

Ada is a modern high order computer programming language which the 'S DODl intends to adopt as the standard
language for embedded computer applications.

The US DoD language standardization effort has been principally directed at the F-mbedded Computer system area.
and not as pr eplacement for COBOL in the traditional areas of Financial Management, Inventory or Payroll: or as a
replacement for the large scientific computations normally done in FORTRAN. Although there appears to be a growing
recognition that Ada, as a modern programming language embodying good software engineering principtes antd modem
language features, is very suitable for those areas as well as the embedded computer applicators on which it 'A as designed.
the AJPO is still principally concerned with the application of Ada to the embedded applicatimons and their support
systems.

An Embedded Computer system is an integrated hardware and software system that forms part of a larger system.
Examples of' Embedded (omputer systems are communication systems. command and control systems. on-board aircraft
navigation and weapon control systems and other real-time control systems, such as the computer in a car or the control
processor in a microwave oven. These systems may range im size from a small mnicroconputer system, such as an aircraft
auto pilot, to a network of large computers such as found in large ground based command and control systems.

I mbedded Computer systems have difficult life-cycle software problems to contend with. Thoe are often very large
(sometimes in the millions of lines of code), they are usually long lived (lasting more than 20 years), and they usually
require continuous changes (typically several times a yearl in order to keep up with new weapon systems or change in
threats.

In addition to these important life-cycle problems, embedded computer applications often have characteristics which
require certain features in a language which are not readily available in programming languages. Embedded computer
application processes usually occur in parallel rather than sequentially, or often require man-machine interactions
involving real time control. These parallel tasks must have some form of inter-task communication to be able to exchange
information. a capability that is missilng from traditional languages and has resulted in a large number of assembly
languasge inserts into otnerwise high order language programs. Embedded computer applications also need some sort of
automatic error recovery since they cannot stop when some exceptional situation occurs, such as an arithmetic overflow.
The language must be able to specify a recovery action at the application level in such situations. Finally, embedded
computer systems must be able to use non-standard Input/()utputs. Inputs are often from sensors and outputs are often
in the form of control information to a mechanical device not to and from the usual disk, tape, typewriter, or printers.

2. Ada JOINT PROGRAM OFFICE

Tie Ada® Joint Program Office (AJPO) was established to implement. introduce, and provide life-cycle support for
Ada anti its support systems, The AJPO has representation from each of tile services and is an excellent example of
tri-service cooperation under OSI) management.

* Attached to the Office of the Deputy Under-Secmetary of Defense for Research and Engineering. The Pentagon. Washington DC 20301.

Ia

14- lie AJ P0 is re~po rIsible lor &%eo Pil L ald Illanagirg(ie)o) Ada proran. fr coordinat in L all l)ol) Vida develop-
mniits. and lor), I)o pcratloll "th standardicairon1 activities Stich IS k\SI. ISO, and NATO. 1t prov0ides thle pruincpal
IbIS interface with tile collrputing corirrnunllitv both inl tile t.5 arid abroad, and encourages deselopnert and applcationl
oI dvka riced oi%%arc tech nit ues risi ng Via as tle %eli ide for technology transfer. The AJ Pt Is responsi bili ties are being

eXpandedC1 to develop Andi cooridiniate a plan lor research in Software and Systems.

3. Ada PROGRAM1

I hie Ada Progranm extends beC Iond the normal language standardication to inclulde controlling and Cost and
imuprorving the quality of the Software by facilitating (tie application of modern soft ware engineering practices ito

e11CItICede co tu1puter system develo pmen ts.

In I1975, thle ilIiglr Order Language Workig G rouip (II (biWG) 1Was est abli shedL by thle US lDot) withI represenIt at ion
from . tiny, Navy. Air Force. l)(A. NSA andi DARPA to invest igate thbe teasibili Iv of adoptinog a commnon high order
cotmputer programmring language for use III ert11Iedded computer sy sterns. A comiprehensive set oIf reqluiremlents wajs
developed andi Published in tile June I1978 Steelmnan doctiient. Over 23 existing computer languages wecre fornllilI evaluated against these requiremlents. andi when no existing language was found sufficiently powerful to serve as tile
common language, thre 1IOLWG; undlertook a competitive international procurement to ie, clop a new language. Tire
language desigti was coimpleted by (ii-Flotieywell Bull in July 1980. .and is currently in the process oif being adopted
as a1 l'S A mericati N ationral Standards Institute (ANSI) Standard. Thre Ada Programi has derived Substantial benefit fromi
the very broad world w\ide participationi andi cooperation of the government. industry and]Cadleiic com1puting
comtmtunity.

4. Ada PROGRAM OBJECTIVES

rliere are four nmajor Ada® prograni objectives. First, the AIPO must ensure the implementation and maintenance
of Ada as a consistent. utiambiguous standard recognized by the IDoD andi also by the widest possible coniniunitN.
Recognition of Ada as a standard is a necessary step in thle realization of software andi People portability. Second, the
AIPO must ensure the smooth introduction andi acceptance of Ada in the 001) as early as possible consistent with tire
needs of individual coimponients. There are a number oif projects which could benefit fromt an early introduction of thle
language. Hlowever. the advantages offered by the uise oif Ada will not be realized uiless, a programtming support environl-
inent is also available. Therefore. this objective inust balance the need for an early introduction of the language against
tile risk of a premature introduction. The third major objective is to provide Ada education and traitning tos the softwkare
comniriity. Tile success of the Ada prograni depends upon thle developmtent of a broad Ada knowledgeable resource
poorl oif software personnel. The final major objective is to provideC for the life-cycle softw are Support for Fimbedded
Computer systertis. This will include the design, development andl distribution of tratisportable Ada tools Which wkIll
provide software support for (lie application software iii embedded compuiter' Systems.

,i. ECS LANGUAGE STANDARD)IZATION

In 197 5 almost all etmbieddled Software was being written in many dlifferent assemn'ly lan1guages aiid a dliversity oif
High Order Languages 010IL). Thre IILts being used lid not Support modern programming muethodiologies and wecre ill-
SUite~l fur the H(S applicatioin. It was also) becoming appasrerit that it was ntri Sufficienit ito Simply have a standard
laniguage ant i coniputer. What was needed was an initeg~at ed set of soft ware tools A11i cl1 supportedi thle w hJole IC (Sort-
ware Ii fCeCYCI. In add it ion ech nillitary service was dlevelopirng its own language whiich tended to miake thre situatlion
even worse.

As a result of thec LIS DoD's recognition of these probleris. (le Ifigh Order I aniguage Working tlIOI.WG) was formed
toi idlentify IDoI's requirements for comtputer proigramminsg languages. to evaluate the existing languages, and toi
recomnteid tire iniplermentations arid control of a "minimal set".

In I1076, IDoI) 5000.29 requiredl Dot) approved languages be used on all new pro'ct:s and a ciintrol agent lor each
standard langutage. to ensure (lie sise isf (lie language andi the :onipilers for a langurage complied with the Directive. Thle
D~irective required the establishiment of a Msaniagenient Steering Coninittee foir I tiil'edded Computer Resources (\IS('-
I-C R to correct mianagemre nt problems iifcortputer basedl Systems. Thle 111 A6~ becalrue a Ciimimnit tee tif (le sI S(-1- (R
DoiiD)- 50(10.3 I imnplemiented lDolt) 500021I arid establishted sevv'r approved IOILS FORTRAN. COBOL . (AIS-2. SPL-l
JOVIAL.J3. JtIVIAL-J73, ari TA(P(IL. Since FORTRAN and UOBOl %%ere already ANSI Stanidards. .\NSI was

desgnaed li cotro aentfor(lerr. Te avywasdeigntedcol tot ig itI. Oe wlanuaes MS2 n ISI'I
tilie Air Force was dlesignated control agent oif the two JOVI At dialects. anid (lie Army ajs designated conitrol agent lor
I'ACPO.

T-le 5000.3 1 languages were riot viewed as the long term solution to Dol'Vs languiage . biuwever. (tire,, providud .
stable starting point for thle IDoI) language use policies. Phe 'slS('-I-(R requestedl tuur indlepend~ent cost benefit allal,ul is
studies to deterne the benefits of further reducing the numrber iif languages. The studies showed that on am yeartsb iss
hundreds of million oif d. lar% could be saved by adopting a suit able language wilthI a reasomnab le measure itfceli

14-3

5000.3 1 is currently being revised to include Ada®. Although it is DoDs intention to phase the individual service
languages out, they will remain in use since embedded systems tend to be long lived. Eventually 5000.31 may contim
onlv Ada, FORTRAN and COBOL. There is no design to replace the large amount of software written in FORTRAN
and COBOL. While individual program managers may use Ada for nev, systems in traditional FORTRAN and COBOL
areas, it would require a substantial investment in library software, It will be several decades before this could be
considered for systems already in existence.

6. Ada STANDARDIZATION

The AJPO is in the late staes of the American National Standards Institute (ANSI) canvass process to establish
the programming language Ada as a US ANSI standard.

The proposed standard Ada Language Reference Manual was finalized in July 1980 anti has received an enormous
amount of review and comment, all of which was included in the ANSI canvass process. On l)ecember 10. 1980. the
same manual was published by the US DoD as a Military Standard (MIL-STD 1815) so that early Do!) projects would be
able to use Ada.

The canvass procedure began in April 1981 with ANSI approval of the canvassee list, which was balanced among
potential implementors. potential users and general interest categories. ANSI approved 96 canvassees to vote on the
proposed Ada standard. The proposed standard Ada Language Reference Manual. MIL-STD 1815, was mailed to the
canvassees who were allowed six months to review it and vote, with comment or reservation, if they so chose. There
were 380 comments received with the ballots, which closed the first state of the canvass on October 15. 1981. The tally
was 66 for. 23 against, and 7 not voting. Concurrent with the formal canvass, a public review was conducted. Although
required to consider only those comments made during a specified two-month period by ANSI directives, the l)oD
initiated the public review in December 1980 and kept it open for a year (until December 1981). The public review was
also expanded to include the international community in order to provide more visibility to those interested in
considering Ada as an International Standards Organization (ISO) recommendation. There were 758 comments received
from the public review which were logged into a file and made publicly available via the ARPANET.

Based on this extensive commentary, the language design team made appropriate language changes and produced a
set of chapter reviews documenting the changes to the Language Reference Manual and the Ada Language. These chapter
reviews received extensive analysis from the international group of expert computer scientists serving as distinguished
reviewers for the later phases of the Ada Program. The canvassees were advised of unresolved issues and given a 30-day
period during which to change their vote. Of the 96 canvassees, only four have indicated dissatisfaction with the resolu-
tion of the issues raised during the canvass. Although there were some changes to the language, there has been no change
to its structure: a user would not generally perceive the changes and certainly would not observe a change in
functionality. The user may observe simplifications in the underlying model and greater consistency in the design. Of
400 examples used in a course taught a number of times by the language designer, only four will have to be changed and
only one will be completely eliminated.

The publication date of an ANSI version of the Ada reference manual will be determined by ANSI in accordance
with its management and administrative procedures. In order to have a US Doi) Military standard between the time it
is decided that ANSI will approve the language and the time the ANSI manual is published, the IS DoD will publish
MIL-STD 1815A around September 1982. It will be the July 1982 version with appropriate editorial changes as deter-
mined by the ANSI supplemental canvass.

Upon acceptance of the Ada language as a US ANSI Standard, ANSI/ASC-X3 will encourage the adoption of Ada
as an international standard through the International Standards Organization (ISO). ISO!TC"7/SCS (programming
language subcommittee) recommended establishment of an experts group in October 198 1. One organized meeting of
experts was held although the group has not yet been formally constituted.

The final ANSI tally represents convincing support for the language as revised. However, the number of changes
made to the Language Reference Manual suggests that an opportunity for the canvassees to evaluate the revised reference
manual would he appropriate. Therefore, the DoD has obtained ANSI approval of a supplemental canvass, for editorial
review only, to commence in July 1982. Additional language changes would not be entertained. A two-month

supplemental canvas will give the canvassees an opportunity to verify that the changes made to the language Reference
Manual are consistent with their understanding of the revised language. Any language changes which are suggested will
be logged and made publicly available. They will be forwarded as part of the further consideration of Ada as an inter-
national standard.

7. Ada VALIDATION ORGANIZATION

A major goal of the Ada® program is to ensure that software is portable across implementations, anti that it
produces the same results independent of the computer on which it is being run or compiler front-end or back-end that
generated the code. While validation has usually been an afterthough in language design, this was not the case for Ada.

4.4

Early in the Ada effort it was recognized by the US DOD) that a compiler validattion capablilit% itiuld be required a, flirt
of' the enforcement mechanism. tIn 1979 a competitive procurement was undertaken tor jsct ofl test prograin'. saliltort
test tools to assist in the preparation and analysis of results, andi an implenienter's guide.

The LIS Do I) wilt req uire the validation of' all comlpilfers prior to thltdr use it anN I o) prograin - Since the s aIt daltort
suite itself' will not ensure that Ada compilers implement tite Samle commulon language, thle Ada Joint P'rograitt (fficce,

hie process of establishing an A-da Validation Organization (.*\VOl. Thte AV %%) ill h, c to encourage. mecasiure an1,!
enlforce conformnance to the Ada Standard an d other related Stand ards ws ftc cittay be dented tiroughoult tht cproiiram Ht I
must provide tech nical assistattce in ttte vali datio n process a td also must provide a focal poit tt or efftorts i lo c ille
state-tf'l'-d art w ith respect to Ada validation. Thle duties of tile NV\'\k sIll Iinclude1 bilt not b'e 1itt1Citt ll nialrtteitjtt11ce (t
sta te-of-the-art Ad a validation capability: prov'idinog public access to tile -XV: ft,piltaii it s fte itt pleitteit r's gutide
reporting thft result s of' svalidations. cert ifyintg satellite tacili tics: and Itianagiti t'll Itsnatncc tI cert i ica tc of 0 al itjm
retest inrg aitd other ad minist rative ttatte rs ill Support of' file .. V'O and th ftvat idatioai proce ;s

LieC Current validation capability is made Lip of' approxittately 1400 test progrttt ws ttcft swere desigtted to ce k fIll,
presence of featusres and the absence of noii-standard featutres. Tlie salldat is n capab ihlt I, imtade of' b 'li comitpile ni n
attd run titte tests designedf to check for tfie presence or ab~setnce oif legal progran. link loajd rejectio Itt ofIllegal programt.
attd sell testittg programts. File AV'(will also check for capacity requirceents. correct waritings anttiIe opcratiiiit
Standtard packages.

The L'S Dol) feels that because of* the growintg worldwide ittteresf itt the use andI developmoent of-\a Satellfite -Vla
Validation Facilities (SAVE I will have to be establisfied. Sucht a SAViE would ioperate itt a mtanner consistettt w4 ih the
AVO such that certificates of' Ada validation issuied by a SAVE would be equivalent to thtose of' the AVO in rights andi
effect.

SI. Ada SUPPORT ENVIRONMENT

Thte intendsed usc of a machine independent 1101- in the embedfded Computer applicatiton area, lead ttte 1101.%%; ti
include a support environnment as a critical part of tlte IS D~OD's ilOL standarsfizafitt effit. Altihoughl Ada: did itill
require a special environmenit. ttte life-cycie mnaintentance of ECS sysftetttS did. It was ('elf that att itegratedi sof'tware
environment conitaininig a set of good tools would ecocturage -acceptance of file language. tfseeby magnifying ftte benefit,
(If the language standardizatiott effort. The set of tools that nteededt to be included it a priigramt Support entviroitnment
were: a comiler. edittr. dtocuttentation aids. prograttt development aids. and other life-ycle supputrt tools. -Ailurc ti
develop such a facility wouldt mean thtat software dfevelopmettt would contittue to be treated as an art. with little basis
f'or predicting software costs and cottpietiott tittes resulting in late, erroneous atti costly software.

Thte initial US DoD sponsored workshtop was hteid at Irvine. C'alifornia itt June I1978, to dtiseuss alternative%. thle
result of the workshop was a draft requiremtents document "PUBBI.FMAN", describing all aspects iif tfte problemt.
includfing ntattv policy issues, In November 1979, a revision Was pujbliftd treating only tite technical issues andi a swork-
shop was field at San Diego. (Califomia to review it andi solicit niew idteas. The final "STONEMIAN' diicutment was
prepared and distributed in February 1980,

9. Ada LANGUAGE ENVIRONMENT f(See Figure])i

By design. Asda® iftcorporates many of' the features needed to support tmodfern priigratltttllg practices, bilt lust like
any tooi it can be tnisused. Tite capabilities of Ada will only he fully realizedt when a sophtisticated Ada Programnming
Support Environment, complete with advancedt development and management totols, is ntafe available and w'istel used.
Tite Stoneman modei of a support environntent calls for the integration of conventional softsware tools ito a framnework
that is sufficiently tpen endedt to accomtnodate a wide variety of prograrmmling ntethotdologies anid autotmated ssitware
tools.

The purpose of the APSE is to support the dievelopment and maintenattce itf application software thiroughtout ifs
life cycle, with particuliar emphtasis on software for emobedded computer applications. One of tite more imtportant
~oncepts in an APSE is the dlata base. which acts as the central repository for information associated witit cacti Project
throughout ithe iife cycle. The dtata base supports the organizationai inf'rastructure as well as mtainlinting the data crit cal
to the development, testing anti life cycle support of'software. The data base also serves as the itnterface thtrough 'A iticl
tile set of mtodular toois can coimmuinicate. The data base wili contin such mattagement information as versioti conttriil.
library suppotrt andi project ttantagemtentt as well as ttte codfe, test data, anti ilocuItettatioi required as part of' any
deveioplltent.

A second inmpiortant aspect of' thle APSE is its host-target relationshtip. It recognizes that many Emtbeddedt Computer
systems are rtiot capaftie Of Supporting develtprment themselves. Thte itost-target relationsftip pernmits thte develitptment,
testing, and maintenance of toft ware for les capable machines to he dhone in a symbiosfie way from a muisch more capable
machine which can support the sophisticated andi itften resource intensive tools thtat need to bie applied to tite embedded
software iife cycie probiem.

10. APSE STATUS

The US DoD has two minimal Ada Programming Support development efforts underway. the Army Ada Language
System (ALS) and the Air Force Integrated Enviroi. lent (AlE). The Army will begin testing the ALS along with a few
selected Navy and Air Force sites in the Fall of 1982. The ALS will begin Beta testing in the Spring of]083 and be
available for wider use in the Fall of 1983. The AlE will be delivered in 1984 with a rehosted version available in 1985.
The US Navy will be issuing an REP for their MAPSE in the Winter of 1982 for delivery in 1Q95. The Navy MAPSI- will
be based on the ALS.

In addition to the US DoD APSE work, there are at least two other efforts underway. The commission of the
European Community (CEC) awarded contracts for a root compiler and MAPSE based on 50' funding by capital. The
German SPERBER project, supported by the German MOD will become a complete MAPSE with the inclusion of the
data base in 1985 and the British MOD intends to partially fund an environment based on the extensive British MAPSI:
design studies completed in 1981 and 1982. In addition to these relatively complete MAPSE developments, there are
numerous commercial Ada tool set developments and potentially several M APSES.

The UK DOI Development Methodology Study assessed Ada as an acceptable HOL for implementing software
developed under a wide variety of methods. Since no complete life-cycle method exists today, let alone one which
includes Ada as an implementation language, the US DoD has an effort underway to define the requirements for a life
cycle methodology. After sufficient international comment, the US DoD intends to build at least one such methodolog)
and a complete set of tools to support it.

Since the Ada Joint Program Office (AJPO) anticipates industry, academia and other governments to support and
build APSEs besides the two US DoD supported environments, the Navy has been tasked to lead a joint service review
team to identify and recommend convontions for the tool to KAPSE interfaces. The degree of success of this effort at
identifying reasonable conventions and standards and the degree to which all KAPSF developers adhere to them will
significantly influence the cost of porting a tool from one KAPSE to another and therefore how well we can amortize
the cost of sophisticated tool development across a large number of installations.

11. AVAILABILITY AND MATURITY

The availability and maturity of a new language like Ada® are very critical in the decision making process for
program managers considering the use of it for a production project. They must weigh the anticipated long term life
cycle benefits to be derived from the use of Ada against the current status of the language. support environment, training,
general public involvement and their own project time line. With the anticipated adoption of the Ada language as an
American National Standard (ANSI) language in the fall of 1982, the lar'euage will become stable and will remain so until
the International Standards Organization (ISO) changes it during their adoption process around 1985. This will give at
least 3 years of experience with the 1982 ANSI version before deciding what changes, if any, should be made as part of
the ISO process.

At least four MAPSEs are being developed today, and will begin to appear at potential user sites during the next
year. These environments are fairly ambitious projects and will probably require at least a year before they can be
considered of production quality for large projects. Since the early Ada environments will really only be MAPSEs, they
will not provide any significant improvement over any existing environment, except in their potential to be populated
with new and fairly sophisticated life cycle Ada tools as they are developed over the next decade by the US DoD and
the many other Ada users.

At present the amount of Ada training being conducted is relatively small, but it can be expected to increase
significantly over the next two years as the laiguage becomes a standard, and as the US DoD begins to mandate its use in
various projects. Ada Program Design Languages are already being mandated in numerous contracts, which is beginning
to increase the demand for people who have some knowledge of the language. The US DoD is developing a training
plan which will address the kinds of training required, the materials and facilities required and the ways of measuring
the effectiveness of the training. Once the requirements are understood, the US DoD intends to make sure that all
required capabilities are available either from the public sector or by them being developed at DoD expense.

The international involvement in the Ada program i- -. tonishing. Not only has this involvement been during the
design of the language, but it has been at the commercial and government level by making economic commitrients
towards some Ada effort. The number of text books that are appearing is increasing daily, as are the courses being
offered. As compilers and Ada environments become readily available to the academic community the amount of
research revolving around the Ada language will increase greatly.

12. CONCLUSION

The US Dod is totally committed to using the Ada language for its embedded computer applications. Each of the
US Military Departments has an introduction strategy. The Army is the most aggressive because they have the least

i I

invested in currvint stan~dardis. They A1ll begin using Ada in 1jQS3 for neW 101 rIs programs. Ile t1S Navy and Air Force

intend to begin to use Ada at a lox% risk and mandate it for all new programns starting in I S(, when appropriate support

ADA LANGUAGE ENVIRONMENT

ORGANIZATIONAL
HOST fPROGRAMMING)

INFRASTRUCTURE
MACHINE ENVIRONMENT

LANGUAGE STANDARD
COP7ER

COMPILER CERTIFICATIONCOPLR
PROCEDURES

1 0 PACKAGES LOADERS FOR

-STANDARDS bs GUIDELINES STANDARD APPLICATIONS PACKAGES SELOFTED

FOR HOST AND TARGET COMPUTER EOFTTORE

ENVIRONMENTS
TESTDEBTOLS

-~TOOL DISTRIBUTION MECHANISMS
ANATZERTS

RE AHN

- DCUENATONPERFORMANCE
MEASUREMENT

TEIRONM E

-TRAININGTOLENINM

T

-COMPUTER RESOURCE POLICIES PROJECT MANAGEMENT

OOS ADWREIS

D gUMETTO IDAPLCTO

STANDARDISATION DU LTR POUR CALCULATEURS EMBARQUEFS

LE PRESENT ET LE PU-TUR

ICA do Montobeuji

Ninist~re do la D~fense
26 Boulevard Victor
75996 Paris Arni~es-Prance

RESUMEf

Le langage LIR a 6t6 standardis6 en France pour los applications militairos op~rarionnollos en 1974. Depuis
cette date de noimbreox d~veloppements ont 6tg rdalis~s et le langage est effectivement utilisS dans plusieurs
syst~mes embarqofs op~rationnels et en d~veLoppement.

One courte pr6sentation du langage aojourd'bui appeld LTR V2 montre qu'il r~pond aux principaus critlros
permottant one otilisation effective dans des syst~rnes enibarqu~s :efficacit6 do code prodoit, couvertoro
des bosomns sp~cifiques, facilit6 d'6criture ou de modification de programmes, disponibilit6 do chiiw; de
production ad~quate.

Cependant en raison des progras des techniques de progrr-mmation, il faut d6finir one noovolle scratt~gio
pour l'avenir. Ii ne semble pas possible d'attendre en eap~rant que le d~veioppoment d'ADA apportera one
snotion, car lexamen de sa. d6finition fait craindre qu'il ne soit pas effectivement utilisable pour les
applications embarqufes.

Coast pourquoi une strac~gie offrant lea meilleures garanties a 6t6 dffini * cello de r~novor le lan.ago
LTR afin de profiler des am~liorations technologiqoes tout en pr.7aervant los acqois et la pc'ssibilitc
d'utilisation effective. Ce nouveau langage appeI6 LTR V3 est rapidement prdsentg avec son atelier do
programmat ton.

I. INTRODUCTION

Apr~s on bref rappel de la politique de standardisation en informatique, iI sets pr~sentCP un bilan do la
standardisation et de l'utilisation do LTR actuellement.

One analyse des crit~res d'utilisation d'un langage pour calculateurs embarqo~s amboera I d7finir one strA-
t~gie pour l'avenir basge sur une r~novation du langage LTR.

2. POLITIQIE DE STA-NDARDISATION EN INFORMATIQUE

Devant les probl~mes soolevfs par l'introdoction de linformatique dana lea svstZ~nes d'ame, le MiniSt~re
de la Dgfense franqais a dgcidg d~s 1965 de mener one politique active do standardisation on informatique
et crC6 on organisme poor animer cette politiqoe :le Service Central des TWl6coimmunications et de li'nfor-
mati qoc.

Sor IF plan matdriel ont 6t6 d~velopp~s des calculateors mlitaires interarm~es (gammo IRIS M pois gamo
15 M) gui ont 6tL; adoptss poor des applications des trois arm~es (air, iner, terre).

Sur le plan logiciel, lea efforts ont portS sor lea langagos, lea bases de donn~es et la ni~thodologie do
diveloppement.

Connie langage, le LTB a 6t6 standardis6 en 1974 et doit ftre otilis6 dana toos :-s syst~mes op~rationnols,
embarqo6s 00 non. Depuis cette date des investissements importants ont 6t6 faits poor permettro son otili-
sation effective, et aojourdhoui la plupart des nouveaux svst~tnes militaires utilisent 00 langage.

3. HISTORIQJE DUI DEVELOPPEMENT DU' LANGACE LIR

Le langage LTR a 6tC ddfini en 1968 so Centre de Programmation de Ia Marine, en lo d~rivant de l'ALGOL W.
Un compilateur maquette a gtg r~alis6 de 1969 B 1971. A Ia suite de cette r~slisation a 6t6 6tablie en 1972
Ia d~finition do LTR dit "de base" et conmmencse la r~alisation d'on compilateor op~rationnel poor los cal-
culateurs de la gaimme IRIS militaire.

Le premier compilateur opgrationnel a gtL6 diaponible en 1974, et slurs a gtC nine Ia ddcision do standardi-
ser ie langage pour tous lea applications opgralionnslles.I Do nouveaux compilatours ont Wt lanc~a pour lea calcolateurs militaires do !a gamme I5 N et pour len cal-
culateura IBM sfrie 370, et ont abooli en 1977.

Dovant ls d~veloppomsnt des applicationa, il a paro n~ceasaire en 1978 de d~finir de taqon normative Ie
langago, qui a LRtG nonmi8 LTR V2, et donc de r~alinor on projet de nonme.

Trois compilateura pour calculateura afroport~a ont 6t6 r~alia~a en 78-80 (calculatoora END aerie 84,
SPENA LIMP 7800, TH0MSON-CSF MIB 77 et 80).

Do nouveaux compilateura ont 6t4 lanesa pour aboulir en 1983 pour le microproceaneur Motorola 68000 et Ios
calculalsura SEL 32.

15-:

4. Un'ILISATION ACTUELLE

Quelques syst~mes embarqu~s maintenant en phase op~rationnelle sont programm~s en LTR. On peut citer

- SCNIT 4, systlme tactique embarqui sur corvette anti-sous-marine,

- ATTILA, syst~me d'artillerie embarqu6 en cadres mobiles.

De nombreux syst~mes en dgveloppement sont en ours de programmation en LTR.

Dans le domaine a~ronautique on peut citer :

l'avion de combat MIRAGE 2000 dans lequel plusieurs calculateurs sont programwds en LTR (Calcula-
; teur principal, calculateur de pilotage ...),

- l'avion de reconnaissance "Atlantic Nouvelle GCngration" dont le systlme tactique et le sysc~me
de visualisation sont en cours de programmation en LTR.

Parmi les syst~mes embarqu~s non agronautiques, on peut citer le nouveau syst~me de missiles balistiques
maritime dont tous les sous-syst mes sont programmis en LTR (mise en oeuvre et contrale des missiles,
exploitation tactique, navigation, stabilisation...).

ILe nombre de cartes LTR 6crites pour des applications oprationnelles d~passe aujourd'hui 800 000.

5. PRESENTATION DES CONCEPTS DU LTR V2

5.1. Concepts de base

D6riv6 de I'ALGOL W, le langage a 9r6 enrichi pour permettre une description globale d'une application
temps reel, et introduire des m~canismes de communications entre tiches d'une application multitiche.

Les principaux points A noter sont les suivonts.

5.2 Description de l'application

Une application peut tre compos6e

- d'un ensemble de donn6es syst~mes (SYSTEM DATA),

- d'un ensemble de doni6es de communications (GLOBAL DATA),

- d'un ensemble de sous-programmes communs (GLOBAL PROCEDURE),

- de programmes (PROCESS) activ~s par appel ou par interruption,

- d'un programme de dg,-rt (START PROCESS).

Chaque ensemble ou programme est d~composg en articles : articles de donn~es et sous-programmes (PROCEDURE,
FUNCTION, PROCESS).

GLOLO BA OBA GLOBAL~ STEM

IDATA DATA JDATA LDATA_

DATA DATA DATA

PROCEDURE PROCEDURE . DATA

PROCEDURE PROCESS PROCEDURE

START Programme I INTERRUPT

N. Programme activation CU.'. Programme

active a ,

V'initialisation s _, Interruption

PROCEDURE 1PROCEDURE IPROCEDURE

Figure I - Schfma d'une application LTR V2

1 _3

5.3. M6canismes temps reel

Les m~canismes temps r~el sont des phrases du langage permettant de

- crger des tiches sur des programmes,

- activer ou dsactiver des 6vgnements et se mettre en attente d'une expression d'cv6nements et
d6lais,

- r~server (conditionnellement ou inconditionnellement) ou lib6rer un point d'entrge de stmaphore,

- accgder A une horloge temps r6el,

- contrler les interruptions (activation, connexion de programmes, activation de t~che sur inter-
ruption),

- effectuer des entrdes-sorties soit au niveau physique, soit A un niveau intermgdiaire (par bloc
de contr6le). soit au niveau fichier format6.

5.4. Structuration des programmes

Un programme est d6compos6 en sous-programmes (PRnCEDt'RE, FUNCTION, PROCESS)) non imbriqu6s.

Un sous-programme comprend des d~clarations et un ou plusieurs blocs (BEGIN.. END) de phrases.

Les phrases peuvent tre des phrases simples ou des structures

- alternatives IF THEN... ELSE,

- it6ratives WHILE... DO

FOR... WHILE... DO

FOR... UNTIL DO avec incr~mentation d'index,

- de choix multiples CASE... OF.

'-5. Choix d'objets

rous les objets utilis6s doivent Stre d6clar6s.

On peut d6clarer des objets simples

- entiers I, 2 ou 4 octets,

- fixes 2 ou 4 octets,

- r~els 4 ou 8 octets,

- logiques I, 2 ou 4 octets,

- bool~ens,

- qualit6 (attributs symboliques),

- chatnes de caract,re,

- r~f~rence A un objet.

On peut 6galement d~clarer des objets structures

- tableaux A plusieurs dimensions d'objets simples,

- structures d'objets simples,

- tableaux de structures.

5.6. Op6rateurs

Un large choix d'optrateurs permet de composer des expressions

- opfrateurs arithm~tiques : +, -, *, /, DIV, MOD, EXP,

- opfrateurs logiques : dicalages droit et gauche arithm6tique, logique et circulaire, et, ou, ou
exclusif, compl~ment,

- opdrateurs de comparaison : Ogalit6, in6galit5, plus grand, plus petit, plus grand ou Ggal, plus
petit ou 4gal.

- op6rateurs boolgens : non, et, ou.

1

54

5.7. Donnges dynamiques

Des ddclarations et des phrases permettent de travailler sur des donn~es dynamiques, soit sous formie d'ob-
je ts structurds avec pointeur, soit sous forme de listes chalnV, ("ensembles-,.

5.8. Compilations s6par6es

Des d~clarations sp~cifiques perinettent de d~couper une application en unit~s de coronilation pouvant tre
coispilges s6par~iment.

6. QUALITES REQUISES POUR UN LANCAGE POUR CALCULATELRS EMBARQUES

6.1. Position du problme

Avant d'analyser les raisons d'utilisation effective do LTR, nous allons essayer de d6finir quelles quali-
t~s sont n~cessaires pour qu'un langage et son systline de production puissent ktre utilis~s dans one large
gamuse d'applicatiorsembarqu6es.

6.2. Crit~re d'efficacit6 do code produit

Les calculateurs militaires embarqu~s sont relativenient coateux, et souvent, sp6cialement en a~ronautique.
on aura un grand nombre de systlmes ayant le m~me logiciel.

Il faut donc que l~e langage choisi et son compilateur ne soient pas one cause d'augmentation "sensible" du
coat des calculateurs, et donc que le taos d'expansion soit raisonnable par rapport 4 one 6criture en lan-
gage de bas niveau, aussi bien en volume m6moire qu'en debit dinstructions.

On notera que cette expansion ne doit pas seulement se mesurer au niveau do zode produit par la traduction
du programme utilisateur, main aussi de tout I envnronnement d'ex~cution ajout6 pour pouvoir exscuter ce
code.

De plus, certains systemes n ont besoin que de m~canismes moniteurs tr6s rudimentaires (limitis 3 quelques
t~ches dinterruptions ou quelques t~ches cycliques). 11 fatit alots pouvoir avoir un environnement d'exicu-
tion tras rgduit.

6.3. Crit6re de couvertore des besoins sp~cifiques

Pour couvrir de larges besoins et 6viter autant que possible de recourir A une progranmation bas niveau
(ou A un langage spkcialis4), le langage doit 6tre assez tiche pour couvrir des besoins tr~s divers

- traitements d'interruptions,

- entr~es-sorties au niveau matfiriel,

- calculs en flottant ordinaire ou tr~s pr~cis,

- traiteixents de bits o de caract~res,

- syncbronisations entre tAches.

6.4 Critare de facilitg d'
8
criture o de modification des programmes

Un des objectifs essentiels d'un langage de haut niveau est de dininuer le corit de production et Ventre-
tien des logiciela complexes. Un des crit~ires de co~t est la facilit6 d'6crture et de modification des
programmes.

Les facteurs intervenant soot

- lIa simplicit6 de Ia structure de l'application,

- le dL~coupage de lapplication en unit~s ayant des interf~srences limitges et bien scpar~es,

- Ia simplicit6 do langage et as facilit6 d'apprentissage,

- la facilitE de comprehension des programmses venant d'une bonne structuration et de Ia lisibilit7
do code,

- lea s~curit~s inzroduites par le langage et le compilateur.

6.5. Crit~re de disponibilit6 d'une chaine de production ad6quate

Pour que le langage puisse 8tre effectivement utilisf dana un projet il faut pouvoir disposer d'une cbalne
de production suffisasnent complkte et dans lea conditions suivantea

l a chalne doit pouvoir Atre disponible dana des dflais compatibles avec le planning du projet.

- la chaine doit fonctionner sur un calculateur facilement accessible par lea tralisateurs du pro-
jet, et dans de nombreux cas sur un miniordinateur d~di6 au projet,

- Ia chalne doit produire le code de Ia machine cible du projet,

- l'investissement pour obtenjr cette chatne doit 6tre acceptable par le projet.

7. RAISONS D'UTILISATION EFFECTIVE DU LTR V2

7.1. Efficacitg du code

laa d~fjnition du langage a permis de r~aliser des inpl~rnentations avant un taus d'expansion r~duit. Diverses
mesures onE donnges des r~sultats de 1,2 A 1,3.

De plug, Ienvironnement d'es~ution peut 6tre rlduit et perfornant :en etfet pour des petits svst~ies ilpeut , er de I0 120 kilooctets (moniteur ops~rationnel multitiche et bibliothzque ex~cutive).
7.2. Couverture des hesoins sp~cifiques

Le langage tel qu'il est d~fini s'est montr6 suffisamaent riche pour couvrir Is totalitg des hesoins des
applications embarquges.

On notera cependant que certaines implementations n'avajent pas impl6ment6 la totalit6 du langage et qLnccertaines applications ont 6crit des biblioth~ques de noun-programnes en assembleur pour pallier ces man-
ques.

7.3. Facilit6 d'6criture o de modification

La description des applications et len m~canismes temps r~el introduits par le langage se sort r~v&10s
bien adapt~s aux applications et simples A appr~hender.

ILe langage permet de d~couper l'application en unit~s avant des interferences relativement limitges.

La svntase et lea phrases du langape peuvent donner on code structur6 et lisible 51 on suit des r~gles
de rograumation.

Enfin le langage s'est r~v6l6 facile A apprendre par des prograsaeurs avant on peu d'exp~rience d'autres
lan_-ages.

7.4. Disponihilit6 d'une chalne de production ad~quate

C'est ie point qui a 6t le plus critique pour l'utilisation du langage. Cependant grace A Ia politique destandardination des mat~riels informatiques men~e par le Service Central des T616coimmunications et de Iton-formatique, et aux investissements r~alis~s par ce service et les industriels, on dispose maintenant dechafnes de production opgrationnelles fonctionnant soit sur un miniordinateur franqais (Mitra 125), soit
un calculateor IBM pour les calculateurs cihles standards.

11 n'y a donc maintenant plus de probl~me d'accessibilitg de chatnes de production pour Ia plupart des
projets utilisant des calculateors embarqu~s.

8. POLITIQUE POUR LAVENIR

Le langage LTR V2 se rgvale aojoord'hui un trts bon outil pour Ia prograsusation des syst~mes militaires op6-
rationnels.

Cependant depuis s conception, des progrgs importants nt Wt faits nut les langages et les m~thodes de
prograsnsat ion.

En particolier le langage Pascal con~u en 1970 a apport6 des concepts tr~s interassants, et r~cessnt le
langage ADA a ragroupg beaucoup de nouveaux concepts.

11 n'est done pas possible de se figer sot le LTR actuel, et il eat n~cessaire pour Ilavenir de preparer
on langaga plus rnoderne et perisettant une meilleura qualit6 de prograsanation.

Une solution serait hien sOr de retenir le langaga ADA et d'attandre que s dfinition soit suffisasasentfigke et son d~veloppesient suffisammant avanc6 aux Etats-Unis pour pouvoir passer A une phase operation-nelle. Malheureusement l'axamen de as difinition actuelle nous fait craindre qu'il na puisse 6tra affecti-
vament utiliag pour des raisons qui seront dfitaillies par Ia suite.

Dana ces conditions una nouvalle stratigia eat A trouver, et nous avoos d~fini un nouveau langaga, baptis4
aujourd'hui LTR V3 qui, en assurant la continuitf de LTR V2, int~gre lea progr~s tachnologiques, et devraitr~pondre aux critares parrsettant son utilisation effective. Ce nouveau langage vs Stre prfsentg, ainai qua
sas crit~res d'utilisation.

15-6

9. POSSIBILITE D'UTILISATION D'ADA

Le langage ADA apparatt comme un ensemble tras homogL'ne et trL's complet qui devrait pouvoir avoir un vaste
champ d'application.

Cependant, i'6tude de son manuel de r~f~srence eSt extrimement ardue, et le langage s'avt-re tr~s corsplexe,
ce qui d~jA devrait poser de tr~s s~rieux probl~mes de formation des programmateurs.

Pour l'efficacit6 du code produit, on peut douter de Is possibilitg de l'obtenir si on analyse les concepts
tels que :les types variables, les contr6les de sous-types, les conversions de types, Ia s~m iu des

operations r~elles, les g~n~riques, Les entrges-sorties par type et par 6lgment, leg m~canismes temps r~el...

La couverture des besoins sp~cifiques devreit 6tre bonne, cependant on peut avoir certains doutes sur les
points suivants:

- adgquation des mgcanismes temps rgels aux be~oins,

- possibilit6 d'6crire l'environnement d'ex~cution en ADA.

Pour Is facilit9s d'Scriture ou de modification des programmes, ADA a des 6lgments intgressants. Cependant

- Les mgcanismes de structuration des applications multit~ches sont trop complexes et difficiles A
appr~hender,

- Les programmes peuvent devenir totalement incompr~nonsibles si 0n abuse de notions telles que
"NEW TYPE", red~finition d'oprateur, surcharge, "renornage"..

- l'apprentissage du langage sera difficile.

Enfin sur le crit~re de disponibiiit6 d'une chaine de production ad~quate, i1 semble aujourd'hui que les
compilateurs ADA seront tr~s volumineux, tr~s chers A d~velopper, et demandero:nt pour s'exgcuter des calcu-
lateurs d'une certaine taille. De plus il sera n~cessaire d'avoir autour du com~ilateur un grand noixbre
d'outils dont certains sp~cifiques d'ADA.

Dans ces conditions, il ne sera pas simple de rendre le langage facileinent accessible tix divers r~alisa-
teurs de logiciel militaire, et le coOt de linvestissement A faire peur se montrer r~dhibitoire.

0o. OBJECTIFS DU LTR V3

10.1. D~finition des objectifs

Les objectifs du LTR V3 ont ft~s

- preserver les acquis du LTR V2 en reprenant ses 6l6ments de base,

- introduire des am~sliorations technologiques,

- faciliter son utilisation,

- permettre son utilisation effective.

10.2. Prgservation des acquis du LTR V2

Afin de pr~server les investissements faits sur LTR V2 et assurer une certaine continuit6, Les fondements
du LTR V2 ont 6t conserv~s:

- structuration des applications,

- m~scanismes temps rgela,

- structure des programmses.

10.3. Am~liorations technologiques

Un bon nombre d'616ments intfiressants du PASCAL ont 6t6 repris

- Is notion de type, lea types structures,

- la syntaxe,

- limbrication des procfdures.

De plus un certain nombre d'idges nouvelles ont 6t6 introduites modularit6 et visibiiitg partielle, types

paramftr~s, definition d'ophrateurs, acc~s A Ia programmation syst~me.

Pour Is facilitLy d'utilisation on peut noter

-Is definition d'un atelier de programmation,

- la simplification et l'homog~nisation de la syntaxe,

- des compl6ments tels que des chatnes de caractlres variables, des entres-sorties sur !ichiers
sdquentiels ou directs...

10.. PossibilitJ d'utilisation effective

Vn des critbres de base dans la ddfinition du LTR V3 a t6 de permettre uns implementation efficace. Pour
cela une tude d'impl~mentation a dt6 faite parallblement A la ddfinition du langage, et le lanage a 6t
laiss6 volontairement simple et limit6 pour tenir cet objectif. De plus la reprise d2 Ia structuration et
des micanismes temps r~el du LTR V2 devrait garantir la possibilit d'avoir un environnement d'exicution
ayant le mme ordre le grandeur de tailie.

les besoins spcifiques doivent tre aussi bien tenus qu'en LTR V2 puisqu'on a veill a offrir les mnmes
services et ajouter des facilit~s nouvelles. On retrouve en particulier les msmes m6canismes temps r~el
et les mimes principes de structuration d'application, mais avec plus de souplesse permettant une meilleure
sccuritc. De nouvelles facilit6s ont ft2 ajoutCes telles que les paramtres de dimensions var'ibles, des
0iaines de caract~res variables et ordonnes, des entr~es-sorties sur fichiers et des possibilit s de
programmation svstZme.

La facilit6 d'6criture et de modification doit aussi @tre amfliorde par rapport au LTR V2 par

- lintroduction de types et d'une syntaxe proche du PASCAL,

- l'homogdndisation et la simplification de la syntaxe,

- l'6limination autant que possible d'ambig'lt6 du code (constantes, op~rateurs...

- le d~coupage de 'application en modules s'ajustant A la structure de l'application et limitant
les visibilit~s au juste ncessaire,

- la d6finition d'un ensemble d'outils standards d'aide A 1'6criture et 5 la mise au point des
prograrmnes (atelier logiciel LTR V3).

Les choix faits au niveau du langage doivent permettre d'obtenir une chaine de production compacte et de
coot raisonnable. Les dtudes d'impldmentation faites montrent que cela est possible, et Ia premidre impl6-
mentation du compilateur (pour microprocesseur 68000) est prdvue sur un Exormacs (microprocesseur 68000) avec
'56 kilooctets de mfmoire et un petit disque. Le d6coupage du compilateur et son Ccriture dans un sous-
ensemble de PASCAL "portable" sous syst~me UNIX devraient permettre de r6aliser facilement des gdndrateurs
Oe code pour diverses nachines cibles et de porter le compilateur (et son atelier logiciel) sor d'autres calcu-

lateurs de production.
I1. PRESENTATION DES PRINCIPAUX CONCEPTS DU LTR V3

11.1. Description d'application

Une application peut Ctre composde

- de blocs de donn6es de communication,

- de bibliothques de sous-programmes,

- de programmes actives par appel ou par interruption,

- d'un programme de d6part (START PROCESS).

Un programme peut Atre compose de blocs de donnges et de sous-programmes dont un de type "process".

Les diff6rentes parties de l'application sont d6composdes en "NODULE", un "MODULE" comprenant

- une interface dgcriva.t les donndes et points d'entr6e visibles de l'extsrieur,

- des r6f6rences aux interfaces d'autres modules ("USE"),

- un corps de module (sous-programmes et blocs de donnges),

- des directives d'implgmentation.

. . 1n0nN.

Module Mdule

USE us E

I Module %. Modul 1 e Module

DATA IDATA a DATA

PROCEDURE V. PROCEDURE , DT
* SE USEDT

START jPOEUEINTERRUPT /
PROCESS I PRCDR RCESS

Module

Module Mdl

Figure 2. Sch~nia d'une applicai~n.iJT,'jV3

U osput atre sucmarensd laye des paramtios t es soitmnts.C difet. r n po~ur"n"rcs"

unp fratinrs ne peuentiotr d'opnis qesur d ovastps

n ophres lspes peuvt otnre des affectoatons, des baoche pentses eppdes hader rcdure. dltions-

Lesano aetn doets dyna i les, tees-sorates otes dfents-srissrfcie .unIo

Le praes cpe peiset tret defns stucure alnivexts FT...ESF LE.slcie l~

etr~p~titives (FOR ... WHILE, REPEAT... UNTIL ..., SEARCH...).

1..Phrases temps reel

Elies perisettent:

- Is creation d'une tache sur un programmse,

- l'attente d'6vnesents ou de d~lais,

- lactivation d'6v0nesents,

- l'acc~s A des s~maphores,

- le cunLr~ie des interruptions,

- I'acqoisition de l'hcuro temps r~el.

11.5. Types d'objet

- types simples prdfinis :entier, fixe, r~el, boolden, caractzre,

- types Enum~ratifs ordonngs ou non ordonn~s,

- types structur~s (RECORD) avec variante,

- types tableaux I plusieurs dimensions (ARRAY),

- types r~f~rence A un type d'objet,

On peut d~finir des soos-types avec contrainte d'intervalle, de pr~cision 00 de discriminant de variante.

On peot Egalement dUfinir des types paramftr~s contenant un tableau dent les bornes supgrieures de dimension
sont variables. Deox types param~tr~s soot pr~d~finis :logique (suite de bits) et STRING (chalne de carac-
t -res variable).

11.6. Expressions

In certain norbre d'opdrateurs soot pr~d~finis

- COmparaison par egalite 00 inegalite qoel que soit le type,

- pour types arithodtique :+, -, *t, /,w*, DIV, MOD,

- pour types booldens :NOT, AND, OR,

- pour types ordonn~s (arithmgtiques-Enum~ratifs-caract~re))> ,>.e,

- pour types logiques :GCL, LAND, LOR, & (concatgnation),

- pour types STRING :S (concat~nation),

Ces opgrateors peuvent 6tre Etendus sur de nooveaux types oil *Is me soot pas d~finis par d~finition d'op6-
rateur.

11.7. Facilit~s diverses

- toutes les constantes ont on type d~fini par leur svntase,

- on peut d~finir des constantes symboliques,

- on peut acc~der a des tranches de tableaux A one dimension,

-ii y a one biblioth~que de fonctions standards arithm~tiques et trigonors~triqoes,

-certains types -euvent tre d~finis comse "opaqoes",

-A l'int~rieor e.9 modoles "systeme" on dispose de possibilit~s de programmation syst~me type
pr~d~fini WORDS, phrase WITH, entr~es-sorties directes,

-le jeo de caract~res eat I'ASCII et est ordonnE soivant l'ordre ASCII.

12. ATELIER DE PROORAW(ATION LTR V3

L'atelier de prograsusation doit comprendre des outils permettant d'aider A l'Escritore et A Ia sae au point
des programmes LTR V3.

11 doit comprendre
- on chef d'atelitr de programmastion

- on bibliotb~caire de texte source

- on gestionnaire d'objets

- on Editeor de texte syntaxiqoc

- des pr~processeors de texte source

- one souche de compilateor

- on g~n~rateor de code interpr~table

15-10

- un interpr~teur,

- des g~n~rateurs de code pour machines cibles,

- des 6diteurs de liens et g~n~rateurs d'application pour machines cibles.

Cet atelier r~utiiisera si possible des outils standards existanta. et sera pour le reste krit en PASCAL

(dans un sous-ensembie dgfini portable) sous systome, UNIX.

CHEF

D'ATELIER DE
PROGRAMIAT ION

BIBLIOTHECAIRE EDITEUR

"GALAAD" DE TEXTE

D3. CONCLUSIONS

A"nd ArTrerOaqM" eLasadriaio uLRVun tsgi e ~osind lnae pe~

LTR 3, a~ dfini etEtudge.Ceisserhie treLa millUe slto potn e aate oriae

op~raiFigure et leaie prmire applicationsn vsfeV3

NA a documsrentaions de lTR ptaaristreontenueLT en. uncrivantfii dernvto uBnae

CELAR - 35170 BRUZ-FRANCE

OPI-RA IIONAL FLIGHlT PROG;RAM D[V LOPMI \i 1 Il H A
IiIt R ORIAR LAN(,1AGL

R. I.% C~Stbr'ook

L I. (rews

Nas~il %capon, (-enter
China t-ake. CA. LISA

SUM~MARN

ibhis tatter presents the Itrotili-ns, and the future trends and Sotlutions to nians il the protblems or dvxeloping O peraitional
Ilight Programts OU1Pi lot embedded comitputer Sy stetms As OflPs lecortue larger anid miore ciniples it natire thc nicsd for

their ileselipitent through structured design, higher order language I 11(1I prOgratItItIIng. And rgrinin l iiciati
standtardlssupported b% atutomtated aids "ill become increastiigl inandatori. Proper proced tres and t ook canl rcinxc inuich o

the OISP housekeeping ond nmaniual ettort while irnprositig juiti.. reluingttitii-cscle dxi., and reducinv mtodificatin tint- to
miore readily respond to IFleet needs.

An 1101. by itself will inmprolve proiluctixity di ng developmient andl. in general. tinproxe reltabilits of tile ot are lBut.
couplel with anl approachi it tegrating I II host execution ad 1t. I 'Insrtin I cx l I 01 eCI taJrec III11111 c eipICer I eniilat1rs (I Ill(
execution anid test, and 13 L target computer o1eradtton I tttdei control ol the Simuolated operationtal Xn1onin atII
package). tile 01-P developitt imte titus lie slfipittcanti shioritned a' 'xcii as pirosidin: suhstantial saxing' dutring the miain-

tenait~e phlase it the sofitware lite cscle

Flits approach dues not address tire tived for efficient coitipilers andi coimputters. thtat itiore clisel\ CW sec tile 110 opetiraitis
Tite tact that xsuchi If10 as Ada anid thle Ada Programi nig Suippot I n troiteti; I APSI. i1o beaen li e tcfitted anid ire bctirl
develtoped.- will not negate the need [or giood software cuginvering miethodotlotgies

I INTRODUCTION

The tiexehiprent (if large-scale software s'cstettix such as 011's reqiires dixcipline in all itt its Stages file lontg lilespati ti a
large stiiw are ptroject miakes mtandatoiry imaintenance of bth the xsottw are and its dicnIttIteIta ott andt tile reqitremtent lor a
centrral aui discipltinedl ciinIhraliiti conritti titecltiniso

I he reqiItetIti for large sotifware systenms , ,It as OlE~s can becoitte e stretitel\ itrdeiCtiNttie aS the ife il tire lirolect cn

tinues I mprotper design.- lack tof maintenance, ii rthe absence ofi cotnfigurat ion coi ntl cali tiLck IN lead ito a sotittsare x siin
that is stin al Imtpossibsle iti maintain. atid certainl\i mpossible to continui te to upgra~de and tnitltf in a cost-n lec ti s mtianiner

One majtir itetittd toi help with these probleitis is tt uiorniale the reqi ired activities ii) 'tsinig a moditerit Il(I_ suci as Adda
I I().s nth tiltly aid in Structutred design.- increased prod LIil-ts, anid bettier diiculnitittttott b ut alsot enisures thtat titaIn Lill-
strututredl designts canntit exist

A test bed l[or prosing rittai oii these ctoncepts th(le A-M I- (il-P wl Ii heitig rewtrittenit iii iii , 111 ith news destyi
iithtidtiltgi rTere will lieenflorcedl s indardifat in It% tise oii Sotitware tinils ilirotili all stages of tirei stiltware cy ce

2. BACKGRfOIND

Most oii the preset day 01lPs were writ tenl nan% iears ago. thley are citiiple x assemtblN latigiuage progranms ex hitisi tg tians
niegative irattsi.

OF
1

S% suffer friom lack oif 1 tL, ax ailahilits because no compilers generate coide for tlie part icuilar embiedded comtptuter, h i (lie
1101. compiler generated Inefficienit code both in teris of tinte and storage. Timie and storage are so critical t hat ev en the
assembly language I)IIS are Iled with areas (itf tricky coide placedl there lto -save" a core litcatiiotitotinspeed-tip" Somte
fitnetitn

D~uring tire ling itintetiance perioid I sotnetimes I.S to 210 years i whatever sitfiware structutre existed Initially IS CuliWIkl lost,
This may bie blamed partly on the comiipurer lining oilt (if timie aiti out of stotrage when tre sysfetit is deliveredl. andto i

Sonie extent tin the lack (it proiper inodularizatiim and cloi ntl of module iterfaces.

Most OI-Ps rely tin very expertetnceid key people to niake evetn minitor changes. Trhis poses training proublems and iticreases risk
ultie toi persoinnel it unover.

Sotftware changes are tratde via utniqlue. semnanual Suipposrt system~S. I-imitetl verification intl validlat ion is performied iiiI ititittuniue facilies using actual avioinics moniitted in test standls siutlating fligh t compiuter iniput otput coindiltios.

3 PROBLEMNS

The OFPs are the heart tif the aircraft avionics system and miiust interface tt tmutlt itutite (t aviotc subs stettis such.s
stores managenment. radars. electronic countermeasures. Itiertial navigattion. and oiperatoir displays The (Ol-P nmust tiake tleciirti
about many complex moding functions based upon the inputs of these sitlsysteins. Due 1o these tian) uiffieret iniput,.
outputs, and modes, a detailed and complex software reiluiremieint docuinent must be written befoire progressing tt tile OflP
tdevelotpment stage. Ilistitnically - a coimplete software reqluiremtents doctinit has nti been dleveloipeid. this creates a lartier
problem duing the development and future stages oif' the Software dlevelopmnent cy cle where requtiremnent, titlst be changed
or modified.

16l-2

OFIS ire usujtliv des eloped dnd documented tit a flossfor-iijed, te h isiel jaita a psri a, I i here griup Ti .5 eie .,c- <
.aid priigrii edi is? their crt..on expertise ireas fliss t pe of deselopisest leads io pooir isssett, V,!, v.~..
kept by> the engineer in its desk and tnay never lie published in a tornsali/ed do~ucit.)I Ilcd 11siii..
unstioisiahle aniii 5ifl o~tl\ produt reiciiring highis tecincal engineers whoi ist retsrd- itid di l Iii ic. e.'
cvdIe -it the 011P ti order to intelligentik midt;l s'r msaintain if]iis 5; Pt'' 5f -ituie ii ir 5eit
<sl oisderahl) in tile jtse of Ol P, wles, the mtapirirs si the use- c; i ~ insi i'11'el1 :1) thc -i11d tsOii i Iii' i.

stdvce

Ma\it the rishlenis ire itribl'ues tii a' Iubs iiiiliite i/C clitliit, aiii o,iiiii ii C'. i- iiiii Ti . 1 i .

situaisit is tht miiny ot the lirolblemis asii,iailed sittli t, 011P, .asi be srine s thc .i1, .)' Hl id .lti.l 55

,ioiisern sol,ire prisgrdamsming aird maindgeimenst ieinIsLies

Ilestin e ott the OftiIs di,ult due tii(lie in~itties ii uhs~h shle softwdre is di V ii I- lositr ri, .5i S iili
iir tool. s tldi cdii be used fur testinig. It is Alsrsiit no psible ti test d prograsm iars itIII Ji a 1\ii-di A-1'11ii.

at Id is in d ',lick I'stix\, lids a serN iiinimtuim it peilierals. asud hardly dn\ cdpduilit\ o ilwn iiii,rins ili, 1i sit x. .1 I ItI01
(onsequentl> sthe majotr poirt ion ot 01-P vdiiddt iOu is perfornmed using ex penso e [light test ing

During the tioidl tfe-c ide sof dit OfIP tile itaitsteidnce piiase is by tar sthe most sixth\ i RtH '5N R J. lis I lhe tlol
pattern fur d U.S. Nasy tdctical dircrat is for the ssoftware to be "upgradied- sin a I.. i, ear cilc d5 lie dir. st i ii5'i ii
ito the Nasy's changsng; ressisrensents. Very few errors are found and corrctfed durine nialiltilais, mst 't iei .l'aiiee dre
requ ests tori imiprovesnents sir enhanc~ements, new ditonics, sir new weapoin% for 5 le dircra st lio i id' the Tol nJi.pportlni
HO L (0F-P deselopmsens ate critical it ste Ndsy is so reduce te cost dnd Imtprovse tesps tush es to hisnlivi I,)s R 1

4. TRENDS

There are mny tresids b'eintg dev eloped today that will enhance andi streatmline tile p~rhce1S itt 1)1:1 iles eipuseit tasid snatis e
itance. I .ere is an ensplasi, on flO~s that support real-sinse envitrmsseists. These Ini turn will lead it) prsigisiIlI trg te ,hls ii te'.
docuisen tation standards, astd autontated aids that will Imnprove site qual its aid Issuer life-\c leessts aitd isiilit tion ltt ile
fete futsure QEPs. Hardware size lismita tins are disappearintg antd sot wre mtanagettenit is i'ei hnting prev\a]ln ui ii11 5,I iiilsla,
aid in site ptrocess of' soft ware deelstpmen 5. There are tuew structured sdesigns mtethoidotli exis a lfiene niodus Inti. dl'strdit
ness. and infornmation lhiditng wihile still prod ucing efficient softtware .oide. There are soft isare supiort sy stem bssieing sles elipedl.
sucs as APSE. thsat provide tools for the entire developmestes cycle. Sioftwa re eninteers are becomising nmore aware oftsite is i Ic ii
and are starting to use mistan Of these new techniques and tools to deseltip OFPs.

The tottls asvailadhle fur stiftwuare developmsent are nlitsserstus and c:an bie l'eteft5 a! tii she e'sgitice r Mosst 5 sols urrentI tIs l
port only tine stagestif the sotftware develoipmen t ei fort. Many of the new systems are protmosting thle stil- -pt ot a ,otsuarc
ileselsipssent systess where she otuits of one stage. are the inputs to the next stage. dnd all Input anti sinsput frim iCdiii
soul is sttired in a central data base addressable by all tools.

One of' the long-term prosxpects hint using an HOE is the idea oif reusable ctide u-here routines are like hardware chips,
An engineer can csollect the rotutines andi build an avitiss system without rebuilding each routine fromst cratch.

4.1I Fvanspies tif Fissure trends

4.JI.1 Stiftware E-ngineering Enuviroinmuent I SF1

The St- ntust suppit sthe entire ife-cycle of te systenm. Fron early sequirements anaiysi thsrotughs delisery of tite OFF and
future smstdifications. sile S1I Fmust suppo rt sdocussentatton. develiopment. debug, test. coinfiguirationim nsagement . and quaility
assuransce.

The SI F Must Suppot a cotmmstn set (if totit products sto avotid being uniquely develtiped fur each embedded system. Such
tools act as cross coimpilers for target niachines that also generate code for execution on she SFIL host. If the SI- d nd its
tooils are portable. tither projects could more easily host the SFF on their computer equipment. Cross training between
prsiects is possible

the S1FV must he extensible to encompass new tools. msetodologies. FlO~s, targets, and hosts. This will enc~ourage new
protects to coinsider imnproivement rather than developing specialized SE~s. If the SEE'S command language processor handles
the interfaces it the host computers operating system, the SEE will appear the sasne sto she user no matter which host
computer is used.

4.1.2 Software T ools

As part of' the SEF a ctolection of sosftware tools is necessary to provide the support required throughots the projecst life-
cycle. One of the major requirements is that the tools make use of a common data base: this is not done in most os
today's environments.

4.1.3 Higher Order Languages

Many HO~s have been developed by the U.S. and other countries. Each have numerous strung and weak points. The inpor-
tant underlying motivation is to describe commands to a computer in a manner more understandable and more natural lii
the human programmer. Implicit in this is increased productivity, increased reliability, and a better way to describe the
solution ta program I to other engineers.

4 (4 rue liardwajrv

(itttriter liardlnare e'.istlig tirdaN and qiualiflied for line fin tacttcal air, raft Ilai e two. basic: probhlems that red to he oirre, led
before f ull IfW) (Iiliedit ot IN Possible. Iechtiolog> i% riiking file mu>Wd sicat eOrs spase as OIJI abl this prToblml sh1ould di1.11.
seair qiii,klv Howiever. thlt soluitiont to the problemn ti evetutrrtg IIOL proigramrs eli ficrtl% will riot hec rotiltl noksed ith
itnlrtiiif evecutilin speed-up, hut will require comtputers tfiat directi> AOvc thfe 1101<

[if ordler lot mrake full.scotttrollable testing poirible with target ci'itlruters add it ionail outrol ani oti iting t trtace, are

rlc,evNar5 foir integrated use With host SI I stand simutilationi lacilies.

4 I 5 Reus-id (odite

NItu> (it [tic funtitons pertorrmed bv 01-i' are simtilar. it riot ideitical. til lead, i loile ,lna ill reiineiOf code. I it rode
reuse tio he pnracticed. IIOLN IIunt Siutpport several softtwarre eniginteerittg pritiples liere mtust he .r %er\ giood -Onceptt Or
murlrhritt [heire must h~e thre ahilits tri hidle ittpletictitatiori details atid iothuet uottratior "itle pro. lui 'te requited
interlace at a Siufficienit lesel iOt Alstraictiuir toi allowi tlevihle unteilrriioti intoi litai programst. Reiiiireiett rietiituori anti
10l]iuurtiettstuit Mt ti h crittplete aid, icsllrate. aiid thre coide proven trute.

5A CON(I P~[I-IOR IIOL Of<1P Dt\L0P\ LO'iN1

[htern is little dusagreemtenit within file softnware engintee ring comrttumnit that I I I It a NutIIcuettl% pro.erlt H01< were jaallc.
I') it inas Suippoirtedt l a gooidu Sf-I. and 3 i it comitled ciincise and~ efficient code for eaclr target omrtpurter. all 01 P'n

,noiuiu he iwritten in that 110L<.

A\ir .\"tiple itf visl cirttte a1 imodiertt tactical 111- is given ii t:.s. Departnrtint oft Defense Steelmtant Ssecircalioli tilt

Vda Antrt exaimp~le lot ide~as ontiertnitng progratnrg supIport eiuronlitilit is given in the Peblettait Specuiftiton

Illvsese.t itt sittia re ileveltipiiseit itt aircraft, tutunile ai electroiii iarlare 01<IPs othier riuepsts ire Irratlicil ce n with
ii dat.s [aLtiguagcs arnd Supporit environtnents. [For instance, art 1101, that would b e used tir n aItaks during the reuiremtet
aril early dlemon phlane ill 01-IP develitptttentt Sliu d he tte nsarme ione itself illiiring thIe act ual 011' den elritietit I I igure ; 5 I
liiis wourldl wcent tbitoius escept that urany [[ILs targetedl for embedded ormputer systems (i do niot generate codie lil
ieI host trd~iachit Secoindly. the orpposite IS true tttirt flOLs targeted tlt sitable htost dliiipiltir% do tilt generate c t(lt

I CS. Mianuial :omipilattoi, althouighi error prroner. is preterabrle to ilt uasing it 1101

ALGORITHM SIMULATED
MODELING HOL - -- OPERATIONAL

SOURCE CODE COMPILER COPTRENVIRONMENT

MODEL
DRIVER

II(;tIRI- 5.1 Algotrithmt Anialysis A Part ott the 0F:11 Developmtent Proceess.

It tlte 0I1P is iriginalt wsritte nlort the rlost comttputecr and interlaced with a simulated ensvirounent with prorper lest d rtvers.
it twoiuld neett lorgical (itt an I LI[(In terfaen with the sante ninuthleid env-tirnent and lest drivers lit do, tnost tit the
den elrptttent beftore an> -real" hardware inete part of' the 01<1 developmtent rrr test.

life lthird step woruldh he it) uiiei thle &trice source coide cross coitmpiledi for the act ual flight comttputer (t ilte na>) he test
tiook% neceded tot the 111(1 I where the flight computer is interfaced with life host cormputlet operat iontal ensvironment and

tent ultiveis

Ihecre e vist s toiday several 1101.s. nSome itt which are suited lio thre 01P envirornmet. that coimpil I odtie fromr "identical"
sOniic etidV for host . [L-IWt . antI target comrnputer. It in the tinse (it itt oiterai tonal ens irrintient Simuilat ion. and a net (il test
drinvems integratedI with ife host exnecuted 01<1. fotllower] by I [1(1 evecurted 01:P. and target comnpirter cecnted 011P that
allitw, fur a st ructured stepwise 01-P develoipmrenit ani(tent i Figure ;.2). Because onrly limited hard ware in utiliced durittg file
I Ii te phas- tif develorpment. the reat-worlif can he slorwed lto facilitate test probhes And dlata mol ng AndI cil oir. in-
ureistng the dlevelorpment view into the entire ioperatioinal environment.

lis apprrach rif couirse. requitres an Lip front investment in software torols such as cormpilers and 11 I([n that inight nuol he
necessary ortherwise, But [the visibility,- flexibility. anti case with which air 01-P tmay be develorped ias a set in miodules cordedl
fi an 110L<. integrated intio a tortal progr am. and tested as inodrules that Are integrated indiv-idunally) offers a st ructtir' des el-
rient approtachl where the code remrains virtually unchanged fromt the design analysts phase thrrough the orperatioin Iest

Phase

64

FI(;LIRI. 5.2 Slcpwise (t1P Ike~dolpinl .ind let.

SO.C EXECUTION

DAIS The DAIS project is the first totally digitla OP written in ani tOL. Vise seriticatlion wi's peiiriiined in .i lrge diial

compuilter wishk she simulation models befo)re aclually being loaded into the flight cOmlpters lor final cd~ssit Iloweser.

automiated aids were niot used for every sitge of Tte software. developsisent c ,cle.

-I

-- I

AN APPROACH TO A PORTABLE PASCAL

LANGUAGE FOR DIFFERENT ONBOARD

COMPUTER SYSTEMS

ST. REITZ

W. WIEMER

MESSERSCHMITT-BOLKOW-BLOHM GMBH

Unternehmensbereich Apparate

Postfach 80 11 49

D - 8000 Mdnchen 80

Abstract

In order to improve and to optimize software-development for microprocessors it is necess-

ary to produce portable software, including vertical (different host computers) and hori-

zontal (different target processors) portability.

In addition the method of structured programming should be applicable.

Programs, written in PASCAL, are developed and tested on different host-computers. To run

the programs on the target microprocessors the generated intermediate code is converted

into specific code.

The paper describes the objects of the implementation and way leading to a PASCAL

Programming-System. The selected HOL is PASCAL. The choice was made for the P4-Code com-

piler written in PASCAL, so that the extensions can be easily inserted.

The extentions are orientated on the IEEE-Standard, presented in the IEEE MICRO

(May 81, P 70).

Special realtime requirements are also planned.

The final Programming-System is divided into five parts:

1) Extended P4-Compiler

2) P4-Code Linkage

3) Optimizations and table-driven codegenerators

4) Target system simulator

5) Target operating system

The codegenerator consists of one package, which forms from the architecture description

the table, which is used as input for the table-interpreter. Its output is the micro-

processors'code. The following processors are used to run program:

a) AMD2901 Bit-Slice Processor

b) MC 68000

c) Intel 8086/8087

d) TI 9900

Optimization on the PASCAL-Source-Level is not planned. But the P4-Code sequences have to

be optimized in order to produce fast and short codes.

TABLE OF CONTENTS

1. Development of microprocessor-assisted systems

1.1 Development process

1.2 Development tools

1.3 Development phase documentation

2. Field of application

2.1 Definition of the language

2.2 Definition of the field of application

3. Development of the PASCAL system

3.1 System structure

3.2 Qualitative system requirements

3.2.1 Flexibility

3.2.2 Portability

3.2.3 Modularity

3.2.4 Efficiency

1. Development of microprocessor-assisted systems

Microprocessors are used increasingly to improve the efficiency and intelliqence f t--h-

nical systems. They are suitable for carrying out control activities and monit'rlno f,;nc-

tions. Software development accoints for a considerable amount of work.

However, other than in hardware development, engineering methods have not v'et xperienceA

a general breakthrough in the development of software, and the coordination of software ind

hardware development thus causes considerable headaches. Moreover, many system designs are

developed within the scope of multinational projects. This leads to additional comrunca-

tion problems and has an adverse effect on cost development.

The systematic application of software engineering methods and harmonization of hardware

and software design methods and instruments constitute a first step in overcoming these

problems. The improvement in communication between hardware and software designers and

within project management is another goal of vital importance. Communication is closely

linked with the documentation.

1.1 Development process

If we compare the conventional hardware design method and the software engineering proce-

dures (Koch, 79) we recognize that they are based on the following common features:

- top down design

- modular system structure.

Since hardware as well as software projects cannot be implemented without a phase concept,

we should start to improve the development process at this point. The preliminary hardware

and software design phase can be implemented in parallel. The communication interfaces are

described in detail in para. 1.3.

However, top down design and modular system structure are only applicable, and hence useful,

if the user software is written in a HOL.

Harmonizing the development methods for the hardware and the software without, however,

affecting their independence from one another must be aimed at when improving the develop-

ment process. This implies that the processor-dependent features are reduced to a minimum

in the user software. The life of a microprocessor has proved to be particularly short

where technical systems require constant adaptation to the latest state of the art. This

entails redesign and reimplementation, if the software is programmed in the assembler

code only. The relationship between development effort and lifetime needs to be improved.

A portable HOL source is used to provide decoupling of hardware and software.

To permit estimation of the costs for adaptation, it must become clear which parts of

the user programs are not portable.

The time of development can be influenced considerably by suitable design of the pro-

gramming system.

The programming system comprises all components and tests required to edit HOL pro-

grams.

1'74

1.2 Development tools

The software is designed and tested on the development computer with the aid of the

programming system. The microprocessor software can be tested on a development system or

on a host computer. The advantages and disadvantages of both media are illustrated below.

Host computer Development system

Protability: User software yes no

System software yes no

Debugging aids:

Symbolic debugging yes yes

In-circuit emulation no yes

Validation yes possible

Software tools many few

Multiuser Communication very good impossible

(data, documentation)

Scope of project unlimited limited

Shared resources yes no

Access to storage media rapid very slow,

laborious

This illustrates that many arguments speak in favor of the host computer principle, in

particular

- unlimited scope of project

- good communication

- portability of system software

- test methods.

However, the development system offers an additional test method, namely in-circuit

emulation.

The host computer provides two methods of developing portable software:

- through cross assembler

- and cross compiler.

MBB developed the UMICAS cross assembler. Cross compilation described below is a pre-

ferable but more sophisticated and costly method.

17-5

1.3 Development phase documentation

The documentation is the link between project management, and hardware and software deve-

lopment.

Hence, the major part of the hardware and software design can be run in parallel (Fig. 1).

Operability of hardware and software can thus be tested by mere comparison of the test

runs.

If, in addition, the user software is established in a structured HOL, self documenta-

tion is ensured.

2. Field of application

2.1 Definition of the language

As already indicated in chapter 1, the first step in improving the software quality con-

sists in establishing the programs in a HOL.

In general, the disadvantages of a HOL comprise:

- longer execution times

- additional memory requirements.

These shortcomings can be offset by suitable optimizations and by improving the efficiency

of the target processors.

A runtime and operating system is required for executing the translated user programs. Whereas

for program development the operating system of the host computer is used, the object

program is supported by the target operating system. This operating system can be written

in a HOL, thus increasing the portability of the programming system.

ADA, PEARL and PASCAL are available as a possible choice for the selection of a HOL.

On the multinational level, PASCAL is the only reliable language available.

The PASCAL compiler is written in PASCAL, so it is portable and suitable for extension.

Unfortunately, real-time language elements are not available; this lack can, however,

be easily compensated for by adding language extensions.

2.2 Definition of the field of application

The definition of standard PASCAL is not fully sufficient for its use in all intended

fields, covering:

- microprocessor application

- applications in control engineering

- description of operating systems.

rl

17-6

Additional language extensions must be implemented in compliance with the grammatical

characteristics. As some of the new language elements relate to pecularities of the

microprocessor, the PASCAL language philosophy is no longer strictly adhered to.

The extensions are largely based on PASCAt compilers which have already been modified.

Special language elements required for microprocessor application have been defined accor-

ding to the IEEE standardization (IEEE, 81) proposal.

Based on the IEEE standard, the following additional characteristics are desirable for

microprocessor application:

- direct memory access (PEEK, POKE)

- support of special input/output operations

- interrupt handling (DISARM, ARM)

- access to registers of the processor (MEMLOC, PUTREG, CALLEK)

- bit manipulation (type of data: BOOLEX)

Applications in control engineering call for

- a fixed point notation (fractionalized, for higher processing speeds)

- overflow correction.

As the extended PASCAL language shall serve to describe the flow of the control of

processes and the operating system, new control structures (Fig. 2) have to be eqta-

blished.

The process cc..:i'tutes the active element. The system takes over the coordination of the

processes. As 2'jcesses can be executed in parallel, the system must be supported by an

operating systew. Both system and process access routines which are defined externally and

combined to form a unit.

When combined, the extended PASCAL language comprises the following basic units:

- system

- process

- unit

- procedure

- function.

All of these five basic units can be compiled separately, whereby procedures and func-

tions can be combined into a unit constituting an intermediate code, or form separate

assembler code programs.

Some of the extensions suggested here comply with ADA language elements:

unit -- package

process -- task

fixed point -- fractionalized.

3. Development of the PASCAL system

Below are the four main characteristics which determine the design and implementation

of the PASCAL programming system:

- flexibility

- portability

- modularity

- efficiency.

3.1 System structure

The PASCAL source programs are analyzed by the P-compiler and translated into P-code p: o-

grams. The basic units are linked in the subsequent linkage run. The code generator trans-

form the compiled and linked program into the executable code with the aid of the tables

built by the code table generator. For test purposes, the interpreter can already -valuatc

programs in the P-code language. Execution on the target system is controlled by an opera-

ting system and a mon.tor.

3.2 Qualitative system requirements

3.2.1 Flexibility

Flexibility is a yardstick for the capability of the system to undergo modifications. The

impact of functional modifications on the system must, for instance, be reduced to a mini-

mum. This requirement affects the modular structure of the system. System components

which will be subject to frequent modifications must already be taken into account in the

design phase. Therefore, all components accessing target processor-related information

have to be regarded with particular care and must usefully combine the requirements of

the user and the system developer.

The components receive all machine-related information via the general input interface.

This interface must be designed to permit transmission of data to any processor without

affecting the internal structure. System parts which excl-isively use machine-related

characteristics have to be specified as autonomous modules.

Hence, the system must be clearly split into machine dependent and non-dependent parts.

The user provides the following information to the programming system:

- the PASCAL source program

- linkage editor information

- information on the target system which is required to generate the tables.

The target system communicates with the user via the monitor. The user should provide all

information which the programming system requires to generate any desired target pro-

cessor code without modification. The procedure applied is as follows:

- machine-related information is transmitted by means of tables with a fixed

architecture;

- abstraction levels are created with the result that the source language is

not translated directly into the object code.

In consequence, modifications made on the target system side have no direct impact on the

structure of the programming system.

The tables are broken down into groups of information. The individual parts are chained

by means of references. Since the abstraction levels are formed as PASCAL is converted

into the P-code (K.V. Nori, 76), a list has to be generated in the first instance

enumerating the valid P-code instructions. These instructions serve to obtain the block

lists which describe the architecture of the target machine. The block lists refer to the

code blocks, which describe the instruction architecture of the target machine.

17-8

The above-described procedure serves to

- reduce the redundancy of the tables,

- delay the generation of the final bit pattern, so that optimizations can be

inserted with the aim of improving the runtime.

Decoupling of table entries and architecture enables the user to set up his tables without

knowing the architecture. For this purpose an additional system component is required

which receives the relevant information by way of interactive communication and thereby

checks the inputs.

All measures to improve flexibility are only useful if

- the selected intermediate language can be fully described by means of tables,

and

- the command structure by means of generator instructions.

These two requirements must be regarded.

The characteristics of the P-code are as follows:

- the instruction set is fully defined (as for assembler code);

- information on the source program is lost;

o it is extremely difficult to identify control structures,

o the names of the data objects have been lost,

o compound data structures are completely resolved.

The P-code instructions define a simple stack mechanism without accumulator and index re-

gister. This mechanism can easily be mapped on the target machine.

The relatively small extent of the instruction set (- 100 instructions) seems to favor

the code table approach. Although the P-code language is rather limited in its extent,

it permits using the assembler instructions of the target processors despite of their

much larger capacity and compactness, since P-code sequences sometimes can be represented

by a single assembler instruction.

Prior to refering the second requirement, the following example shall serve to illus-

trate the principle described:

Block list Generator instruction

P-code instruction

MOV030 --- LDI MVA basic pattern

MOVEA

OR MODlQ address mode

OR REG4Q register source

OR REGlZ register target

The block list element MOV030 refers to a list of generator instructions which, upon exe-

cution, form the bit pattern for the MC68000 instruction MOVEA.L A4, Al.

MVA = 7000
OR OR

MODIQ = 0008
OR OR

REG4Q - 0004
OR OR

REGlZ 0200

720C

17-9

This method only applies to regular instruction architectures which are characterized by
few exceptions. Unfortunately, not all target processors fulfill this condition. However,
special generator instructions can be defined to cover these exceptions.

3.2.2 Portability

Portability is a measure expressing the transferability of a program from one software
or hardware nvircnm-nt to another. A distinction is made between horizontal and verti-
cal portability, the former signifying the portability of the user software with resepct
to several different target processors, the latter meaning portability of the programming
system with respect to different host systems.

Vertical and horizontal protability is accomplished automatically by implementing the
measures described in para. 3.2.1.

Portability of the programming system is measurable, since the design makes a clear
distinction between machine-dependent and non-dependent system parts.

3.2.3 Modularity

Modularity relates to both

- the basic language units and

- the system parts.

The basic units of the extended PASCAL language must be compilable and permit testing
independently from one another, regardless of whether the basic unit exists as a P-code
object or an assembler program. However, there are certain conventions which the assembler
code must observe.

Modularity, or rather modular structure of the programming system is a basic condition
for a portable and flexible system design. It means decompostion into autonomous functional
substructures which only use a single input and an output interface, respectively, for
external communication. If possible the internal functional structure should not be visible
from outside. This leads to a considerable increase in system flexibility. The programming

system is decomposed according to its functional structure.

3.2.4 Efficiency

Efficiency, i.e., low runtime and low memory requirements, are conditions that must be
fulfilled by the user software when processed in the target system. Special design de-
cisions affecting the runtime and memory requirements of the programming system have not
been made.

Since the user programs are executed under real time conditions, the requirements to be
met by the target system with respect to runtime and storage capacity are very high.

17-10

The first implementation of the system is planned to comprise two steps. The P-code pro-

grams are too comprehensive without compression and must be condensed by means of peep-

hole optimization. At the same time, the runtime condition can be improved, within

limits, by using special instructions of the target system. A number of P-code sequences

can be replaced by such instructions. Peephole optimization is accomplished by means of

specified transformation trees.

The runtime condition is systematically observed prior to the output of the object code.

In this phase, many data transfers occurring between storage cells are intended to be

replaced by register transfers.

PASCAL statements, such as the For statement, involving a long runtime, are thereby

subject to particularly close observation.

General procedures do not exist currently for that phase, so that a final specifi-

cation is still pending.

REFERENCE

G.R. Koch, 79 Systematisches Softwareengineering fUr Mikrocomputer

Elektronik Heft 21

K.V. Nori, u.a., 76, The PASCAL -P- Compiler Implementation Notes,

Bericht ETH ZUrich, ZUrich

N.N, 81, A Proposal Standard for extending High-Level Languages,

IEEE Micro

I_____

PoscalI Sourcs'

Programing
System

Processor System o=*FWM

Simulator Ab

LTesting
Testing Data ~ -Program

Processor
System

Written Tn Pasco!

r PASCAL Comnpiler
Host Computer Ecu. a Interpreter

Loader

Pop 1/...Code Generator
Editr FM ... MC operating System

Monitor

ASCAL Psrtmbler Seffoekncet o.M9

II

Is-i

TFE USE OF HIGH ORDER LANGUAGES

ON MICROPROCESSORS

R.M. BCrRDMAN

Marconi Avionics Limited
Elstree Way
Borehanwood

Herts.

SUMMARY

This paper deals with the use of High Order Languages on Microprocessors. It describes the special
features of the software tools - compilers, loaders, etc. - and support environments which are highly
desirable if the High Order Languages are to be used effectively.

It discusses the impact of High Order Languages on Programming and Documentation techniques and considers
the implications for both Off Line and On Line Testing. It identifies and discusses certain disadvantages
of these techniques.

The paper is concerned in particular with microprocessors which are embedded within larger systems and
which are dedicated to specific tasks, for example display drivers or signal processing units. For the
majority of systems these tasks are real time. For most avionics applications the microprocessors are
fitted with the minimum amount of memory, usually a mixture of ROM and RAM, and have a minimum of interfaces
with the outside world. These interfaces are frequently special purpose.

The practical application of a High Order Language to this type of microprocessor based project is described
in the form of a Case Study.

i. HISTORICAL BACKGROUND

The advantages of using High Order Languages on conventional software systems are well known. Compared
with Assembler Language programs, High Order Language programs are easier to write, easier to test, easier
to document and easier to maintain.

It is surprising then that, until very recently, these advantages have been exploited rarely for micro-
processor based software. This, however, is seen to be partly due to the type of problems that have been
tackled, partly for historical reasons and partly due to the lack of suitable languages and compilers.

Early microprocessors were not very powerful. They had only a limited instruction set and could only
address small amounts of memory. The tasks for which they were used were comparatively simple, requiring
less than a thousand instructions and quite small amounts of data for their solution. The programs were
frequently time critical and needed the precise timing of Assembler Language. Such programs did not
immediately warrant a High Order Language solution.

The requirement to use these simple microprocessors was usually determined by the engineer who was
responsible for designing a complete unit and who specified a microprocessor as a component in a larger
piece of electronic equipment. It was customary for him to write the necessary programs himself in machine

language and to debug them in the way he commissioned the rest of the equipment. Such an engineer, while
expert in his own field, did not always appreciate the problems of software maintenance or the advantages
of a High Order Language.

In addition, very few High Order Language compilers were marketed for microprocessors and those that were
available did not always allow programs to be split into ROM and RAM areas.

2. CURRENT NEED FOR HIGH ORDER LANGUAGES

Modern microprocessors have extremely powerful instruction sets. They can address more than a hundred
thousand bytes of store and are as fast as some minicomputers. Consequertly they can be used to undertake
large and complex tasks and so the volume and cost of microprocessor associated software is increasing
rapidly.

The use of a High Order Language for program development is an important step towards containing costs
and producing a more easily maintainable program.

High Order Languages make it easier to use techniques like structured design and modular programmeing and
these in turn make it easier to produce larger programs, since they allow several programmers to work on
the system at the same time.

High Order Languages discourage such techniques as writing self-modifying code or using coincidentally
occurring binary patterns as constants, both tempting concepts to the 'novice' Machine Language programmer.
These methods may save a few bytes of store but they make the system nearly unmaintainable in tho absence
of the oLiginal author.

Larger programs need better documentation. A well commented High Order Language listing is a useful part
of a documentation package, but it is nothing like sufficient.

18-2

Documentation should start with a firm detailed specification, written and frozen before coding starts, and
continue with a description of how the program is broken down into functional units and then into modules.
It should be completeo by a description of how the system is linked together and the tests that have to be
carried out to prove that the software meets its specification.

All this is normal good programming practice. But microprocessor based systems need some additional items.

The functional specification should be extended to describe in detail the target system on which the
program is to run. This description should include memory maps showing where ROM and RAM will be placed
and descriptions of the interfaceswith special devices. This should cover information about features like
status messages, reserved locations, timing constraints and error conditions.

i
The fact that some of this information will probably change during development is an important reason for
including it in the specification rather than an excuse for leaving it out.

Some means for verifying and identifying the PROMs must also be specified, since one unlabelled PROM tends
to look very like another. The minimum should be the inclusion of a checksum and the name, date and
version nuzmber of the system.

Another extra item which should be included in the documentation package is a description of how to
prepare a final system in ROM. This should include compilation options, information needed by the linker
and instructions on how to blow the system into PROMs.

3. THE NEED FOR A HOST SYSTEM

Most microprocessors used in avionics systems are embedded in other equipments and have a minimum of
memory and few standard interfaces. These target systems with their limited memory and lack of peripherals
are totally unsuitable for running a compiler or developing large programs. Hence a host system is
required. This system may be a development system supplied by the chip manufacturer or it may be a
general purpose computer.

A manufacturer's development system usually consists of a microprocessor chip with some memory, attached
to a floppy disc unit, a V.D.U. and a printer and supplied with a simple operating system which turns it
into a minicomputer.

In some cases this minicomputer can be plugged irto the target system thus gaining access to any special
interfaces. Such systems are invaluable during final commissioning stages because they allow a programmer
to find out why a system is misbehaving and to make and test changes quickly and easily. But they are
expensive, they can support only a small number of programmers and are limited to the one microprocessor.

A general purpose computer, on the other hand, can provide filing and editing facilities for a number of
programmers and can support several different types of microprocessor. However, it requires a cross-
compiler for each microprocessor supported as well as a compiler which produces code which will run on

the host system.

Choice of a host computer is limited by the need to transfer the code from the host to the target. Down-
line-loading facilities can be awkward because they tie up the host computer and common media between
equipment from different manufacturers are very rare.

4. SPECIAL FEATURES REQUIRED IN A HIGH ORDER LANGUAGE SYSTEM

Whether a Microprocessor Development System or a General Purpose computer is used for software development,
there are certain special features which the High Order Language System will need. In the context of this
paper High Order Language System includes the linker and loader as well as the language compiler itself.

These features fall into two categories. Features which enhance the ability to produce efficient code
which will run on the target machine and features which will allow programs to be tested adequately on
the host system.

To produce code which will run efficiently on a microprocessor the High Order Language must not be too
"High Order". It must allow the programmer to use "assembler-like" data structures, for example BYTE
ARRAYS, to carry out logical operations on single bytes, for example "AND", "OR","EXCLUSIVE OR" etc.,
and to use non-floating point arithmetic.

In order to drive the special interfaces the programmer must be able to address absolute locations and to
include short sections in Assembler code in order to allow fast and precisely timed sequences of operations.

Where the target system uses ROM is must be possiblo to divide the memory used by the compiled program
into three sections:- instructions, constants and vasiables, and also to be able to re-locate these sections
anywhere within the address space of the microprocessor so that instructions and constants can be placed
in ROM and variables placed in RAM. It must also be possible to connect blocks of instructions to the
appropriate interrupts to form interrupt service routines.

The compiler should produce an Assembly Language listing of the code produced, which should include
comments which link blocks of instructions to lines of High Order Language text. Such a listing is
invaluable during the finai commissioning stages when it is usually necessary to stop the program at
particular points and to inspect the contents of variables.

I,

I x-3

To produce code which can be tested on the host systen the High Order Language compiler must be able to
include or exclude portions of source text. For example, it may be necessary to write characters into an
absolute location to drive a particular display. However, on the host machine such a display will not
exist and to write to an absolute location would be meaningless. Hence the instructions to write char-
acters to this location must be replaced by instructions to write characters to a standard display. During
the testing phase the program will be continually altered and recompiled either for the host or for the
target system and it should be possible to choose either ore set of instructions or the other without
altering the program.

5. PROGRAMMING TECHNIQUES

Programming techniques follow normal good High Order Language programming practice but neeu to be extended
to take account of the special features of microprocessors. These are the need to test the program on
both the host and the target systems and the need to produce an efficient program.

The text replacement features mentioned in the previous section are used to bridge the gap between the
host system and the target system. Code segments applicable only to the target system are replaced by
equivalent High Order Language text which is meaningful on the host system and extra I/O statements used
only on the host system are added while common mod'les remain unaltered.

Modular programming is very important on microprocessor systems because of the number of special interfaces
and special devices used. Each special interface or device should have its own dedicated module which can
be checked out as soon as the hardware is available whether the re-t of the programs are ready or not and
if one of these interfaces changes during the development only a single module need be altered.

Another goc idea is to give hardware dependent features, such as absolute addresses, symbolic names which
are linked to the absolute value only at one place. This has two advantages, firstly if the feature changes
only one line of code need be altered and secondly a programmer trying to maintain the system in years to
come is not left to puzzle over the meaning of a strange constant which seems to pop up all over the place
without explanation.

Where a High Order Language is used in a microprocessor system it is important that the compiler is used
as efficiently as possible. It frequently happens that there are several ways of writing programs in
a given language to produce the same results. For example, data can be held in either one two-dimensional
array or in several one-dimensional arrays. Frequently there is little to choose between the various
solutions from a source code point of view but there are often large differences in the amount of code
produced and in the running time of the resulting program. In the previous example each use of a two-
dimensional array might generate a multiplication and an addition as well as an indexed load whereas the
one-dimensional array will use one pointer to reach the item required so that no multiplication is needed.

Compilers frequently contain optimising features such as the evaluation of common subexprtssions or the
efficient use of registers but these features need to be understood if they are to produce worthwhile
savings.

In order to avoid inefficient constructs it is necessary to know what code is generated by each construct
and to choose a suitable compromise based on the nature of the problem. Similarly, if there is a choice
of microprocessors able to do a given job the one with the 'best' compiler should be chosen. The fact
that the microprocessor manufacturer has provided his chip with a variety of comp!icated and powerful
instructions is no asset if the compiler does not use them. Many compilers use a surprisingly small subset
of the order code.

6. OFF-LINE TESTING

A High Order Language System, with the features described in the previous sections, allows the programmer
to test his software in a radically different environment from that in which it will eventually run.
This has enormous advantages. For example, each part of the system can be tested, possibly in slow motion,
just like any conventional non real-time program on the Host computer. Programs can be tested under
precisely controlled conditions without any possibility of interference from imperfectly functioning
hardware. Error conditions which cannot normally be produced on demand can be simulated and programs
which would normally receive variable real-time data can be fed with precisely controlled, repeatable data.

An even bigger advantage is that large parts of the system can be tested without needing to use any special
hardware rigs. This means that programmers and hardware development engine-rs do not hold each other up
and that hardware and software development can proceed independent y until very late in the project, which
should give a big saving in both time and costs.

In many cases it should be possible to test the complete system off-line to the point wh.,re the only
remaining errors are due to timing or to unexpected hardwar, features.

The off-line test system is not just a development tool. It is also a very useful maintenance tool. ,sty
fault which is reported cat, be tried on the off-line system and if the fault is repeatable there, its
diagnosis becomes easier because of the debugging facilit~es availakle. In addition, modifications to
correct the fault can be tested under controlled conditions without recourse to a hardware rig and without
the necessity of producing a set of 'PROMS'.

1-4

A set of files containing tests and expected results may be built up and used as a partial acceptance
test for each modified version. The files should be enhanced and updated whenever a fault is cleared
or a modification introduced, thus ensuring as far as possible, that clearing one fault does not induce
another.

7. ON-LINE TESTING

Once the system has been tested exhaustively off-line it must be commissioned on-line. At this stage the
only untested items should be the hardware interfwces, timing and possibly a small number of code inserts.

The us of a manufacturer's development system and a logic analyser are invaluable at this stage. The
manufacturer's development system provides RAM instead of ROM and allows the use of extra input/output
statements. This means that the program can easily be loaded, often from flo-py disc, and that the
systematic set of tests carried out off-line can be repeated on-line.

This use of the manufacturer's test system must be planned in ad ance. Firstly the ROM in the final
system must be placed in a part of the address space that may be repl-ced by RAM in the test system and
any memory mapped addresses must be reserved in the test system. Secondly, the High Order Language Input/
Output routines which were used on the host machine must be duplicated on the test system so that the same
procedure calls may be used. If timing constraints are such that Input/Output calls cannot be used then
results should be stored in a circular buffer in memory and printed out after the system has completed its
test run.

8. DISADVANTAGES

Any new technique brings with it some disadvantages and some constraints. The principal disadvantage of
programs written in High Order Languages is that they tend to require more instructions to carry out a
task and to run more slowly than those written in assembler language. This means that additional ROM must
be provided and occasionally a more powerful processor. To test a program off-line as well as on-line
means that the extra code has to be written, possibly as much as 25% of the total.

There are also constraints imposed upon the hardware design. For example, the part of the address space
reserved for instructions must be contiguous and the time dependent features must be minimised However,
many of these constraints are accepted good engineering practice already.

Finally, the programmers concerned must be familiar with both the High Order Language and the assembly
language of the microprocessor.

9. PRACTICAL APPLICATION

The Author has recently been responsible for a microprocessor project using these techniques. The
language used was CORAL 66 which is one of the standard languages for all British M.O.D. projects. The
target system was a Motorola 6800 system and the host system a Texas 9900 system. The two CORAL compilers
were both produced by the same manufacturer which minimised any differences between them. CORAL 66 has
an official definition published by the Ministry of Defence. It includes most of the features mentioned
including absolute addressing and fixed point arithmetic and the particular compilers used had conditional
compilation features which make it very easy to include and exclude text portions.

Eight systems were produced, each occupying between four thousand and seven thousand bytes of ROM. They
were written over a period of twentyone months by a team varying in size from one to four programers and
were documented to M.O.D. A.V.P. 70 standards.

The systems all had similar functions and had one interface in common. They were all written in a very
modular fashion and a number of modules were common to all systems.

At the start of the project the flow of information through the complete group of systems was specified
and from this the functions of each individual microprocessor were defined. At the same time a coummon
format for all messages passing between processors was specified.

Next a specification for the first system was produced, giving details of the hardware to be used, all
software interfaces, timing constraints, data to be held within the system and precautions to be taken
against system malfunction.

This specification, which was used as a model for all the subsequent specifications, was a very good one
and we were lucky to have a customer who produced such a comprehensive specification and then did not
change it throughout the project.

Subsequent specification appeared at regular intervals, always before we started work on the system
concerned. Shortly after the first specification was agreed a test rig was agreed and we started work
on the first system.

At the start we had no target system hardware and all initial work had to be done on the ,ost system.
We therefore designed a very simple overall framework which would run on either processor and started
writing the least processor-dependent modules.

When the target system equipment did appear we had to transfer quite a lot of CORAL source text from one
set of equipment to the other which we did by writing a special 6800 program which would read 9900 floppy
discs. Once transferred the programs all compiled and ran to give the same results.

18-5

The first system, although by no means the largest, t ok the longest time since this included the time
taken to understand the test rig. The remainder took varying lengths of time depending on their size and
complexity.

A great deal of thought was given to the methods of testing the systems and the same method was used for
oP1 systems. It would have been quite impossible to rest the systems with all possible combinations of
inputs and hence three arbitrary objectives were laid down. These were:-

- All statements had to be obeyed at least once.

- All input messages would be tested with a zero and a non zero value in each field.
- All output messages would be produced with a zero and a non zero value in each field.

These were real-time systems and hence the test data had not only to have the correct numeric values but

also had to be sent at the correct time.

To achieve this an 'on-line test system' was written which ran on the test rig and which fed data to the

system under test and recorded the results. The inputs to the test system were files of data items, each

data item consisting of a numeric value and the time it should be sent.

The 'on-line test system' took more effort than any single target system.

The test data files were also fed into the off-line test program which ran in the host computer and which
tested the program in 'slow motion', producing a lot of diagnostic print out as well as the required

results

These methods have produced an exceptionally reliable group of programs which (with the documentation we

have also written) I believe can be maintained for many years. If this is true the effort will have been
worthwhile.

1Q-'

SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT

Mr R Dibble

Ferranti Computer Systems Limited

Ty Coch Way

Cwmbran

Gwent NP44 7XX

United Kingdom

SUMMARY

The MASCOT methodology was developed to contain increasing software costs and ensure the production of
reliable software. Ferranti programmers have produced standard MASCOT products and developed several large
real time applications using MASCOT. Their experiences are discussed in this paper.

A basic feature of the methodology is modularity, which produces benefits at all stages of software
development, although the degree of decomposition required by MASCOT is a problem for most projects. MASCOT
identifies three types of modules (Activities, Channels and Pools) and represents the design in a diagram-
matic form (the ACP diagram) which is regarded as a useful design tool and an effective representation of
that design. Formal definition of data and its access mechanisms is an improvement over existing practices
but whether it significantly eases the problems of multiprocessor design is disputed.

Overall there is a price to be paid for the MASCOT method in terms of runtime overheads and we see how this
problem was resolved by various projects. The advantages and disadvantages of MASCOT are discussed and
related to avionic software requirements. The relevance of the design philosophy to the imminent arrival of

Ada iz considered.

1. INTRODUCTION

MASCOT is an acronym for a Modular Approach to Software Construction Operation and Test and as such is a
, esign methodology supported by a programming system. It was developed in the United Kingdom during the

Ivsus at RSRE (The Royal Signals and Radar Establishment) with the specific aim of containing the trend
towards increasing software costs and ensuring the production of reliable, maintainable software. An
'Official Definition of MASCOT' was first published in 1978 and was expanded into the Official Handbook of
MASCOT (MASCOT OH - Reference 1) in 1980. MASCOT is now being used by many suppliers of real time software
and in particular for defence applications. Since the Ministry of Defence is a major customer of FCSL
(Ferranti Computer Systems Limited) it is not surprising that MASCOT has assumed an ever increasing
importance for this company in recent years. We are, in fact, currently engaged in the development of
several large real time applications using MASCOT and it is the experience gained on these projects which
forms the basis of this paper.

The main areas to be addressed are:

(i) A short description of MASCOT.

(ii) An outline of FCSL involvement as a supplier of standard MASCOT software for its own range of

computers, and as a user, in the production of real time applications software.

(iii) A discussion in terms of the claims made for the design methodology and the standard
facilities provided, and an evaluation of the software development system and real time
executive. The run time overheads incurred by the MASCOT approach are addressed and we see
how projects have found it necessary to circumvent the rules in order to reduce these
overheads.

Lv) With several projects in develop. ent sufficient material is now available to make it possible
to compile various statistics for MASCOT based systems. These are presented together with
some empirical estimating rules devised from them.

(v) The impact of the arrival of Ada as an international programming standard is assessed In
order to evaluate the relevance or MASCOT as a design methodology for the new language.

(vi) The concluding section consideri the advantages and disadvantages of MASCOT and relates this
discussion to the particular requirements of avionic software.

My thanks are due to the representatives on the FCSL 'MASCOT Experiences Working Party' who, during the past
year at meetings and in discussion papers have provided the information without which this paper could not
have been written.

2. MASCOT

MASCOT is a method of designing real time computer systems which is supported by prog, a-,ming tools for use in
realising such designs. The software structure of a real time system is defined in a formal manner which is

ii i

19-2

independent of both computer configuration and programming language. This structure is highly modular and
is characterised by a close correspondence between the functional elements identified during design and the
constructional elements of which the system is actually built. Each element has an explicit interface
specification, a feature which adds considerable integrity combinec with flexibility.

The MASCOT system consists of ACTIVITIES, which are the units of scheduling, and IDAs (Intercommunication
Data Areas) which comprise data and their access mechanisms. Data which is shared by activities may only be
accessed by means of access procedures which incorporate calls to the real time executive to achieve
synchronisation and mutual exclusion of competing activities. Two types of IDA, designated CHANNELS and
POOLS, are identified in the MASCOT OH. A channel provides uni-directional data flow and is further
characterised by the consumption of its data by readers. The pool allows bi-directional data flow and the
data is not consumed by readers but is amended by writers. Access to peripherals is achieved by HANDLERS and
DRIVERS which are effectively access procedures which interface the peripheral device to a channel. During
design, the system can be represented diagrammatically as a network diagram known as the ACP (Activity-
Channel-Pool) DIAGRAM which shows all the system elements and their interconnections.

The real time MASCOT based system runs under an executive program called the KERNEL which controls the
scheduling of activities and the handling of interrupts. A number of basic operations can be requested by
calling kernel routines called PRIMITIVES. In particular, JOIN puts an activity on a queue for exclusive
access to data and LEAVE is called to relinquish exclusive access to that data. Another primitive called
DELAY is a timing primitive which allows an activity to discontinue processing for at least a specified
period of time. No reference is made to the remaining primitives in this paper.

MASCOT provides the programming tools for constructing a system. Activity and IDA specifications
(templates) are added to the MASCOT Construction Database using the ENROL facility. The actual system
elements are produced using CREATE and built into a 3ubsystem using the FORM facility. The real time system
consists of a number of subsystems which can be controlled at run time by the functions START, TERMINATE,
HALT, RESUME. If the subsystems comprising the target system are fixed at run-time the system is said to be
FROZEN but some MASCOT implementations allow those subsystems to be changed on-line and in this case the
system is said to be EVOLUTIONARY.

3. FCSL and MASCOT

Following trial implementations of MASCOT by the Ministry of Defence FCSL began initial studies in 1976 and
were invited to join the MASCOT Suppliers Association which was formed, later that year, to aid the transfer
of ideas to industry. Research continued and in 1979 the development of MASCOT software for our own
computers commenced. In association with Software Sciences Limited, software for the Argus 700 and M700
computers was implemented and formally issued as 'MASCOT 7001 in 1981. At tie same time FCSL have developed
MASCOT software for our other range of minicomputers (the FM1600 range) and also started work on several
large real time applications which use MASCOT. These systems are targeted on various processors and range in
size from less than 256Kbytes to over IMbyte. Various implementations of MASCOT are used in these
applications and therefore a wide range of experience has been acquired.

The projects include:

(i) An Action Information Organisation (AIO) system for the Royal Navy which interfaces to
weapons and sensors. The target system configuration is two FM1600E processors and over
IMbyte of (private and shared) store. For program development a linked VAX 11/780 - FM1600E
program generation system was used.

(ii) Intelligent 2-man consoles for the above system, targetted on two M700 processors and
256Kbytes of store. Program development was hosted on an Argus A700G Computer.

(iii) Conversion to MASCOT and multi-processors of an existing single processor ticn-MASCOT AIO and
fire control system. The target is again twin M700 processors and 256Kbytes of store and
program development was on an Argus 700G computer.

(iv) A Central Tactical Processor (CTP) for a mission avionics simulator Interfacing with sensor
simulators, keyboards and displays. The system was targetted on a PDP11/34 computer with
256Kbytes of store linked to the rest of the system by a PCL data highway. A PDP11/34
computer was also used for program development.

In addition to real time applications, the MASCOT approach hzs also been used by the MASCOT project team
itself to implement a variety of support packages and the experience of this team has also been taken into
consideration in this paper.

4. PROJECT EXPERIENCES

Let us consider MASCOT from the point of view of some of the claims made in relation to the MASCOT concept.

4.1 Modularity

This is certainly a basic feature of the MASCOT philosophy but it would also be true to say that we at FCSL
have also learnt the need for modularity and that our existing design practices enforce almost as much
modularity, although MASCOT has the additional feature of modularity of data areas (IDAs) which is
formalized to a greater extent than our own existing practices. The modular approach will undoubtedly pay
off during the implementation and maintenance phases. The correctness of the design stage should be easier
to establish and there is also the additional benefit of improved visibility and control for the project
manager.

IQ_

The main problem has been to decide the degree of decomposition in a given design. Natural functional
modules (ie Activities) seem to be small and therefore the activity scheduling and communication overheads
will be high. Only one of the projects studied felt that they could afford the overheads and complexity of a
true one activity - one function design. In areas such as keyboard processing and displays, all the
remaining projects found it necessary to combine numbers of related functions into one activity. Often the
principle applied is that decomposition will only go as far as is strictly necessary within the constraint of
the need for parallel processing. While this certainly reduces the overheads it partly negates the point of
using MASCOT and of course costs in terms of the loss of benefits of modularity (although projects would
claim that these large activities had been given an internal structure to offset this).

MASCOT does recognise the problem of activity sizes and introduces the idea of decomposition of the system to
the lowest level and then recomposition (recombining activities to form larger ones) until the final design
is achieved. This was regarded as a somewhat idealistic approach, although it may be conceptually what
happens. In practice it was thought more likely that the 'experience', 'flair' and 'creativity' of the
design team, given the requirements and constraints of the systems design, are responsible for achieving a
practical level of decomposition. Furthermore, we can conjecture that decomposition followed by
recomposition to a given level may not produce the same result as decomposition directly to that level.

A further problem may arise with functional decomposition because previous design methodologies have
favoured a tree structure whereas a MASCOT design is a flat network. Is the same method of decomposition
valid? Functional blocks may be different because communications are different and in MASCOT there is the
need to minimise communications through channels to reduce overheads.

It was felt that a MASCOT system was no sore likely to retain its modularity throughout its life cycle than
any other type of system. For example a fully decomposed design may require recomposition of certain
activities to reduce store and load overheads, while if decomposition has not been taken to its lowest level
then further decomposition may be required to meet system constraints (e.g Memory mapping or multi processor
requirements). However it is recognised that it is important that maintenance and enhancement do not involve
reviewing the total system design every time for each fault or modification.

4.2 The ACP Diagram

None of the systems considered here had produced an overall software design using an ACP diagram. Instead
the systers had been partitioned into a number of tasks and ACP diagrams had been produced for each task ir
subtask. The loss of overall design visibility has been partially offset by the production of higher level
design diagrams such as, for example, a TCP diagram where the T stands for Task (a small 'subsystem') and the
diagram shows inter task communications only. The reluctance to produce an overall ACP diagram at the onset
of the project stems from a belief that for large systems the AC? diagram is too large and too complex to b-
of use and diagrams drawn retrospectively tend to confirm this. The problem can be alleviated to a certain
extent I" mechanising the process such that the ACP network could be held as part of the database in an
automated software development system. Even then, however, the overall picture will be lost if the design
cannot be represented on, say, two sheets of lineprinter paper. The overall picture of the project whico the
single ACP diagram can give can provide vital information to the designer on, for example, incorrect system
partitioning and critical areas of high connectivity and for the software manager the ACP diagram provides
the information to help plan the system implementation.

Suggested solutions to the problem of ACP diagram complexity include the separation of the diagram into 2
components (AC and AW) or the production of the diagram incrementally as each task level design is completed.

Some reservations that exist about the ACP diagram must be attributable to lack of familiarity. Current
designers have not, in the past, been required to show so much detail at such a high level of software design
and previous representations or design have been in terms of control flow rather than data flow.
Nevertheless the ACP diagram was generally regarded as a useful design tool and an effective way of
representing that design for documentation purposes.

One problem with the ACP diagram is the restriction in the definition of IDAs to just two types. Some IDAs
cannot readily be classified as either a Channel or a Pool and although MASCOT does not exclude other IDA
types there is no standard representation available. Should a designer wish to show an object of
intermediate characteristics on an ACP diagram he is forced to invent symbols with a consequent loss of
stand.rdisatton.

U.3 Intercommunications Data Areas (IDAs)

Clearly it is a good idea to define data flow between modules and the formal nature of the IDA interface is an
Improvement over existing practice and ensures that the interface is specified early in design.

Access Procedure The concept of the Intercommunications Data Area (IDA) incorporates the encapsulation of
data, with that data accessible only by procedures which form part of the IDA. The separation of cod, from
the detailed data structure is a good idea, which is by no means new to FCSL. However the use of access
procedures has previously never been a formal requirement of the methodology as it is in MASCOT. It was felt
that the MASCOT Official Handbook does not place enough emphasis on the numbers of access procedures (400
or 500) that will be generated, for systems of the size and complexity of those considered in this parer.
The management and documentation of access procedures is a significant task and great care is required to
avoid the repetition of code. For future projects it is suggested that greater attention is given to the
allocation of effort and timescales for the production of IDAs in the same way as activities. MASCOT
statistics and estimating rules reproduced in section 5 should help in this task. The MASCOT OH
recommendation that experienced programers undertake IDA design had not been strictly followed, possibly
because of the number of channels and pools, with their many access procedures, had proved to be such a large
proportion of the system.

I

If we look at access procedures for channels we find that these were nearly always simple, sometimes being
used for control only. The examples presented in the Official Handbook have been followed and standard
channels used in some cases. There was no general agreement about the complexity of access procedures for
pools. Sometimes these were non-trivial to the extent that the majority of the work in a given activity was
performed in the access procedures. Such access procedures, which can be termed functional access
procedures, were the subject of some discussion, with claims that they resulted in loss of modularity, loss
of design visibility and indeed were not truly in the spirit of MASCOT. Projects were generally agreed that
this was not the case. Functions were not 'hidden' in access procedures since they would not have appeared
explicitly on the ACP diagram even if they had been included in the body of the activity. Since our standard
procedures require that all access procedures are fully documented, all the required information was easily
accessible to anyone having access to the software documentation. There was no loss in modularity and it is
difficult to see the difference between including the function in an access routine, or in a service routine
which would often be the alternative for functions such as, for example, axis conversions. It was thought
that the MASCOT OD does not currently preclude functional access procedures although this may represent an
evolution of the methodology from its original aims.

Another technique which can be used in access procedures is the block transfer. This was generally thought
to be undesirable because of the loss of interface checking, although it can be argued that gains in
efficiency would outweigh the limited type checking available in the CORAL language (this could not be said
for an implementation language as strongly typed as Ada). It was noted with some dismay that we are
encouraged to use this technique by the examples presented in the Official Handbook of MASCOT which show the
use of block transfers.

Large Pools The problem of access to large poois such as a Main Track Table had been considered by each of
the projects. For such a pool a choice has to be made between one or several control queues and if several
control queues are adopted then there is nothing in MASCOT to prevent deadly embrace. The only safeguard is
a procedural one which requires activities to always JOIN in the same order but, of course, manual
procedures are far from infallible. As a comparison, it is worth noting that the FCSL Supervisor (real-time
executive) for the FM1600 computers requires all data areas to be secured with one procedure call and
prevents nested calls. Pools access is less of a problem if a fully cooperative scheduling algorithm is
selected since an activity will not be rescheduled until it is voluntarily suspended and so is guaranteed
protection when accessing data.

4.4 Multiprocessor Systems

The question of how well MASCOT handles multi CPU system design requires some discussion, particularly in
relation to the ACP diagram and the concept of IDAs as interfaces.

In theory the whole system is shown on one ACP diagram so multiple instances do not occur. However, if the
system is partitioned between two or more CPUs then more than one copy of an activity may be required. Since
each instance is functionally the same it Is misleading to give them unique names yet you do not want two
items with the same name on the ACP diagram. The problem can be avoided by having one ACP diagram for each
processor but this presupposes you know how the functions will be distributed between processors.
Alternative high level design representations encounter the same problem and it seems that it is difficult to
do 'top down design' unless you know some of the answers before you begin. In practice, aspects of the
bottom level (hardware configuration, public libraries, MASCOT kernel implementation) are defined before the
start of software design.

We have already stated that tha formal nature of the ID and its early specification are an improvement over
existing practice. As such this is bound to assist in implementing a multiprocessor system but whether
MASCOT significantly eases the problems of multiprocessor design is debatable. Several of the systems
considered in this paper are dual processor configurations. The overriding considerations in their design
were the location of system functions, bus loading and system response. Once the partitioning was achieved
using these criteria the MASCOT method was applied to individual processors. It would seem likely that the
future enhancement of these systems will be more easily achieved because of the MASCOT design but this has
yet to be shown in practice.

4.5 Portability of MASCOT Applications

The claims made for the portability of the MASCOT applicati,n have yet to be tested at FCSL although some
design work carried out by the MASCOT project team on certain support packages had been implemeited on
various computers and it would seem, therefore, that the MASCOT design is probably portable except where
implementation dependent features (handlers/drivers) are involved. It was generally felt that code
portability is as (un)obtainable as it would be using any constructional philosophy given the amount of
detail left to the implementor of the MASCOT machine (which is equally true of CORAL, the language in which
most MASCOT applications are implemented and which itself exists in a number of dialects).

Certain advantages must accrue from the use of any standard methodology and these will hold equally true for
MASCOT. Programers and designers will be 'portable' between projects with the minimum of retraining and
customers, engineers and managers should more easily be able to understand software documentation. These
benefits should become more apparent with the second generation of MASCOT systems but will depend to some
extent on the degree of standardisation that is achieved by the manufacturers of MASCOT systems and on the
degree of adherence to the principles of MASCOT that individual projects achieve.

4.6 Prototyping

Prototyping, the idea of implementing the design of an embedded real time system on a large mainframe
computer in order to check the correctness of that design, is a concept recommended by the MASCOT Official
Handbook. It is however a practice that has not yet found favour among the MASCOT projects who felt there
was little to be gained by prototyping, rather than developing software for the target machine immediately.

I.

There was, perhaps, a reluctance to attempt quick try-out solutions and projects preferred to rely on
rigorous design methods and systematic setting-to-work procedures to achieve the desired result. The cost
effectiveness and indeed the practicality of prototyping large and complex systems was doubted. In su~h
cases it was thought that the customer was unlikely to pay the cost of prototyping, as described in the
MASCOT Official Handbook, and that this would rule it out in most cases.

4.7 Standard Facilities

MASCOT, the programming system, provides us with a number of standard facilities both during system
construction and at run time.

Construction

The existence of a formal construction sequence based on the ENROL, CREATE and FORM facilities was regarded
as a positive advantage to the implementation of a system. Generally an incremental approach to construction
was adopted but one project had decided to always recreate the database from scratch (to simplify control).
The FCSL MASCOT machines (for M700 and FM1600 computers) do not include an Evolutionary facility. This was
the result of a deliberate decision related to the types of operational systems produced by our 2ompany for
which the capability of dynamically varying the design of the software was not required. Further more the
hardware needed to support such facilities (host computer or fast backing store) is not usually present.
Such hardware would be present during the software development phase and the usefulness of evolutionary
facilities during software testing was considered. However there would be great difficulty in controlling
the build state of the system, and therefore associated Quality Assurance problems. For example, in the case
of a system controlled from a VDU terminal, there would be no hard evidence of on-line deletions etc. made to
an evolutionary system.

Run Time Facilities

In-line monitoring facilities provided by MASCOT had been used during testing (in particular, RECORD was
used to obtain execution history in correct time sequence with primitive calls) and although there was some
criticism of run time overheads of using Monitor, it was generally thought to be acceptable and to compare
favourably with similar systems. It is not likely to be used for Trials Recording because of the special
requirements (data rate, message sizes) of that activity.

Subsystem Control has been implemented in the FCSL MASCOT even though evolutionary capabilities are not. The
control functions can be invoked in a frozen MASCOT system during software development and operationally. In
the latter case START and TERMINATE had been used to reconfigure the system in response to hardware failures
while, during software testing, subsystem control had been used for emulation and for fault diagnosis. The
HALT and RF.SUME functions had not been used by any of the projects.

The scheduling of the real time activities and the synchronisation of data access is achieved by a run time
executive called the MASCOT Kernel. The scheduling mode provided depends on the particular MASCOT
implementation but Ferranti provide both pre-emptive and co-operative algorithms. The facility for having a
user timer interrupt program has also been provided and is used to achieve cyclic stimulation, the Delay
primitive being regarded as unsatisfactory for our type of system. Variable time slice length is provided
but it was felt that it ought to be possible to allow time slice length to be infinite. Since the run-time
overheads resulting from the use of the MASCOT methodology appear to be high, it is essential that scheduler
and its primitives perform as efficiently as possible and to this end the use of in line code and
microprogram should be considered. At least one manufacturer has partially implemented MASCOT kernel
facilities in hardware for its own range of computers.

4.8 MASCOT System Constraints

So far we have looked at the facilities MASCOT offers in terms of the collected reactions of those projects
who have experience in their use. To provide these facilities there is a price to pay in terms uf run time
overheads and this has constrained projects in their use of MASCOT such that they have found it necessary to
circumvent either the letter or the spirit of MASCOT in order to minimise the overheads.

MASCOT Overheads

These are incurred in a number of ways:

Channels The concept of channels for passing data leads to the repetition of data throughout the system with
extra processing required to carry out the message copying. Furthermore the channel and its control queues
are always maintained even when not being used.

Acceqs Procedures The action of a program in reading or writing a given data object has to be performed
somewhire, but by incorporating the access mechanism into a separate procedure, overheads are incurred which
may becume significant in a large system. The large number of eccess procedures generated in these systems
has already been noted, and if they are not carefully controlled additional penalties may result from
duplication of code. The use of primitives to synchronise data access also imposes extra processing load on
the system.

Scheduling MASCOT activities are non-terminating and therefore each activity requires its owa stack in
which context data may be stored. In a large system this will be a significant amount of data compar -d, for
example, with the F1600 Supervisor (the real time executive for the Ferranti FM1600 computers) which stores
only static data (4 words) on a per activity basis with additional space for context data being allocated
for each of the three priority levels.

19-6

4.9 MASCOT 'Avoidance'

Most projects, realising tne potential overheads of using MASCOT, have to a greater or lesser extent made
concessions to the necessity of minimising store and load. Some examples are given below:

Decomposition By not adopting the degree of decomposition that the 'spirit of MASCOT' would require, savir.gs
in both store and load can be achieved because the amount of message passing through channels is reduced as
are the associated re-scbeduling activities, and the number of stacks required.

Pool Access To reduce overheads when accessing pool data, MASCOT primitives were not used to synchronise
data access. In one of the systems, since a fully co-operative scheduling algorithm had been adopted, mutual
exclusion was guaranteed anyway. However, other systems relied on program priorities to secure data or
accepted the possibility that some data (for display) might be instantaneously corrupted. In one system
direct referencing of data objects was allowed within a subsystem, providing that the pool was internal to
that subsystem. In this case the activities within the subsystem operated their own data access
synchronisation without invoking MASCOT primitives.

Channels Projects had favoured simple channels to the extent that channels often contained no data but were
simply a means of passing control. In many cases to save primitive calls activities 'JOIN' a control queue
at initialisation and never 'LEAVE'.

Peripheral Interfaces This was an area where strict adherence to MASCOT principles sometimes led to
unacceptable overheads. In particular we find that addresses rather than data are passed between
activities.

For example, in an output situation, addresses rather than the actual data to be output, were queued. This
reduced the overheads of message passing, kept buffers to a reasonable size and also allowed data to be
updated while it was waiting for the peripheral to become available. In a second example, a peripheral
control subsystem, the subsystem controlled the input of data from the peripheral to a generic IDA, whose
address was supplied by the user activity when requesting a function of the subsystem. In this case, to
increase the security of this approach the IDA header contained an address dependent pattern which could be
checked by the subsystem to trap any attempt to paso an invalid address.

4.10 MASCOT Load

Some estimat's of load due to MASCOT have been made and the figures obtained suggest that MASCOT imposes an
overhead of 30% to 40%. Measurements have been made on the avionic simulator which produce a figure for the
actual load of the MASCOT kernel of 35-40% but this is a hosted MASCOT system and this figure therefore
includes the load due to the RSX1l operating system.

Allowing for possible errors in the estimated figures and for some debate as to what actually constitutes
MASCOT kernel load, there seems to be no doubt that a real time MASCOT-based application will have a much
higher scheduling overhead than previous systems.

5. MASCOT STATISTICS

5.1 With several large MASCOT applications in development, the raw material exists to permit the
compilation of various statistics and to allow preliminary conclusions to be drawn regarding the form
of a MASCOT based system. The size of the data sample from which the statistics were derived is shown
in table 1.

ACTIVITIES CHANNELS POOLS

System (i) 190 153 134
System (ii) 41 40 11
System (iii) 126 126 16
System (iv) 39 38 44

TOTAL 396 357 205

Table 1 : Overall Statistics

So far the investigation has been limited to channels and pools (IDAs) and the results are presented in
figures I to 5. Currently a further exercise is in progress to collect statistics on activity siZes although
no results are yet available.

Two initial warnings are necessary. Firstly the production of such data is a wholly manual process and as
such subject to error. There may be small errors in the data but these will not invalidate the overall
picture.

Secondly the reader will find it impossible to correlate various parts of the data which he might reasonably
have expected to be able to do. The difficulty is that all the projects are incomplete (in some sense).
There are dumy access routines, access r, itines whose declarations have been turned into comments

(presumably to be implemented properly in due course), channels with no readers, channels with no writers,
and so on. In general as much data as possible was extracted from the material, thus for example a dummy
access routine can be inclu.ed in figure 4 but would not be relevant for figure 5. The disadvantage of this
approach is that the data does not form a self consistent whole.

The distribution of various system factors can be compiled and figure 1 summarises these distributions
giving the mean, maximum and minimum values for each. Given the extreme skew on these distributions it can
be taken that the mode value will always be significantly different from the mean value. Figures 2 to 5 are
the raw data from which figure I was derived, presented in tabular form except for figure 5 which was plotted
as a histogram to illustrate the skew distribution.

Figures 2 and 3 examine the data component of the IDAs. The main problem here is that many IDAs are cumposite
and include a number of discrete and overlaid data areas of various sizes, various message sizes, numbers of
messages and so on. These complex IDAs were mostly igrored in figures 2 and 3. Both figures understate the
extent of this problem and as a consequence may be in error.

Figure 4(a) is concerned with the basic connectivity of the ACP diagram. Four types of connection between

activities and IDAs are identified.

(a) Read only

(b) Write only

(c) Write and read

(d) Total.

Type (c) were found to be necessary b.-cause some activities required both types of access to individual IDAs.
Also in some cases an access routine which is essentially a write access also returns a value to the writer
(indicating success or fail or etc) and thus incorporating some form of read access.

Type (d) indicates how many IDAs (of whatever type (a), (b) or (c)) are accessed by each activity, and vice
versa.

Figure 4(b) has three components, the number of access routines (of the above types) per IDA, the analysis of
the declarations for these routines in terms of parameters used, and lastly the number of procedure calls
nested within the access routine bodies but excluding MASCOT primitives.

Figure 5 is simply a distribution of the size of access routine bodies in terms of Coral statements.

5.2 Empirical Estimating Rules

We can use tne data presented in Figures I to 5 to derive a set of estimating rules for MASCOT systems. To
avoid spurious precision, various numbers are rounded as appropriate. All rules deal with systemwide
averages. The rules are, of course, no better than the data they are extractxtd from and the assumptions used
in the process. It may be that the systems analysed may not be typical MASCOT systems. However they are
fairly typical Ferranti systems and will provide a good basis for deriving estimates for future systems.

Since the rules are empirical there is a continuing need to collect more data as it becomes available and
update them, meanwhile they are offered as the best available method of estimating the requirements for a
MASCOT system.

Rule 1 The number of Channels in a system will equal the number of Activities.

Rule 2 A Channel will need 3 access procedures.

Rule 3 A Channel access procedure requires 6 CORAL statements.

Rule 4 A Channel requires, for all purposes, a workspace of 100 words.

Rule 5 A Channel will contain space for 8 messages of 11 words each of a single type.

(Note:-

Rules 4 and 5 are slightly misleading because of the extreme skew on the distributions. The
typical channel will contain say 2 messages of 4 words. In terms of overall project estimates
howev~r that typical channel is not the one of interest.)

Rule 6 For the level of decomposition shown by the systems studied, the number of Pools needed will be
half the number of Activities.

Rule 7 A Pool will need 11 access routines.

Rule 8 A Pool access routine needs 7 CORAL statements.

Rule 9 A Pool needs a workspace of 1000 words, for all purposes.

Rule 10 A Pool will contain 26 messages of 24 words.

19-8

(Note:-

In addition a skew effects, the Pool rules are also affected by the presence of composite pools.
The typical Pool will contain say 4 entries of 4 words, and as for Channels this is not the
appropriate data for systemwide estimates.)

Rule 11 From Rules 1 to 10, each system Activity will use, on average, 9 access routines needing 60 CORAL
statements.

6. ADA AND MASCOT

In the next few years Ada compilers will become commercially available and the full impact of this new
programming language will begin to be felt. Where will this leave MASCOT? Do we need to throw away all the
hard earned experience in the use of MASCOT and learn a new set of techniques? Let us look at some of the
attributes of Ada, at a high level, and compare them with MASCOT.

First consider Ada:-

(a) A programing language

(b) System construction facilities and a run time executive

(c) Aims at reliability, maintainability, portability of software

(d) Wide use in the defence industry

(e) No design methodology

(f) No defined documentation system

MASCOT, as we have already seen is:-

(a) A Design methodology

(b) System construction facilities and run time executive

(c) Language independent

(d) Aims at reliability, maintainability and portability of software

(e) Widely used in the defence industry

(f) Defined documentation scheme.

I think it can be seen, therefore, that although the system construction software and run time executive
provided by MASCOT may not be needed (since they are already provided in the Ada Programing Support
Environment (APSE)), the MASCOT design methodology and aims are complementary to Ada. It is also certain
that, because Ada is such a powerful and complex programming tool, the use of Ada must be backed up by a sound
design methodology.

How can the Ada language be used to implement a MASCOT design? Such a design is basically modular and two
types of module are indentified. These are the ACTIVITY which is the unit of construction, scheduling and
testing and the IDA (channel or pool) which comprises the data area and its access mechanisms. In Ada, TASKs
are the units of scheduling and synchronisation, PACKAGES are the data and access mechanisms and, thus,
mapping a MASCOT design onto Ada can be achieved as follows:-

ACTIVITY -> TASK (type) with no entries

Either :- CHANNEL/POOL -> TASK (type)

with Access Mechanism -> entry

or :- ANNEL/POOL -> (generic) PACKAGE

with Access Mechanism -> procedure

In the latter case the data can be protected as in MASCOT In a recent report for the United Kingdom's
Department of Industry, the Augusta Consortium (of which FCSL is a member) reviewed available design
methodologies (Reference 2). This report includes, among others, an example of a MASCOT design implemented
in Ada.

Table 2 addresses several desirable features of MASCOT and relates them to Ada implementation facilities.

MASCOT OBJECTIVES ADA FACILITIES

1. Controlled access to shared data Packages

2. Visibility in ACP diagram Separate compilation and
tasks

3. Encapsulation of real time aspects Packages, generics and
tasks

4. Formal definition of interfaces Separate compilation, strong
typing, tasking model

5. Flexible system construction

approach NOT in Ada

6. Formal definition of kernel Tasking model

7. Modularity Separate compilation

Table 2 : MASCOT vs Ada

Most of the MASCOT objectives can be realised in Ada so it seems that the MASCOT design methodology is
suitable for Ada. It is interesting to note that the flexible system construction approach (item 5), not
realisable in Ada, is achieved by providing evolutionary facilities which have not been implemented in the
FCSL MASCOT machines.

7. MASCOT ASSESSMENT

From the experience of our project teams it should be possible to make an assessment of the benefits and
shortcomings of using the MASCOT approach to program development.

Standardisation One benefit that MASCOT can achieve is a standard approach to the design and implementation
of real time systems. However, it will lose its credibility as a widely used standard If a variety of
different implementations exist. Unfortunately the MASCOT Official Handbook was late in appearing and had
to be kept vague so that it could accommodate the existing, different, MASCOT systems. This will, in turn,
mean that further variations on the theme can be produced in the future. The standard is further eroded by
MASCOT avoidance techniques which different projects are forced to use but which compromise the principles
of modularity and protection which are the very basis of MASCOT.

Related to the concept of standardisation is the idea oi portability of MASCOT applications and it was felt
that, in practice, applications will be no more portable than other CORAL systems.

Overall Software Reliability This is clearly very important in the development of software for avionic
systems and the principles of design visibility, functional modularity and data protection which are
fundamental to MASCOT will help to ensure the production of reliable software and reduce the problems of
maintenance and enhancement during the in-service lifetime of the system. MASCOT itself cannot, of course,
guarantee the correctness of the design or implementation and must be backed up with project quality
procedures. Since our projects are not controlled experiments it is difficult to make an objective
assessment of existing MASCOT implementations. However the evidence from the software integration and
trials phases, where these have taken place, is encouraging and these phases have proved relptively trouble
free.

Store and Load By far the major problem encountered by the various projects was the store and load overheads
associated with the MASCOT approach. We have seen that there is a large scheduling overhead and it is
therefore critical that the means of scheduling (ie the MASCOT kernel) be optimised for efficiency. Store

overheads are also incurred.

These overheads result, at best, in a loss of spare capacity, and with it the opportunity for software
enhancement, but may result in the requirement for extra processors or extra store. e ven though such
hardware is becoming smaller and cheaper there is, nevertheless, a cost in terms of size, weight, complexity
and heat dissipation, problems which are present in most systems, but are particularly acute in avionics.

MASCOT, of course, does not set out to produce the smallest most efficient implementation. Software quality
is of paramount importance and the overheads must be accommodated if that quality is to be achieved. The
costs of the overheads must be weighed against the cost of reliability and maintainability and # practical
balance achieved. In essence the problem is similar to that encountered in the transition from low to high
level language implementations and will perhaps be encountered again when current languages are superceded
by Ada.

Avionic Rigs During the development of an avionic system there may be a requirement for a number of rigs
designed to test various system functions. It is a definite advantage to be able to quickly and easily
rebuild and reconfigure the target system software in response to faults or to changed requirements and the
MASCOT system construction software and the modular approach required by the methodology provide the means

19-10

of achieving this. The Evolutionary capability, allowing the dynamic reconstruction of the target software,
is also available although we believe that such a powerful facility should be treated with caution and may
not be suitable for strictly controlled software development. However, as we have already seen, even in a
frozen system, subsystem control can be used to reconfigure the system on line and provide fault diagnosis.
MASCOT also provides in-line monitoring facilities which are a further aid to testing software on a
development rig.

Multiprocessor Syatems A system designed in a modular way with formally defined interfaces can more easily
be partitioned between a number of processors and it follows that MASCOT is suitable for use in
multiprocessor systems. Our experiences suggest that there is some difficulty in representing a
multiprocessor system at the highest level of software design and that MASCOT is no more helpful than other
methods with the problem of deciding how the software should be partitioned.

Management and Customer Aspects From the point of view of both management and customers the adoption of a
widely used standard such as MASCOT offers an opportunity for a better understanding of the software
contribution to a real time system and the standard terminology provides a common language for describing
software. MASCOT offers design visibility through the ACP diagram which also provides information to assist
in project planning. It has been noted that there are many more identifiable modules in MASCOT based
systems, which increases the management task but also allows better control of software development. The use
of MASCOT design methods may result in a change in our ideas on effort allocation to various phases of the
development task. Extra effort may be expended during design but with easier integration and reduced
maintenance leading hopefully to an overall reduction in the effort requirement.

There is a need on the customer's side for an understanding of the implications of using MASOT. There is a
natural expectation on the part of the customer that for each increase in processing power available he will
see a corrresponding increase in the user facilities available. What MASCOT is saying is that we must use
some of the advances in hardware technology to improve the quality of the software product and thereby curb
the escalation in software costs and increase the reliability of complex " time computer systems.

8. CONCLUSIONS

The general project reaction to the use of MASCOT has been an agreement that many of the features of MASCOT
are highly desirable (modularity, encapsulation of data and control of data access) and the formal
construction system was a positive advantage. However, it was also frequently stated that the ideas were not
new and that existing design practices within FCSL are as good as those in MASCOT. Proponents of MASCOT
would say that MASCOT never claimed to be earth shatteringly innovative, but simply brings together a number
of accepted techniques in a co-ordinated manner to form a standard approach to software development.

We conclude that the advent of this standard defined methodology and programming system is in principle a
good thing but there are, in practice, some problems such as the acceptability of the store and load
overheads. Analysis of statistics, such as those presented in this paper, will allow us to better evaluate
the implications of using MASCOT in any particular application. Although the MASCOT programming system may
not be needed if the Ada language and the APSE become universally accepted, MASCOT could have an ongoing role
as a design methodology for Ada.

9. REFERENCES

Reference 1. Official Handbook of MASCOT
MASCOT Suppliers Association 1980

Reference 2. Ada based system development methodology
Study Report - Volume 1
United Kingdom Department of Industry 1981.

FIGURE 1 SUMMARY DATA

la IDA DATA AREAS

MINIMUM MEAN MAXIMUM

SIZE j 108 87 4506
MESSAGE PER CHANNEL 5 74 160

CHANNELS MESSAGE SIZES CHANNEL 10 42 120

MESSAGE TYPES PERCHANI'EI 0 1 14 1
POLS SIZE j 10081 12120
POS NUMBER OF ENTRIES 25 23 300

ENTRY SIZE 1 23.30 582

lb. SUMMARY OF SYSTEM FACTORS

CHANNELS PER WRITE_1_2_49_ 8

ACTIVITIESPE WRITE &RA

ACTIVITIES PER WRITE 1__ 2__ 30______ 47___

PCHANNEL WRITE & READ _____

PROCS E RE WRITE 1_____ 1__21__22

PERIPOOL WRITE & READ1 28

PARAMTERSAL 1 ___4__34_

PAAMEIVTES PER VALUE1153 2

POOL WRITE_______ &_REA_1_1.15 _

icCRLSAEET E CESPROCEDURE MINIMU MEA MAXIMUM

CHANNNNL RIEL & 5.3 19

POOLSRE WIT 0 6881 84

19-12

FIGURE2 CHANNEL MESSAGE STATISTICS

CHANNEL DATA MESSAGES MESSAGE MESSAGE TYPES
AREA SIZE PER CHANNEL SIZES PER CHANNEL

SIZE NO OF N2 NO OF SIZE NO OFF TYPES NO OF
CHANI CHAN- CHAN-1

1 1 0 20 0 11 0 11
2 1 1 30 1 7 1 63
5 11 2 23 2 16 2 5
6 9 3 1 3 2 6 1
7 3 4 5 4 6 13 1
8 2 8 1 5 2

g 2 10 1 6 3 mixed 3
10 1 14 1 7 1 Dummy 3
11 1 17 1 a 7

12 1 20 1 9 1
13 4 21 1 10 2
14 2 30 1 11 5
15 2 32 1 13 1
16 3 100 1 19 1
18 10 160 1 21 2
21 1 26 1

22 3 Special 1 28 1
24 1 mixed 3 32 11

26 2 Dumry 3 120 1
28 1

30 3 special 1

37 1 1 mixed 3
39 1 Durrw-nv 3

41 1
44 1

50 1
54 1
65 1
72 1
75 1

78 6
10 1
84 186 1
104 1
105 1
131 1
144 2
154 1
176 1
178 1
181 1

1~~

232
2066 1

AD-A127 131 SOFYWARI FOR AVIOSIICSIU) ADVISORY GR70P FOR AEROSPACE 1
RESEARCH AM DEVELOPMENT NEUILLY SUR-SEINE (FRANCE)w 83A1!OCP3S

UNCLASSIFIlED F /(L 9/2 NL

IONIII
No.iI

1.0 2.8 2.5

jjj1 12 5 ffll .~ J6

MICROCOPY RESOIUTION TEST CHART
NV' ONAL BuREA, OF 5TANDAACS- 96 -:

FIGURE 3 POOL STATISTICS (DATA AREAS)

INDIVIDUALP0 NO OF ENTRIES POO" F N7 R
PER POOL SIZES

SIZE SIZE ENTRIES POOLS FSIZE NO OFF

1 166e 1 16 1 16

i2(612 172 2 4 2 3

3 2053 1 3 3

2,RI4 228 5 4 2

6 238 ; 5 15 2

7 264 8 3] 6 1

11 290 6 2 7 2

12 F362 11 3 4 *

14 426 12 1 01 2

17 474 20 3 11 ij1
206 552 1 21 3 12 5

20D2 2 553 33 1 13 3

F25 584 40 3 14 1

26 659 52 1 1

27 1677 64 116 1

31 1134 83 11

36 1365 132 1 20 2

38 1 1564 264 1 21 1

46 1586 366 1 25 4

43 2231 27 1

46 3636 28 1

66 4239 29 1

74 5826
38 1B4 7197 I262 1

6 8 0 2 25
81

P92 8666
- ~~~ARE CCMOIEWT

107 12126 MIXI M E SIZE! -VARYIN
122 NUM EIRSOF -VAR IDG s

138 OF(VERLAY- AND IM SSIBL TO

12CIL SIFYON THE SIl LESI EA4 E

19-14

FIGURE 4 RELATIVE FREQUENCIES

4(0)

CHANNEL PER ACTIVITIES PER POOLS PER ACTIVITY ACTIVIIES PER POOL

NO ACTIT4Y CHANNEL NQ

- READ WRIT OTA : F II, 'ITAl. RAD NRITE W R tOTAL READWRITE W&R TOTAL
1 305 146 36 324 217 5 68 M 8 I 105 87 1 71 61 28 1

18 L I. 88 .32 203 _4. 7 7 '26 3 44 2
3 6 44 97 3 20 24 _ 18 16 __. 3 7 i i .1 4 .:

4 j 33 40 1 9 21 9 10 4 i 5 4 6 4 7 4
5 1 6 30 4 11 45 4 2 ,26 2 2 5 -2 .
6 6 8 4 2 2 1 12 2 1 2 8 6
764 4 1S1 5 _ 1 1, 2-5 2 1 17 2

92 11 T--5-" z----
2 _

--
N-12

5 1
121

- 1 5 1 . 1 1 2 B1

16 'A_ 1 I - - 6

22 lo , 2 ,

11 1 1 - 2 1 1

It -1
215 1 11

17~i 217

124 1027 12

aZ?26 303D
12CC29 113

14

• 4 ~ ~12 . 14876 , 4(4 834.

1 1 120

I JI 11 14712

4 b)4

17 K 8 1

21682 5 14 .7 12 5 0 18717 1 25 7 3

39 31 ,,0 17 2 5 91 8 1 122

1 12 1 1 2

110 2dg, 1 11B 1 0

12 1 1L11

0
Ua:

0

a. NA

-2

U] D

U]0

I- q
$ cm

2t)~I

SAFETY CRITICAL FAST-REAL-TIME SYSTEMS

by

B. G(Jsmann*)
O.F. Nielsen
R. Hansen

MESSERSCHMITT-BOLKOW-BLOHM GMBH
Aircraft Division

8000 MUnchen 80, Postfach

SUMMARY

The development of advanced military aircraft requires large embedded digital systems and
digital test equipment for performance enhancement. Examples at MBB are CCV III, an eight
computer test rig for evaluating next-generation fly-by-wire systems and cross software
test systems (CSTS) for verifying safety critical airborne software. Typical cycle times
of such systems range from 10 to 60 msec. Such systems impose restrictions on software
design and development tools, especially on required High Order Language Tools. Four
languages, Fortran, Pearl, "C" and Pascal were evaluated for use in the CCV III system
and CSTS. Finally "C" was chosen to implement both systems with very satisfactory results.A comment will be given with respect to convert "C"-programmed systems to ADA in the
future.

1. INTRODUCTION

The continuously growing part of local and central digital data processing is significant
for flight guidance and control systems of advanced military aircraft and the related
testsystems. The task of the software in a Fly-By-Wire (FBW) System is to control the air-
craft as well as to detect and to handle hard-/software errors. That means: guidance and
control software has a key function as a safety critical item during the whole mission
from take off to landing. The important role of onboard software for an entire project is
known for instance from the ALCM competition (AWST, March 1980) and the certification of
the DC-9 Super 80 (AWST, Sept. 1980).

A special problem of flight control systems is the short cycle time of the control loop
of 10 - 60 msec. These systems are called Fast-Real-Time (FRT) systems in contrast to
other control systems where the cycle time is measured in seconds. In nuclear power plants
the time from realizing temperature trouble until starting the emergency shutdown procedure
may be 3 seconds (Fetsch, Gmeiner, Voges, 1981).

The software design and development process has to consider the special requirements of
safety critical FRT systems (part 3). The advantages of High Order Languages (HOL) for
general software development are well known. In part 4 of this paper the languages Fortran,
Pearl, "C" and Pascal are evaluated for FRT-systems. Finally "C" has been chosen for the
development of the CCV III-test rig and a cross software test system. Both systems are
described in part 2. Part 5 comments on the conversion from "C"-programmed systems to
ADA.

2. 2 FRT SYSTEMS

Software for digital FBW systems as realized by MBB in the instable CCV II-F104G
testbed (Beh, AGARD CP No. 260) has been programmed in assembler up to now. CCV III is a
MBB test rig for FBW guidance and control systems of next-generation instable military
aircraft, and one purpose of the eight-computer-rig was testing the suitability of HOL to
implement such systems. As shown in Fig.1, CCV III is a closed loop simulation with MIL-
STD-1553 B data bus link. The computer stations are:

o Three POP 11/34 used as guidance and control computers (FF1 , FF2 , FF3)

o One POP 11/34 used as device simulator for non-existing devices

o One POP 11/34 used as cockpit terminal

o One PDP 11/45 used as symbol generator for cockpit displays

o One VAX 11/780 used as simulator of CCV II-F104G

o One SABRE X used as data record/reproduce system

o One PP-Buscontroller

The POP 11/34's are the testbeds for HOL evaluation. The FF-computers have an additional
DMA-link for data exchange; the closed loop cycle time is 30 msec. The CCV II-FI04G
simulation has been chosen to compare system efficiency directly with the CCV II-F704r
test aircraft.

) present address of B. GUsmann: LrTEF, D-7800 Freiburg

CCV M
SFUGI.JHFkIGS -SYSTEM

-IA'-----M&t BuLs V553 s

AO I EXPERIM DESEE FF F F

I SYTEMI TL ~TERMINAL SPA FLUGF HUNGSRECHNER CIJlX
S'' SY T ILI158 * PI o ,

OPTION 5.460K L
DMA

COCKPIT

Fig.1 CCV III

The second system is a cross software test system for parallel testing of safety critical
software as shown in Fig.2. The PDP 11/70 stimulates the test unit, computes the safety
critical software in parallel, and compares the results.

CrCss i Hard/Sof tware
Software for Airborne
PDP 11/70 System

L ~ Iter face

Unit for

Simulation

Fig. 2 Cross Test System

3. REQUIREMENTS FOR THE DEVELOPMENT OF FRT SOFTWARE

Digital control of instable aircraft is a highly safety critical item. The well
known advantages of HOL will simplify program development, however, HOLs which do not
generate readable assembler code cannot be relied on to guarantee system safety. The
typical loop is

Nccontrol actuatorsensor input computation output

voting

No multitasking capability is necessary.

'I
20-3

For standardization there must be

- only one language for the entire system.

This is required for application programming as well as for systems programming. A
standardization of systems programming is also recommended in civil aircraft (ARINC
Characteristics 701, 1979).

The requirements for testing, validation and quality assurance aspects are:

- software with simple modular structure. This guarantees that there is
no data conflict (jamming) on the communication lines.

- tight task-to-CPU dedication in a multiprocessor system
- machine-level debuggable code
- no global optimization

In the near future the available hardware for onboard computation will not be sufficiently
powerful to perform without difficulties all the desirable workload for strap down-, air
data-, control law computation, control and redundancy management, I/O-handling etc.
Therefore we need:

- fast code
- compact code
- stand alone capability

The final requirement for cost efficiency is:

- commercially available compiler for micro-computer systems.

4. HOL FOR PRESENT FRT SYSTEMS

To implement the two systems described in part 2, four high order languages have
been considered: Fortran, Pearl, Pascal, "C" (all are commercially available). The first
three languages are known for application programming, "C", although more than 10 years
old, has become well known in Europe during the last 3 years as a quasi-standard for
16 bit microcomputer implementation; UNIX is written in "C" (Kernighan, B., W., Ritchie,
D., M., 1978).

The language test for FRT-applications was performed in several steps. Since the runtime
measurements depend strongly on the quality of the available compilers, the arguments in
this part are therefore restricted to language inherent features.

(a) the first step was to convert and code the F104G-control program including
I/O-routines using the four languages. The computer for all tests was a PDP 11/34.
The software implementation of the mathematical part looked very similar in each
language with the restriction of Fortran's lack of modern structures. As an example,
Fig.3 illustrates the "C"-program for matrix * vector multiplication: y = Ax.

define N 100

main)

f register i, j;

int a [NJ [NJ , x I], y [N]

for (i = 0; i< N; i++)

{ y [i] = 0;

for (j = 0; j <N; j++)

y Fij y [i] + a [i]fj] * x [j]

Fig. 3

The runtime of the mathematical part was also similar for each language, differences
appeared in the I/O-time and the amount of runtime support.

Pearl is a process language with a general I/O-concept. At the time of the test, the
runtime support was not modular enough for compact and fast code. Therefore Pearl
and the poorly structured Fortran were not further investigated;

(b) the second step was the implementation of a typical part of the redundancy philo-
sophy including DMA-communication. The necessary assembler support for Pascal turned
out to be four times greater than for "C",

(c) as third step the Tornado control law was implemented by "C" and a new Pascal-version;

(d) several small test programs were written and the generated assembler codes were compared.

' 1

20-4

The detailed results are given in "Programming of Fast-Real-Time Systems" (Gismann, B.,
Hansen, R., 7981?. With respect to those features of "C" and Pascal, which could be
compared directly, the 1981-tests showed an advantage of "C" concerning code size and
runtime. Meanwhile for the PDP 11-family the OMSI Pascal II is avi~lable and this should
reduce the code size and runtime advantage of "C" on PDP 11 for application programs.

Furthermore the tests demonstrated the importance of systems programming for FRT-
systems. At the beginning of an implementation the ratio between system software and
application software is:

system software : application software A 2 : I

it is the system software which makes I/O fast and safe. In this area "C" offers better
language features than Pascal which was proved by step (b). Another advantage of "C" is
the standardization of available compilers based on the same book (Kernighan, B., W.,
Ritchie, D., M., 1978) whereas there are a number of Pascal dialects.

Fig. 4 shows a list of hardware orientated "C"-operators which have no equivalents in
Standard-Pascal (Jensen, K., Wirth, N., 1978).

++ increment & bitwise and
-- decrement bitwise excl. or
- bit shift right I bitwise incl. or
- bit shift left N one's complement

Fig. 4

These operators are very useful for driver implementation, especiallyfor A/D and D/A
conversion, and for masking bit messages from the MIL-STD-1553B bus in CCV III.

Other features of "C" are register variables as shown in Fig. 3. The register declara-
tion is a hint to the compiler to place variables in registers for fast computation.
The last instruction line of Fig. 3 can also be written as

y W+= a ijJ - x (j] ;
E1 op

=
E2 is equivalent to E = E op E2, but E has to be evaluated only once.

For I/O-handling the access to hardware addresses is indispensable. This is achieved via
the pointer concept:

int *p;

p = 0777570;
putchar f*p) ;

These instructions transfer the contents of address 777570 to output. The Pascal pointer
concept, on the other hand, is more restrictive, as well as the whole I/O-concept.

Finally, separate compilation and compiler control directives such as "include"-statements
as required in MIL-STD-1679, facilitate the handling of large program systems. These pro-
gram features are not required for Pascal. The test results are characterized by an
efficient code generated by the "C"-compiler with a small running time overhead.

"C" generated .:1.2* hand generated
assembler code assembler code

The result of the HOL test is that systems implementation is an important factor for FRT
systems. All four languages showed similar performance for mathematical programming, but
for I/O and systems programming, "C" has evident advantages. "C" has been chosen for the
implementation of both MBB-systems described in part 2.

Most of all coding could be done by "C", only a small part of assembler support was
necessary. The ratio for the two systems is:

"C"-Code: Assembler Z 95% : 5%

5. ADA

Most people who work with several software systems and have programmed with dif-
ferent HOL feel the demand for HOL standardization. Standardization of onboard soft-
ware is one of the requirements in part 3. The enormous effort to promote ADA as a
standard for embedded systems, and the possible life cycle of 20 years for weapon
systems, raises the question of converting "C"-programmed systems to ADA-programmed
systems. Here are some comments concerning guidance and control systems.

Formal transition:

" "C" and ADA strongly support modularity, programs can have similar structure in
both languages.

" The programming of mathematics is similar in both languages.

20-5

o Systems programming will look different because ADA has a different pointer concept
and does not have the hardware orientated operators of Fig.4. Access to hardware
addresses in ADA is given by the 'use at' address specification and address attribute.
Efficient byte / word-masking and handling can be done by writing routines using in-
line-assembler which is supported by ADA. "C" has no inline-assembler feature and
this was not missed during CCV III implementation because all operations could be
formulated in "C".

Practical transition:

* T'e ADA-compilers must be examined with respect to the readability of the generated
object-code. Can quality assurance be accomplished without transparency on object
code level? At the moment for ADA programs designed for general user (e.g. industrial
projects) patches will still be necessary (Bennett, P., A., 1982).

o One of the ADA design goals was safe programming, but even ADA requires careful
design and cannot prevent program errors, for instance errors based on multiple
declaration of names in different program levels (Ref. Man. ADA, 8.3, 8.4).

o "C"-generated code will be a measure of system-efficiency. It is not yet predictable
how fast ADA-generated code will be and whether faster CPU's will compensate runtime
overhead or whether faster CPU's will be used for greater onboard workloads.

The decision of changing-over to ADA-programmed safety critical FRT systems requires a
workload analysis for future systems and a test with existing ADA-compilers analogous
to part 4.

The items which influence the choice of "C", ADA, assembler parts are

- compiler availability
- code efficiency
- code transparency (assembler readability)
- faster CPU, faster memory
- greater onboard workload
- methods of validation
- acceptance by Q.A.

6. CONCLUSION

Four languages, Fortran, Pearl, "C" and Pascal have been tested at MBB for the
implementation of safety critical FRT-systems. "C" has been chosen for implementation
because it fulfils the requirements of part 3:

- one language for the entire system
- readable assembler is generated, nu global optimization
- compact and fast code
- the CCV III programs are running stand-alone
- "C" is available for M 68000, Z 8000, 8086 and others.

The implementation of the CCV III-rig has been finished in Dec. 81. Since that time the
rig has been tested by F104G pilots and demonstrated to visitors without any software
errors being detected. This demonstrates the reliability of "C".

"C" is recommended for present FRT-systems. For future FRT systems practical tests and
experiences with ADA-compilers are needed in order to evaluate ADA as the appropriate
language choice.

REFERENCES

Arinc Cnaracteristics 701, "Flight Control Computer System",
Aeronautical Radio Inc., Annapolis

Aviation Week & Space Technology, March 31, 1980, "Software
Key to ALCM Choice"

Aviation Week & Space Technology, Sept. 22, 1980, "First DC-9
Super 80..."

- Beh, Korte, Lbbert "Stability and Control Aspects of the CCV-F 104 G", AGARD Conf.
Proc. No. 260

- Bennett, P., A., 1982, in P. Reid: "Keynote Address and Industrial Viewpoint",
ADA UK NEWS JAN

- Fetsch, F., Gmeiner,L., 1981, "Entwurf eines hochzuverl~ssigen redundanten Mikro-
Voges, U., rechnernetzes", Informatik-Fachberichte 50, Springer

- GUsmann, B., Hansen, R., "Programming of Fast-Real-Time Systems", Mnchen, MBB/S/PUB 45

- Jensen, K., Wirth, N., 1978, "Pascal", Springer

20-6

- Kernighan, B., W., 1978, "The C Programming Language", Prentice-Hall

Ritchie, D., M.,

MIL-STD-1679, 1978, "Weapon System Software Development"

Reference Manual for the ADA Programming Language, Proposed
Standard, 1980, United States DOD

Acknowledgements

The research on CCV IlI was fully supported by the German Sundesministerium

der Verteidigung,

2I-I

USABILITY OF MILITARY STANDARDS FOR THE MAINTENANCE
OF EMBEDDED COMPUTER SOFTWARE 1

Norman F. Schneidewind
Naval Postgraduate School
Monterey, CA 93940 U.S.A.

SUMMARY

Several military software standards were examined and evaluated with respect to their appli-
cability and usability for maintaining embedded computer software. These standards incided
the following: Department of the Navy Tactical Digital System Documentation Standards,
SECNAVINST 356C.1; MIL-STD 1679, Navy Military Standard for Weapon System Development; and
Weapon Specification 8506. These standards were discussed from three standpoints: (I) the
degree to which they support the use of newer software development technologies (e.g.,
requirements analysis methodologies) for improving software maintenance; (2) the effect of
the microcomputer and its software development environment on the application of these
standards; and (3) the extent to which these standards enhance traceability (tracing the
various levels of related documentation). These aspects required a reevaluation of the
applicability of software standards. A recommendation is made to use the A7-E Aircraft
software redesign project as a model for improving (1) and (3) in the three standards.
Item (2) was judged to be not relevant to the development of software standards.

1. INTRODUCTION

This paper addresses the question of how useful military software standards are for
maintaining embedded computer software. Our discussion builds on previous studies of this
topic (SCHNEIDEWIND, N.F., Feb. 1982) which involved an analysis of the following United
States Navy publications:

o Military Standard (MIL-STD) 1679;
o Weapons Specification (WS) 8506; and
" Tactical Digital Systems Documentation Standards, SECNAVINST 3560.1.

(Note: It is recognized that, technically, only the first document is a standard. For ease
of exposition, all three are referred to as "standards" in this paper.) The question posed
by the previous research study was: Could these standards, accompanied by basic program
documentation, such as a listing, provide adequate quidance for a new programmer to main-
tain software, such as that found in the Trident Command and Control Subsystem? These
standards were reviewed with respect to the following criteria:

o design approaches for achieving good maintainability;
o specification and documentation requirements for achieving good maintainability;

and
o testing approaches for achieving good maintainability.

With some significant qualifications, it was concluded that these standards were adequate
for maintenance purposes. However, it was pointed out that these standards were developed
for use in design and not for maintenance specifically. (The interested reader may find
the details in the references which have been cited.)

Now, an ex.ellent standard would recognize the linkage between software design and mainte-
nance and would specify design practices that are conducive to maintenance. The problem
seems to be that standards of the type which have been referenced were developed prior to
the time when maintenance was recognized as an important phase of the software life cycle
and prior to the realization that maintainability must be designed into the software.
Software standards should be revised to reflect this important concept. Also, advances in
software requirements analysis and design methodologies, coupled with the significant use
of microcomputers in embedded computer systems, have led to the need to update military
software standards to reflect the realities of newer design and programming environments.
Improvement in design approach enhances maintainability; the use of microcomputers, on the
other hand, presents new problems for the software development agency due to the limited
software development tools which are available in many microcomputer software development
facilities. However, it is an open question as to whether the increased use of micro-
computers for embedded systems is aiding or retarding the production of maintainable soft-
ware. Although many microcomputer software production facilities are low-level, oriented
to assembly language programming, the trend is for microcomputer software to be developed
on larger host machines, using elaborate program development tools on an interactive basis,
and down loaded to a development system and eventually to the target machine (ZIEGLER, S.,
Feb. 1981). Also to be noted is the trend toward moving system functions out of software
and into hardware (KAHN, K.C., Feb. 1981). This trend may lead in the future to more
emphasis on chip certification and less on software validation. As contrasted to advances
in software design and programming methodology, it is not clear that software standards
should be significantly changed just because computers get smaller and programming envi-
ronments change. The desirable F-E-ectives of, for example, producing code which can be
changed without upsetting the r -st of the sy tem, remains valid independent of the parti-
cular form, size, dpeed or con. uration r- hardware-software system.

IThe research reported in this paper was sponsored by the Command and Control Systems
Maintenance Agency, U.S. Navy, Newport, RI.

ii i

Transcending the aspects of improved software design methodology and changing computer
technology, is the need to trace both errors in the software and design decisions (which
many times are related to errors) to the pertinent technical information. The need for
traceability is independent of software design methodology and the particular computer
technology which is used in a system. However, proper use of methodology and technology
can greatly improve traceability, particularly with regard to identifying the effects of
changes to the software.

Within the context of the question posed at the beginning of this section, we examine
the usability of military software standards in the ensuing sections with respect to
the following areas:

o requirements analysis methodologies;
o microcomputer software development; and
o traceability.

We conclude with recommendations concerning the effective utilization of these standards
in an environment of changing methodology and technology.

2. EFFECTS OF REQUIREMENTS ANALYSIS SYSTEMS ON SOFTWARE STANDARDS

One of the major efforts to improve the quality of software has focused on the develop-
ment of formal software requirements analysis methodologies (ALFORD, M.W., Jan. 1977;
BELl, T.E., jan. 1977; ROSS, D.T., Jan. 1977; TEICHROEW D., Jan. 1977). Objectives of
these and related systems are the following:

o improved quality of documentation with regard to precision, consistency and
completeness;

o formal methods of specifying requirements, usually involving the use of a language
or format for expressing requirements (LISKOV, B.H., Mar. 1975); and

o separation of system functions so that related functions appear in the same module
and unrelated functions appear in different modules, resulting in the creation of
independent modules (MYERS, G.J., 1978).

A major ingredient of requirements analysis methodologies is computer-aided analysis,
consisting of the following components: a language for expressing requirements; a data base
for storing requirements and specifications; an analysis and retr.eval system for checking
requirements consistency and completeness; and various types of graphics terminal and
hardcopy outputs (BELL, T.E., Jan. 1977). The emphasis of these systems is a language
aimed at achieving formulism and consistency of expressing requirements. These method-
ologies do not address to a great extent strategies for translating requirements into a
software design.

An effort where design strategies and requirements analysis techniques are directed toward
confining the effects of changes to software (hence, improving maintainibility) is the
project of the Naval Research Labor-.tory (BRITTON, K.H., Dec. 1981; HENINGER, K.L. Nov.
1978, Jan. 1980; PARKER, R.A., Nov. 1980) to rewrite the software for the A-7E Aircraft,
using the principles of information hiding, separation of concerns and abstract interfaces
(PARNAS, D.L., Dec. 1972; PARNAS D.L., May 1978; HESTOR, S.D., Oct. 1981; BRITTON, K.H.,
May 1981). Central to this effort is the method for decomposing modules. The method
proposed by Parnas (PARNAS, D.L., Dec. 1972) is the following:

o avery module in the decomposition process is characterized by design decisions
which are hidden from all other modules (the information hiding principle);
this criterion does not decompose the system into modules on the basis of the time
sequence of processing the modules; and

o elements that are likely to change are identified and incorporated into separate
modules (device interface modules) in order to minimize the effects of device
changes on user modules.

Myers (MYERS, 1978), among others, has sounded a similar theme. He recommends that modules
should be partitioned so that relationships between elements within a module are maximized
and relationships between modules are minimized. In Myer's terms, this results in high
module strength and weak module coupling, and leads to the desirable result of module
independence. A major objective of these approaches is to reduce the ripple effect of
software changes (that is, the effect on modules external to the changed module).

2.1 STATUS OF STANDARDS RELATIVE TO REQUIREMENTS ANALYSIS SYSTEMS

What is the status of the standards (1679, 8506, 3560.1) relative to specifying the use of
requirements analysis methodologies and design techniques (e.g., methods for module decom-
position)? MIL-STD-1679, Section 5.2, states that the design shall be a hierarchical
structure with the highest level of control logic residing at the top of the hierarchy
and computation functions residing at the lower levels. As stated by Myers (MYERS, 1978),
the objective is not simply partitioning modules into a hierarchy, but partitioning so
that each module is as independent of other modules as possible. This procedure will result
in confining the effects of change and, hence, make the software more maintainable. In
addition, as indicated by Schneidewind (SCHNEIDEWIND, N.F., Feb. 1982, NPS-54-82-002),
although the change in reporting and control procedures specified by 1679 is excellent in
Section 5.11.2, the coverage is inadequate regarding separation of software functions by
anticipated degree of change. With regard to WS 8506, it makes brief mention of describ-
ing major functiris and the dependency among functions in Section 5.2. This reference
does not elaborale on why or how the information is to be used (SCHNEIDEWIND, N.F., Feb.
1982, NPS-54-82-002). An important use of the information would be for decomposing a
system into modules and for the related purpose f achieving module independence. The
situation is worse in the case of SECNAVINST 35, .1. This document is notable for the
great amount of detail presented pertaining to function and interface descriptions, data

II N I• m

21-3

exchange, program resource budgets, etc. (SCHNEIDEWIND, N.F., Feb. 1982, NPS-59-82-003).
However, there is an absence of material dealing with designing for change.

In addition to the above gaps in coverage, the standards pre-date the use of software
requirements analysis systems, such as those described by Alford (ALFORD, M.M., Jan 1977).
Naturally, the older the standard, the more obsolete it is relative to advances in

requirements analysis methodologies and software design. So these remarks should not be
construed as criticisms of the standards, but as indications of the need to consider
updating the standards for the purpose of bringing them into line with software engineering

techniques which look quite promising. It is necessary to emphasize that methods proposed
by Parnas, Myers, Teichroew and others have not reached the stage of accepted practice by

a large segment of the software engineering community. For one thing, there must be
further demonstration of improvements in software maintainability on large systems before
these procedures will graduate to the status of standard practice. However, we contend
that the approach in standards development should be to lead rather than to follow develop-
ments in software engineering. There is obviously more risk associated with this policy,

but its successful implementation can prevent a standard from being obsolete before it is
even issued.

In summary, with regard to the areas of requirements analysis and software design, the

standards are weak and in need of upgrading to include the following requirements:
" decomposition of a system into modules for the purpose of confining the effects

of software changes by using techniques such as:

- hiding device characteristics from user programs and,
- designing modules so that related elements are contained in the same module and

unrelated elements are contained in different modules (high module strength and
low module coupling); and

o employment of a requirements analysis system for the purposes of:

- standardizing the language in which requirements are stated, and
- providing computer-aided tools for storing, analyzing and retrieving requirements

to ensure consistency and completeness.

3. THE EFFECT OF MICROCOMPUTERS ON STANDARDS DEVELOPMENT

As suggested in Section 1, standards development should be independent of the character-

istics of the hardware and software employed in an application. A standard should require
the developer to employ sound software engineering practices. These techniques become
'sound' by evolving from theory to standard practice th'ough a process of proposal, debate,

demonstration, use, concensus and acceptance. This process should not be influenced by

whether, for example, an application is implemented in a centralized main frame or a

distributed microcomputer system. The aspect that is affected by the choice of technology
is the ability of the developer to meet the standard (e.g., conforming to a requirement
for using structured programming with assembly language versus high level language). For

example, if crude program development and test tools are used for implementing microcomputer

software, or any software for that matter, traceability will be difficult to achieve. More

will be said about traceability in a later section.

Concern about the peculiarities of microcomputer software development may evaperate in the

near future. As mentioned in Section 1, the trend in microcomputer software development

is toward using the types of tools which have been used for some time in the minicomputer

and mainframe areas. For example, if we compare two publications which are only one year

apart (OGDIN, C.A., 1980) and (MARKOWITZ, R., Feb. 1981), we find that the former, in

describing microcomputer programming environments, stresses hexidecimal coding, prototypirg

systems, computer evaluation kits, portable front panels, single board computers and micro-

computer development systems. In contrast, Markowitz's article describes the architecture

of the iAPX 286 in terms of memory management, segmented memory, protection, and various

priviledge levels - characteristics of large machines. Zeigler (ZEIGLER, S., Feb. 1981)

talks about extensions to the ADA language which INTEL has developed in support of the 432
architecture.

None of the standards makes reference to the use of microcomputers. This would obviously

be the case for 3560.1 and 8506, since their publication pre-dated significant use of

microcomputers. Although 1679 was published during the era of microcomputers, mentioning

the use of this technology in the standard would have been inappropriate. As stated by

Cooper (COOPER, J., Aug. 1981), in describing the development of 1679, the single most

important rule of a MIL-STD is that it can only specify what is required, not how to

satisfy a requirement. However, it must be noted that 1679 does not seem to be entirely

faithful to this rule, since it calls for the use of structured programming constructs

(Section 5.3), and top down design and high order languages (Section 5.5), as examples of

many "how to" provisions.

Based on the reasons given in this section, we conclude that the standards should
not be

modified to incorporate provisions that deal with the development of microcomputer software

for embedded computer systems.

214

4. APPROACHES FOR IMPROVING TRACEABILITY OF STANDARDS

A prerequisite for achieving traceability and, hence, maintainability is to have planned
for the software to change when it was designed and to have designed the software corres-
pondingly, so that changes can be easily traced through the documentation in order to
identify the relevant inputs, outputs, data base, modes of operation, conditions, etc.
The A-7E Aircraft documentation (HENINGER, K.L., Nov. 1978) does a good job of providing
traceability because it was designed with change in mind. Some of the formats which are
useful for achieving traceability are the following:

o Event Tables which relate modes, events, and actions;
o Condition Tables which relate modes, conditions and actions or values; and

O Selector Tables which relate modes and mutually exclusive characteristics of modes.

In the above, the following meanings apply:
o mode - system state;
o condition - expression whose value is true or false and characterizes the system

for a measurable time;
o event - a condition which changes from true to false or vice versa at a specific

moment in time;
o action - evaluation of a function; and
o value - expression or output data item value.

In this syster, of documentation, if an event (e.g., ground distance to a reference point)
were to change when the radar update mode is entered, it would be possible to ascertain the

fact that this combination affects an action taken by the pilot relative to cursor enable
(output data item). In general, design decisions, module decomposition and module depend-
encies are made explicit in the system of software design and documentation. Other useful
aspects of the documentation include a dictionary of commonly used terms and a section
dealing with subsets - a part of the system which is isolatable from the total system,
performs part of the services provided by the total system and uses less computer resources
than the total system. One of the ideas of subsets is to be able to reassemble a smaller
system and thereby save on resources if the entire system is not utilized (e.g., a parti-
cular weapon is not available or used).

Weaknesses in this system seem to lie in the areas of tracking changes in outputs to inputs
and data bases, ,here applicable, and, in some cases, lack of clarity of definitions as
they relate to various tables. Also, although we subscribe to the objectives of informa-
tion hiding, which provides the underpinning of the A-7E project, it is our opinion that
the design procedures and terminology which are necessary to implement information hiding
could be confusing to software engineers. We prefer to think of the process of require-
ments analysis as making requirements explicit, rather than hiding certain ones, and to
only embody a requirement in a module when the requirement is relevant to that module;
otherwise, the requirement is implemented in a module where it is relevant. Requirements
which are common to two or more modules are contained within a separate module, rather
than within the given modules themselves. Additionally, requirements which are likely to
change should be quarantined and placed in a limited number of modules rather than being
spread across many modules.

Nevertheless, on the whole, the A-7E Aircraft project and a related project (HESTER, S.D.,
Oct. 1981) would provide an excellent model for revising the standards to incorporate
software design practices which specifically address the need to account for future change
to the software. This would be a particularly powerful approach if coupled with the use
of one of the requirements analysis systems (ROSS, D.T., Jan. 1977) for providing computer-
aided requirements analysis tools and for supporting the requirements analysis which must
precede the software design.

The primary author of MIL-STD 1679 (COOPER, J., Aug. 1981) feels that with only two years
use, it would be premature to revise it. However, neither 1679 nor the other standards
are strong in the vital area of traceability (SCHNEIDEWIND, N.F., Feb. 1982). We feel,
therefore, that because the volatility of software is so great and affects maintenance so
significantly, that a standard must explicitly provide for change in the design process in
order to achieve traceability in the maintenance phase. Note that this characteristic of
a standard is not the same thing as a change control procedure, which is a part of 1679.
To use a medical analogy, the recommended approach involves using preventive medicine early
in the life of a system in order to avoid emergency surgery at a later date.

5. CONCLUSIONS AND PECOMMENDATION

Three important areas relative to software standards have been considered which potentially
impact on software maintainability:

(1) requirements analysis and software design methodologies;
(2) microcomputer software; and
(3) traceability.

It is concluded that (1) and (3) should be improved in SECNAVINST 3560.1, WS8506 and MIL-STD
1679 and that (2) is not appropriate for inclusion in a standard.

Furthermore, it is recommended that A7-E Aircraft software redesign project be used as aj model for improving the standards relative to (1) and (3).

6. REFERENCES

Alford, M.W. , Jan. 1977, "A Requirements Engineering Methodology for Real-Time I rocessn:
Requirements", IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp. 60-69.

Bell, T.E., Bixley, D.C. and Dyer, M.E., Jan. 1977, "An Fxtendable Approach to Computer-
Aided Software, Requirements Engineering", Jan. 1977, IEEE Transactions on Software
Engineering, Vol. SE-3, No. 1, pp. 49-60.

Britton, K.H. and Parnas, D.L., Dec. 1981, "A-7E Software Module Guide", NRL Memorandum
Report 4702, Naval Research Laboratory, Washington, D.C.

Britton, Kathryn Heninger, Parker Alan R. and Parnas, David L., Mar. 1981, "A Procedure
for Designing Abstract Interfaces for Device Interface, Modules", Proceedings of the 5th
International Conference on Software Engineering, San Diego, CA pp. 195-204.

Cooper, Jack, Aug. 1981, "Development of MIL-STD-1679, Software Engineering Standards
Application Workshop", San Francisco, CA, pp. 139-143.

Heninger, Kathryn, L., Kallander, John W. and Shore, John E., Nov. 1978, "Software
Requirements for the A-7E Aircraft", NRL Memorandum Report 3876, Naval Research Laboratory,
Washington, D.C.

Heninger, K.L., Jan. 1980, "Specifying Software Requirements for Complex Systems: dew
Techniques and Their Applications", IEEE Transactions on Software Engineerinq, Vol. S-6,
No. 1, pp. 2-13.

Hester, S.D., Parnas, D.L. and Ulter, D.F., Oct. 1981, "Using Documentation as a Software
Design Medium", The Bell Systems Technical Journal, Vol. 60, No. 8, pp. 1941-1977.

Kahn, Kevin C. and Pollack, Fred, Feb. 1981, "An Extensible Operating System for the Intel
432", Digest of Papers, Spring COMPCON 81, San Francisco, CA., pp. 398-404.

Liskov. Barbara, H. and Zelles, Stephen N., Mar. 1975, "Specification Techniques for Data
Abstractions", IEEE Transactions on Software Engineering, Vol. SE-i, No. 1, pp. 7-19.

Markowitz, R., Feb. 1981, "Software Impact on Microcomputer Architecture: A Case Study",
Digest of Papers, Spring, COMPCON 81, San Francisco, CA., pp. 40-48.

MIL-STD-1679 (NAVY), Dec. 1978, "Military Standard, Weapon System Software Development",
Department of Defense, Washington, D.C.

Mosak, Allan, Feb. 1982, "Structured Programming Can Be Applied to Microprocessor, Even by
Novices: A Review of Structured Microprocessor Programming", IEEE MICRO, Vol. 2, No. 1,
pp. 63-71.

Myers, Glenford Jr., 1978, "Composite Structured Design", Van Nostrand Reinhold Company,
New York, N.Y.

Ogdin, Carol, Anne, 1980, "Microcomputer Management and Programming", Prentice-Hall,
Englewood Cliffs, N.J.

Parker, Robert A. et al., Nov. 1980, "Abstract Interface Specifications for the A-7E Device
Interface Module", NRL Memorandum Report 4385, Naval Research Laboratory, Washington, D.C.

Parnas, D.L., Dec. 1971, "On the Criteria To Be Used in Decomposing Systems into Modules",

Communications of the ACM, Vol. 15, No. 12, pp. 1053-1058.

Parnas, David L., May 1978, "Designing Software for Ease of Extension and Contraction",
Proceedings of the 3rd International Conference on Software Engineering, Atlanta, GA,
pp. 264-270.

Ross, D.T. and Schoman, K.E., Jr., Jan. 1977, "Structured Analysis for Requirements
Definition", IEEE Transactions of Software Engineering, Vol. SE-3, No. 1, pp. 6-15.

Schneidewind, N.F., Feb. 1982, "Software Maintenance: Improvement Through Better Development
Standards and Documentation", Naval Postgraduate School, NPS-54-82-002, Monterey, CA.

Schneidewind, N.S., Feb. 1982, "Evaluation of SECNAVINST 3560.1 Tactical Digital Systems
Documentation Standard For Software Maintenance", Naval Postgraduate School, NPS-54-82-003,
Monterey, CA.

Schneidewind, N.F., Feb. 1982, "Evaluation of Maintainability Enhancement For TCP/TSP
Revision 6.0 Update .20", Naval Postgraduate School, NPS-54-82-004, Monterey, CA.

SECNAVINST 3560.1, 8 Aug. 1974, "Tactical Digital Systems Documentation Standard",
Department of the Navy, Office of the Secretary, Washington, D.C.

Teichroew D. and Hershey, E.A., III, Jan. 1977, "PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing", IEEE Transactions on
Software Engineering, Vol. SE-3, Nov. 1, pp. 41-48.

21-6

Weapons Specification, WS-8506, Rev 1, Nov. 1971, Requirements for Digital Computer Program
Documentation, Naval Ordinance Systems Command, Department of the Navy, Washington, D.C.

Zeigler, Stephen, et. al., Feb. 1981, "The Intel 432 Ada Programming Fnvironenment",
Digest of Papers, Spring COMPCON 81, San Francisco, CA., pp. 405-410.

2-I

SOFTWARE CONFIGURATION MANAGEMENT

AT WORK

Dr.ing. Jan Tore Pedersen
A/S Kongsberg Vaapenfabrikk
Postbox 25
N-3601 KONGSBERG
Norway

1. A/S KONGSBERG VAAPENFABRIKK

A/S Kongsberg Vaapenfabrikk is a Norwegian company founded in 1814. Initially it was set up to produce
hand-arms for the Norwegian army. Today we have quite a variety of products in the areas of mechanical
engineering, electronics, and computer systems. Defence systems account for approximately 50 of ourrevenue. In 1981, the total revenue was in the order of 350 mill. US dollars.

Our computer based products are turn-key sysLums in the following application areas:

Mechanical engineering, Computer-design and production

- Cartography, from stereoscopic pictures to maps

- Supervision and control of oil production platforms and hydro power plants

- Dynamic positioning of vessels. IP - systems for anti-collision control and machine-
room supervision of ships

- Maritime traffic control

- Simulators

- Defence navigation systems

- Fire control

- Command, Control, and Information Systems

Our defence systems and all other Process control systems are implemented as "embedded systems', using
our own computers, the KS-500 and the KS-900 (coming shortly).

We have 250 programmers (performing all tasks from specification through coding and testing) in soft-
ware development and production.

2. SOFTWARE DEVELOPMENT AND PRODUCTION

Kongsberg does not market "off-the-shelf" software systems. Our deliveries of software systems require
significant adaptions in order to satisfy the individual customer requirements. Such adaptions are
either modifications to existing programs, or development of new ones. One consequence of our major
customization effort is that we end up with several versions of the same programs. In order to keep
this under control, we need special archiving and system generation tools (we are using UNIX as a basis
for our software engineering environment).

More importantly, however, we need special control mechanisms in order to ensure the quality of each
delivery, its progress, and its economy. The control mechanism must also be adaptable to the task at
hand so that we don't exercise the same bureaucracy fora "trivial" production task with minimum risk
and the development of a complex system where the risk is significant.

The most important aspect of any software project is to specify the user requirements. Quality, or
ability to satisfy the user needs, requirements, and expectations, is virtually impossible to a 1ieve
unTess proper requirements specifications are defined. an wi say that this is obvious, but it is
a statistical fact that we make most of our errors in the early stages of a project. In addition, the
system defects created by these early errors are the most expensive ones to remove after the system is
installed. (Ref. I)

We also have the interesting paradox, illustrated in Figure 1, that even if we are spending the effort
in developing a proper user requirement specification (URS), conformance between the developed software
system and the URS is the last thing we can verify. In addition, when we are able to do the verification,
it is normally time for delivery, and no time for fixing bugs. Consequently, we need a method of working

, -A

which results in a continuous validation of the quality of the system as it progresses from initial
specification to the finally tested code.

Economically, we find that the most expensive errors, or defects, to remove are those which occur after
the system is installed and is supposed to be operational. In order to prevent defects from being part
of the system when delivered, we need a controlled development and production process which focuses upon
the orderly production of specific intermediate results, or baselines.

3. KONGSSERG'S SOFTWARE CONFIGURATION MANAGEMENT CONCEPT

We started in 1976 on the process of controlling our software activities. OLr approach is based on the
ideas of conventional Configuration Management (CM), and obeys the principles of:

VERIFICATION, VALIDATION & CERTIFICATION
OPERATIONAL MAINTENANCE

Figue 1 veiyn Sotar uliy(rf2

CEETTFICCTIO I LAT de tf

ACCOGN [ING

TEETS

SPEIFCA IO N TESTS

RDENI ATION Will doe the system C oN t r

PREquIMNts?

REVISESIG WiTtesse udrdv pEST ral aif tedcmne

Fgre I . r iyint g SotaeQaltrf2

IDNIICTO - Wha doe th syte coss of

Our model for development and production of software systems is shown in Figure 2. It separates the
process into specific baselines. The handbook that each project manager receives at the start of a
new project, contains a description of all baseline documents which are to be produced as part of the
project. The document sequence, the manner in which they are to be produced, the contents requirement
for each baseline document, and how and by whom they are to be reviewed and approved. The approval is
done through a formal inspection process. When the document is approved, it is formally signed by the
approval authorities. Approval authorities are assigned to each document at the start of a new project.

The Developmert Process

Spec.--------------- ------ - -- -- -- - - - - - - - - - - - - -------
D'aftI II

I ~ II

-e: I I I

I I

II
InPti User' R. D.,.'eoe, Se 9 Dec r'lic

Dpe e c.nn Soed 'Spec

Figeunre s 2. The deelopent mdelnerdone of Knsigne d visonas. ipiispoetspriin

Noweat therden iso apinge, i anntbe chngedriortn the projet ofstdanewsignaroied al

Thessignatureuofnbaselineedoeuentd mark ah signifctpant.ietn nec rjc.Amlsoei o

To illustrate the level of detail in the description of the baseline documents, here is the list of

contents in our User Requiremnt Specification as it is specified in the handbook:

1. Scope: introduction to the document

2. Document history
3. Referenced documents

4. Application area
5. User functions

6. Outline user interface
7. Non-functional require crnts
8. Quality atasures

r 9. Product safety requireionts

The handbouk contain e doents for how to fo ilulate each paragraph.

passd ules therelvanibeline dcmn ssge. Ti omls ipiispoetspriin

22-4

4. OUR LPERIENCE

4.1 What does it take to introduce new methodologies?

For more than five years we have introduced Software Configuration Management procedures in various
groups within our company, with mixed success.

Our first effort was to prepare a set of production procedures for our highest volume software product.
It was a very successful effort, both technically and economically. All the engineers in the initial
production group became very enthusiastic as results were achieved.
When the first effort was finished, we believed that the success would sell itself and that other
production groups would grasp the new procedures eagerly. But alas

It took us more than two years to experience what went wrong after the initial effort. In those two
years we spent approximately 200.000 dollars without getting a measurable effect.

Eventually we did an analysis of what went wrong, and we found that three criteria have to be satis-
fied in a specific group where new methods of working are to be introduced:

The establishment of the new procedures must be accepted and actively supported by the

group management. Some of the staff may in the beginning feel that their workload
will increase. The management, who will know that thE change will have an overall
positive effect, must take the responsibility for the introduction of the procedures, and
for ensuring that the staff are motivated to use them.

Support is a prerequisite.

Learning a new method of working will always require an effort from each individual.
In a normal working environment, where there is a constant struggle to keep up with
delivery schedules, there will be a natural resistance to change. Only by allowing
for special support resources which have the sole task of preparing the new setup such
that "it is easier to follow than the old one", is the establishment guaranteed to be
successful.

Introducing new method is expensive, but our experience is that it is worth the expense.

The level of ambition must be right.

Learning is done in steps, and there are limits to the size of the steps a person can
take. If we are to improve our methods of working, we must allow ourselves to take
one step at a time. What is most important is to find a set of simple guidelines,
procedures, or tools which soon become obviously useful for all parties involved.

The wrong approach may cause a negative reaction such that the people involved spend
more time "cheating" the system than they do doing productive work.

After having learnt these lessons, we have introduced our CM procedures into new departments, and so
far the new efforts have been successful. We now experience that our projects are better controlled
with regard to quality, time schedule and economy.

4.2 How do programmers and customers react?

A natural question is: How do programmers react when confronted with such bureaucracy?

Our answer is that they tend to regard it as a "life insurance":

- The formalized process requiring signatures on each baseline document motivated the
participation of users or customers in the early specification phases. When a "customer'
has signed the URS, the programmer knows that if he delivers a system according
to that specification, he has done his job properly. If there still are differences
between what the customer now wants and what the system does, it is because the customer
changed his mind without it being repe,-ted in the proper fashion. and the proqrammer
is not to be blamed.

- The separation ol a project into specific baselines promotes working effort to be spread
out over the whole project. Human beings work best under certain pressure. Passing
a baseline creates such a pressure. Thus it is made easier to keep schedules. They
also have a better feel for what the project status really is.

- Focusing on the baseline documents (with checklists for document content, how they
shall be prepared, and how they shall be approved) gives a much better basis for
planning new projects. New experiences are continuously being incorporated into the
handbook, such that it contains our accumulated experience. This approach makes it
easier to estimate project efforts and makes it easier to start elaborating on a new
document since all non-technical issues are taken care of in the handbook.

Then, what about the "customer" reactions? Our experience has been surprisingly positive both with
internal and external customers.

We expected a problem with having the customer representatives sign the specifications. It was never
so for us. In circumstances where the original specifications turned out to be wrong, we either were
given an extra order to change the product, or the customer just adapted himself to our system. In
our times without formal specifications, we always had to pay the bill if the customer was not satisfied.

We now feel a strong movement within our group of large customers, both industrial and military, to
require a formal quality assurance and configuration management system from us as a supplier. In doing
so, they take upon themselves the responsibility of accepting their share of the project, which is to
have a URS properly developed and designed.

Under circumstances where it is impossible to have a customer signature, let that not be an excuse for
not writing a requirement specification. Without a URS, the project will be without a proper foun-
dation.

5. THE MANAGERS ARE RESPONSIBLE

The software configuration management system we have established at Kongsberg utilizes ideas and
experiences from other types of industrial and engineering business. It has proved itself very effi-
cient in the cases where it was properly introduced.

Based on the requirements for increased software quality and profitability (productivity), the managers
responsible for software activities must now require that programming is developed into an
industrial, professional discipline, with all the necessary implications. I do not believe that
programmers will do that on their own.

6. REFERENCES

1. Boehm,B.W. 1977: "State-of the art Advances in Software Reliability and Measurement"
International Software Management Conference.

2. Munson,J.B.1977: "System Acquisition Guidebook Program for the U.S. Air Force"
International Software Management Conference.

I

23-1{

CONFIGURATION MANAGEMENT AND THE

ADA PROGRAMMING SUPPORT ENVIRONMENT

Kevin J. Pulford
Marconi Avionics Ltd.,

Elstree Way,
Borehamwood,

Herts,
WD6 IRX

SUMMARY

It is the aim of software development environments to increase the efficiency with which software is
produced. One such environment is the Ada Programming Support Environment (APSE) initiated by the U.S.
Department of Defence. These environments are a great benefit to prograners making some of their
tasks much easier. TLey also offer gra st opportunities to monitor and control software development.
This in its turn will affect the way that projects are organised and run, and it will affect project
personnel"s jobs to varying extts. The way that projects will be affected by the adoption of an APSE
is explored in this paper by considering the way that Configuration Management can be implemented in
an APSE.

I. INTRODUCTION

In recent years there has been a growing interest in software development environments. With the
development of software engineering as an area of study and as a discipline the idea of centralising
and enforcing the 'iscipline with the aid of the computer has become increasingly attractive. Much of
this interest was sparked by the development of the UNIX operating system (YERNINOHA R.". 1981) and
the Pronrammer's Work Bench (IVIE, E.L. 1977). What this work demonstrated was that by putting the
right features into an operating system, the development of software was made a lot simpler and easier.
This has been born out to a large extent by the fact that the UNIX operating system has been adopted
on a wide range of mini-computers and that there are a number of operatirl systems being marketed
which bear a strong resemblence to UNIX.

More recently much interest has centred around the Ada language and its associated environment (BUXTON,
J. N. 1980). The development of Ada was initiated by the U.S. Department of Defence as an attempt to
improve productivity in real-time military systems. The broad requirements for the Ada Programming
Support Environment (APSE) are given in the STONEMAN document (BUXTON, J. N. 1980). Interest in the
Ada development is strong on both sides of the Atlantic. This is shown by the fact that the U.S. Army
and Air Force, the U.K. Ministry of Defence and Department of Industry and the EEC are all funding the
development of an environment which will satisfy the STONEMAN requirements.

It is obvious that the adoption of an environment by a project may mean that its working practices will
change. They do not have to change, but to gain most benefit from the environment the way the work and
people are organised will need to be examined. To assess some of these implications in this paper the
area of Configuration Management will be taken as an example of an area that will be affected. The
sort of things done in Configuration Management, how project personnel interact with Configuration
Management and how these can change with the adoption of a development environment such as APSE will be

considered.

This paper starts by describing the sort of activities which take place in Configuration Management so
as to set the scene and define a coimnon terminology. It then goes onto give an overview of the relevant
features of the Sj'0NEMAN requirements. This leads onto a discussion of how the APSE can support
Configuration Management and finally a discussion of the implications of using APSE for Configuration

Management.

2. CONFIGURATION MANAGEMENT

2.1. Configuration Management Activities

The description given here of Configuration Management activities is loosely based on the terminology
given in (BERSOFF, E. H 1979). Obviously practices will vary in detail from company to company
and even between projects in the same company, but the main ideas will be essentially the same.

In (BERSOFF, E.H. 1979) four component activities are identified within Configuration Management These

are: -

a) Configuration Identification

b) Configuration Control

c) Configuration Status Accounting

d) Configuration Auditing

'I.i

23-2

Configuration Identification is concerned with labelling the bits of the software as it evolves and how

these bits of software are related together to produce a version of the system. The most elementary

item to be identified is termed a "Software Configuration Item" (SCI). In a development plan there will

be a number of baselines. These are planned ahead and are set as milestones in the plans. Such base-
lines can consist of such objectives as "all major software components functionally specified", "all
software modules designed" or "all software modules tested". Generally these baselines will appear as

a hierarchy of SCI's. Configuration Identification allows the state of the system to be described and

also,by reference to the baselines,what it is that is being aimed at.

Configuration Control. During the development of a system the software is bound to change for one of
the following reasons:-

a) The software does not meet its requirements in all respects.

b) It has been found necessary to change the hardware

c) The software requirement is changed

d) There are problems with project plan schedules

e) A way of saving costs is needed.

ihere must be some mechanism to regulate changes to ensure they are incorporated in a controlled way

and that no changes are overlooked. It must take into account the implications of a change to other

aspects of the system. These implications may be associated with functional, economic or schedule

aspects of the system. In the practice of Configuration Control there are three basic components.

a) A formal mechanism for raising, approvirg (or disapproving) and checking proposals.

b) A system of documentation to support the change mechanism.

c) Procedures for controlling the application of changes to the system.

Configuration Status Accounting provides a mechanism to maintain a record of how the system evolved and

the current state of the system design relative to published baseline documents and written agreements.

This actively involves recording all the SCI's and their related data including changes. It thus
supplies data for the other three functions.

Configuration Auditing checks on the relation of the current status of the system to baselines and system

requirements. This includes verifying that what is planned to be in a baseline is actually present.

It validates that no design decisions in the current baseline has compromised the catomer's requirements.
It also provides a mechanism for the update and control of baselines.

There are a number of formal mechanisms which interface between the quality activities and the programmer
and the customer. The first of these mechanisms is Registration. When a programmer has completed a
design specification or a software module, which will be part of the baseline, he passes these onto the
Configuration Management mechanisms. This process is formalised as registration. Before items are

accepted for registration there will be a check that all the items required for registration are present.

Then responsibility for these objects passes from the programmer to Configuration Management. To change
these objects after registration means going through a formal change proceduzi. Thus registration marks

the entry of an SCI into the formal change control mechanism of Configuration Control.

A second interface mechanism is the Design Review. Here a group of interested parties meet to review
a document or software design or whatever constitutes the SCI in the baseline. A design review meeting
may include customer representatives. The review assesses the SCI to see if it satisfies its requirements

and is well designed. The review may put forward change proposals which are noted as design review

actions. Thus the design review activity supports the auditing function of Configuration Manaqement.

The final interface mechanism is the Configuration Control Board. This is a group of people who assess
change proposals and decide whether a change should be adopted and at what point in the development

schedule it should be incorporated. They will consider the impact of the change on the requirement

costs schedule and on the quality of the system. Thus it is a mechanism for supporting the change control

mechanism of Configuration Controt.

The view of Configuration Management given above is rather idealistic and in practice the application

is often simplified in a number of ways. Design reviews can be informal where no strict minutes are

taken, but note is taken of review actions. Often there is no formal Configuration Control Board and

the software project management will decide whether to incorporate a change. At the detail design

levels design reviews maybe less formal. For instance at a requirements review there may be repre-

sentatives of the customer, while at a review of module design the most senior person may be only a
section leader. To shorten timescales the design may be started before the requirement has been

properly reviewed. The decisions when, where and how Configuration Management procedures are applied
in the different aspects of a project is a mangement decision which must be based on a careful value

judgement.

2.2. Project Roles and Configuration Management.

Having described various activities involved in Configuration Management the way Configuration Management

affects the work of project personnel can now be considered. Again a slightly idealistic view has been
taken, but it is hoped that there is sufficient reality left to maintain credence. Although, on a

project of any size there will be many different jobs, only four roles will be considered here. The

various jobs are assumed to consist of elements from the four basic roles. The four roles are:-

Iftw |_

23-3

a) Programmer

b) Quality Engineer

c) Software Project Manager

d) Librarian

Under this hypothesis, for instance, a Section Leader or Chief Programmer can be considered to combine
the roles of programmer and project manager. He will still do some design and look at code, but will
also manage his team in an analogous way to that in which a project manager runs a project.

The programmer's role is central to a software project. It is his output that forms the product and
is the thing that is controlled by Configuration Management. A programmer's basic sequence of actions
is shown in Fig.l. This is an idealised view; in practice some of the reviews may be informal or even
not be present at all. The programmer will go through this sequence a number of times and under
different circumstances. He will design the software from scratch based on a requirement: he will
modify an already existi,g design based on a set of changes approved by the Configuration Control Board
or he will integrate several modules. The requirements and approved changes received by the programmer
will be under the control of Configuration Management and will thus be issued via an official issuing
mechanism. When modifying or integrating software the programmer will also be issued with code also
via the Configuration Management mechanism. While the programmer is developing the software he will
have versions which are outside Configuration Management Control. When an item is finished and
approved by a design review it is then passed into Configuration Management control via the registration
mechanism. The registration of things like code and binary often involves producing copies on some
physical medium such as paper tape for lodging with the librarian.

Conventionally the quality engineer's role is to advise on quality matters and monitor quality practices

used by the project. Here we extend this role to include actually carrying out the quality procedures
as well.

The quality engineer's role is not normally as highly structured as the programmer's. His attention
can be on several parts of the project at once, at several levels and over a number of versions of the
system.

Early in the project he will be involved in looking at the project plans and proposed quality procedures.
In particular in the Configuration Management area he will check that tje baselines have been defined
adequately and that there is proper identification of SCI's. Also at this stage he will be involved in
the design and implementation of the Configuration Control mechanisms.

Dui ng the project a recurring action of the quality engineer is his participation in design reviews.
At these reviews he is responsible for recording the review actions and for raising change proposals for the
Configuration Control Board.

In preparing for the Configuration Control Board the quality engineer must ensure that the right set of
change proposals are put before the board and that the implications of the changes are compiled. He
may need help from ciher project personnel to complete the compilation of the implications.

After design reviews and Configuration Control Board the quality engineer will check that all the
resulting actions are propagated through the project and are properly carried out.

Another important activity involving the quality engineer is the quality audit. Here the customer or
possibly the company itself will check to see that there are proper quality procedures set up for the
project and that they are being followed adequately. The auditor will want to know what the procedures
are and will want evidence that they are being followed. Part of this evidence is supplied by the
Configuration Management records and comparing them with the actual software produced.

It is the librarian's job to administer the software library project. Every project needs some central

position to store its software and related documents. This is normally supplied by the software project
library. The librarian will accept items for logging in the library and be reaponsible for indexing
and classifying all the items in the library.

As part of the indexing activity the librarian will keep a list of software identifiers used in the

project and act as a source of new idenuifiers. The acceptance of items into the library is via
registration. During registration the librarian will ensure that all the items that should be present
for the SCI and baseline are present and all of the changes that are supposed to be incorporated have
been. The librarian will then update his records to reflect the completion of an SCI in a baseline.
He will issue copies of reference items of code. binaries as well as documents, He is also responsible
for the distribution of change information to relevant project personnel. In addition the librarian
is responsible for the safe keeping of items in the library and is thus responsible for taking copies
of items or what ever action is necessary to ensure that the information in the items is not corrupted.

The Software Project Manager monitors the project's progress and ensures that there is a proper supply
of resources to complete the project on time and within the budget.

To monitor progress he needs to know where he is and where he is making for. He can use the Configuration
Management data to help him. The baselines are where he is making for, and the fraction to which each
baseline is complete is an indication of where he is. Of course, this is only part of the picture and
he will ask is programmers for progress on the non-Configuration Managed items they are currently working
on.

23-4

3. SOFTWARE DEVELOPMENT ENVIRONMENT

A very general definition of a development environment is that it provides a context for the orderly,
rational evolution of software systems. It does this via:-

a) A flex'ble system for the storage and retrieval of code, binary and all related project data.

b) A set of software tools to manipulate the data. Examples of tools are editors, compilers, text
formatters,report generators, etc.

c) A friendly user interface to allow the user to interact with the system in a simple and natural
way to achieve his aims.

The advantages claimed for this approach are:-

a) Better manageability of the development process. Since a large part of the project data is in the
data storage of the environment this makes it easier to control.

b) Improved visibility of the development process for both Management and Quality. Again the central
storage of data makes it easier to see what has and has not been done.

c) Easier enforcement of project standards since it should be possible to produce tools to scan
sections of data to highlight any deviations from standards.

d) Better integration of the development process through all project phases. Since the data is held
centrally the transfer of data is made much simpler.

e) Reduction of clerical tasks. Since the data is available on the computer, the collection,
transcription and transmission task associated with paper based project control systems is reduced.

Overall these advantages are expected to lead to improved quality and more easily maintained software
and lower overall life-cycle costs.

The Ada Programming Support Environment (APSE) is intended to support the development of systems written
in the Ada language. The emphasis in the environment is the development of software for real-time
embedded computers. The broad requirements given in the STONEMAN document are aimed at providing cost
effective support for the whole of the software life-cycle and are as follows. The tool set must be
integrated. Each tool should carry out a simple task, but must be easily combined to allow more complex
tasks to be carried out. There should be a database to store all project data. It must be possible to
assign descriptive attributes to objects in the database and create relationships between objects. It
must also be possible to group objects in the database in several ways. The requirement calls for a
host independent User Interface so that whatever host the system is implemented on, a user will always
have common useful set of facilities.

The logical structure as described in STONEMAN is shown in Fig.2. The part outside the host facilities
is termed the kernal APSE (KAPSE) and provides the host independent user interface. It also provides
a host independent interface for the tools in the environment tool set. A part of the KAPSE is involved
in providing the database facilities. Thus both tools and users can access the database via the KAPSE
interface. The environment also includes the concept of a minimal APSE (NAPSE). This is defined as
the minimum useful APSE. The MAPSE contains a basic tool set as shown in Fig.2.

The smallest separate identifiable collection of information on the database is termed an object. It
must have three mandatory types 3f attributes which are category, access rights and history. The object
category indicates the type of data in the object e.g. code, binary, text. The access rights attribute
indicates how an object was derived e.g. what files were edited and what commands were used in the edit
or what version of compiler was used. The history mechanism appears to be based on similar ideas to
those in the Source Code Control System of programmer's work bench (ROCHIND, M. J. 1975). It must be
possible to add further attribute types for any object type and to record relationships between objects
in the database. The relationship facility will for instance, allow an object containing Ada code to
be related to its corresponding binary and its design documentation.

When developing a design or piece of code it may go through several versions before being completed and
accepted. The result aimed at is always the same and is always refered to by the same name. The
STONEMAN document covers this by allowing an abstract object to be given the name of the product being
developed and then requires that one can indicate different versions of the abstract object.

4. CONFIGURATION MANAGEMENT AND THE ASPE

4.1. Implementation of Configuration Management in the APSE.

To see how Configuration Management can be aided by the APSE an' how the Configuration Management aids can
be implemented on the APSE, a particular implementation strategy will be described. This strategy is
only sketched out here to show some of the possibilities. In reality there will be more detail to be
worked out before a full Configuration Management system could be implemented on the APSE to suit a
particular company and project. The MAPSE does require a Configuration Management tool, but the minimum
requirements for this, given in the STONEMAN document, is that it must allow interrogation of the history
attribute of any object in the database and it must provide managerial control over the persist nce of
objects in the database. This is only a very small and minor aspect of Configuration Management.

The requirements on the APSE to be able to implement Configuration Management are:-I

23-5

a) To be able to store baselines, SCI's and chaiges on the database.

b) To be able to relate SCI's in a tree to the baselines and to relate changes to the SCI's and
baselines they affect.

c) To be able to relate the baselines and SCI's to the code, binaries etc., stored on the database.

d) To be able to store references to the documents which form part of a baseline and relate tlese to
their relevant baselines and SC's.

e) :-o be able to control access rights to an object and change these as the status of the object changes
e.g. when a module of software is registered the database object containing the code and binaries
of the module have their access rights changed so that they cannot be deleted.

f To be able to write tools that allow the Configuration Management data on the database to be updated
in a natural way. The tools must also be able to create and r~odify the relationship between data
objects to reflect the evolution of the system and its baselines, and also to reflect the change

control mechanism.

g) To be able to write tools that produce reports about the data to support the Configuration Manage-
ment process. This will require such reports as lists of the SCI's in a baseline, a list of items
completed in a baseline, a list of changes related to a baselines and which changes are awaiting
approval. There are obviously many more possibilities.

The requirements a,b,c and d in principle are satisfied by the STONEMAN requirement for a database object.
The requirement e) should be satisfied by the access control attribute, but there is not enough detail
to confirm that it is adequate. An example of a possible scheme of database objects is shown in Fig.3.
This diagram depicts the records types and the relationships between them. This scheme proposes only
3 object types; one to represent baselines, one to represent SCI's and one to represent changes. The
SCI object will be an abstract object because it will come in a number of versions. The baseline must
be related to the SCI's assigned to that baseline. The SCI's must be able to be incorporated in a tree.
Also the SCI must be related to the particular aspect of the SCI which make up the baseline e.g. documents,
code, binary and test results. These could be the actual objects in the programmer's area. Thus there
is a direct link between the Configuration Management area and a programmer's area. In other words
there is potentially direct control of the software being developed.

Changes must be related to the baselines they affect and to the SCI's they affect. There are two relations

between change and SCI; one representing the SCI version to which the change is applied and the other
representing the SCI version rmsulting from the change. The change objects will need an attribute to
indicate whether the changes have been approved or not. It is possible to extend this model to include
objects representing Design Reviews and Configuration Control Boards. The design review can then be
linked to the changes they have raised and the Configuration Control Board to the changes that were or
are to be considered at the Configuration Control Board.

It can be seen that this simple scheme will support the requirements in f and g. It is possible to hold
baselines and their related SCI's. It is possible to hold changes and relate these to the SCI's and
baselines.

The following tools could be supported on this scheme and provide assistance to project Configuration
Management.

a) A tool to input and store data on baselines and SCI's

b) A registration tool to accept SCI's for registration. It will check items presented against the
requirements of the baselines and set the access rights on the relevant files. It will also update
the baseline to indicate that the SCI has been registered.

c) A change control tool which would input change information,create a change object and link it to the
relevant SCI's and baselines. It could accept data allocating a change to a design review and
Configuration Control Board and connect the change object to the relevant design review and
Configuration Control Board objects. It would also be possible to reflect the approval status of
the change by altering an attribute of the change object. It will distribute Lhe contents of the
change documents to the attendees of Configuration Control Board and Design Review and to the
relevant programmers using the mailing system. (See e below.)

d) An identification control tool which will keep a register of project identifiers and issue identifiers
on request.

e) A mailing tool that maintains a set of distribution lists and issues nominated documents to the
people on a specified distribution list upon request. This mailing system might simply print the
requisite number of copies adding one of the addresses on the distribution list to each copy or
alternatively it might flag the availability of the document to the addressee's user.

f) A baseline listing tool to produce listings of baselines and SCI's. These listings will include the
SCI's, completion status and related changes with their approval status.

g) A formal issuing tool which will issue working versions of library items. It will check on the user's

access rights to the item before issuing it. It could include a checking mechanism if the output is

to some hard copy device, such as paper tape, to ensure the correct output of the item.

23-6

4.1. Effect of APSE on Configuration Management Activities

Having discussed a possible implementation of tools to support Configuration Management on the APSE it is
now possible to see how these impact on the Configuration Management activities. First consider the way
each of four component activities of Configuration Management, identified earlier, are affected.

In Configuration Identification a lot of the clerical administration task will be relieved by the identifi-
cation control tool. When choosing an identification system at the start cf the project any limitations
imposed oy the environments objects naming and version naming must be taken into account. With a carefully
designed environment there should be little or no restriction on choosing naming conventions.

In Configuration Control the formal mechanism will still be needed, but the way it is implemented may well
change. It will be possible to use the computer to capture directly data on change proposals from the
proposer. These could be sent to the appropriate people via the mailing tool. The change control tool can
then be used to moittor the progress of each change through the formal mechanism. The tool could also
ensure that no change is forgotten and can be used to identify quickly if there is a hold up in a change
and where it is being delayed. Upon approval of any change the system can also ensure that the programmer
is aware of any change and that it is being applied to the right version of the software.

In Status Accounting most of the data could be on the computer. Here enquiries can be made directly
rather than by going through a project librarian. In a development environment it is possible that the
job of project librarian could disappar.

In Configuration Auditing the support from the environment will be to control the update of baselines.

The assessment of SCI's to determine if they still meet the requirements must still be done by humans.

The formal interface mechanisms of Registration, Design Reviews and Configuratior Control Baords are
supported by environment tools. The registration data for the registration tool could be captured directly
by computer with the programmer in dialogue with the computer; the system correlating his replies with
its record of baseline and changes and finally setting the access rights on the registered objects to
stop them being changed. It is conceivable that the whole process could be completely automated, but it

is felt desirable that there ought to be at least one other human check before accepting objects for
registration to verify that the programmer is indeed delivering the right product.

The Design Review and Configuration Control Board meetings can be supported by the distribution and
recordina of the inputs and results of these me tings. Again using the change control and mailing tool
this is fairly easily achieved.

The affect on the programmer is to reduce his clerical tasks. When he starts a design, the tect of the
requirement document could well be on the database. In this case he may simply list the document for him-
self and any changes that must be incorporated to achive his baseline. Thus he will be reasonably sure
that he has all the current changes. Once has has produced the design document this again can be held on
the database. Upon acceptance, the access rights may be set to stop the text being changed. Changes
required will be compiled in terms of change requests. The progress of changes can be monitored through
the change mechanism by the programmer. A 3imilar process is carried out when the code has been produced
and tested. If the programmer is modifying or intergrating code then he will be allowed to copy the
relevant version of the code for himself to work on by setting appropriate access rights.

The quality engineer not only has the Configuration Management data on the computer, but he can directly
control the programmer's access to controlled data objects. With the APSE, the luality engineer can
administer Design Reviews and Confiugration Control Boards more easily. The &sign Review actions can be
embodied in change objects and related to the baselines and SCI's that they affect. When it comes to
Configuration Control Boards the relevant list of changes to be considered by that particular meeting
can be easily listed. The list of adjacent SCI's can also be made to aid determining the implications
of the change. The distribution of meeting inputs and the propogation of changes to the system through
the project can be greatly assisted by a computer mailing system.

As noted earlier the registration of documents is a lot simpler. Also many of the tasks done by the

project librarian could disappear.

The project manager's role is not affected except that he gets his data more rapidly, it is more upto-
data and of better quality than a manual system. He may have better control over the development, since
he has a greater visibility of what is being developed. In planning the project the project manager will
have to take into account the different procedures that will be needed if he is going to use an APSE.

The use of an environmtnt may change the things an external auditor will look at. The tools used to
manipulate the Configuration Management data will embody the quality procedures. Thus the auditor may
want to look at the way these tools work and even at th" code. At another extreme the customer may
insist that particular onfiguration Management tools are used on his project. Financial files on
computers are audited using computers. The customer may want to impose a similar audit on the Configuration
Management data on the APSE. This may especially be the case if the customer has insisted that a particular
Configuration Management suite of proqrams is used.

5. CONCLUSIONS

It is obvious that the Configuration Management tools will be developed and probably be available soon after

the early APSE's are delivered. A project that uses an APSE does not have to use Configuration Management
tools. But it is an onvious advantage to adopt confiquration Management tools from the project manager's
and quality engineers points of vnw.

In this paper we have considered only one ispect of project work in relation to the APSE. Other aspects
will also be affected by APSE. What can be said with confidence is that the use of APSE will change the

p_

23-7

the way a project is run. This must be planned for.

Although many of the advantages of the system and the facilities supplied are focussed on the programmer,
it is the author's feeling that the main justification of the APSE is in the management aspects of the
project. The greater visibility and control ensured with an APSE are a great advantage in any project
and this is the area where a lot of the cost benefits will arise.

IM O IMM

ii I -

23-8

6. REFERENCES

BUXTON, J. N. 1980 "Requirements for Ada Programming Support Environments - STONEMAN"
Department of Defence.

BERSOFF, E. H.: HENDERSON, V.D.= SIEGAL S.G., 1979. "Software Configuration Management -

A Tutorial" COMPUTER January 1979.

IVIE, E.L. 1977 "The Programmer's Workbench - A machine for Software Development"
Comm of A.C.M. Vol.20 No.10 October 1977.

KERNINGHAM, S.W.; MASHEY, J.R.: 1981, "The Unix Programeing Environment"

Computer April 1981.

ROCHKIND, M.J. 1975 "The Source Code Control System"

IEE Trans. Software Eng. Vol SE-l No.4. Dec 1975.

2-.9

FIGRE1 EESNC OF POGRMMEACION

REVIEPROGRSAMME

WORKING COMILERAGE

DEG

HOST MANAGTER

ST RELIER/LOADERTES

REEGINEER
COMATESD

FIGRE SEUC OFGURATOGRMECIN

MAPRAGAMR

KAPSE COAPSI E7

FIGUR E SRUTUE F PS

23-10

DESIGNN SOURCE B INARY

FGR 3 POSL DABASELINSCEM

DOAI

24-1

SOFTWARE FAULT TOLERANCE

FOR REAL-TIME AVIONICS SYSTEMS

T. Anderson* J. C. Knight**
University of Newcastle upon Tyne NASA Langley Research Center

Newcastle upon Tyne, England. Hampton, Virginia, USA.

Avionics systems have very high reliability requirements and are therefore prime
candidates for the inclusion of fault tolerance techniques. In order to provide
tolerance to software faults, some form of state restoration is usually advocated as a
means of recovery. State restoration can be very expensive for systems which utilize
concurrent processes. The concurrency present in most avionics systems and the further
difficulties introduced by timing constraints imply that providing tolerance for software
faults may be inordinately expensive or complex. This paper asserts that this is .nQ the
case, and proposes a straightforward pragmatic approach to software fault tolerance which
is believed to be applicable to many real-time avionics systems. A classification system
for software errors is presented together with approaches to recovery and continued
service for each error type.

1 Introduction

Digital avionics systems typically operate in real time. This means that inputs may
be expected and/or outputs must be generated according to some real-time schedule. For
example, an avionics system may send commands to control surfaces every tenth of a second
of real time. The requirement for operation in real time presents difficulties over and
above those normally encountered in programming. For example, a real-time program may
successfully produce the output demanded by its specification but fail to do so within
the imposed real-time deadline.

Avionics systems must be extremely reliable. There are two approaches to the
construction of software which must exhibit behavior that is highly reliable (that is,
complying with its specifications most of the time). Avizienis (Avizienis, 1976) called
these fault intolerance and fault tolerance. Fault intolerance, embraces all the various
techniques which try to ensure that software contains no faults. Fault tolerant software
incorporates techniques which attempt to ensure that service is maintained by coping with
the faults which remain after the application of all possible fault avoidance measures.

This report discusses the application of fault tolerance techniques to real-time
avionics software. A practical approach to software fault tolerance is presented which
can be applied relatively easily and can use existing hardware. Using this approach,
systems can be constructed which will continue to provide adequate responses in real time
under circumstances where faults in the software would normally cause a loss of service.

Previous work in the area of fault tolerant real-time systems has been reported by
others (Campbell et al, 1979; Hecht, 1976; Kopetz, 1974). It is likely that certain
military real-time systems have made some use of software fault tolerance but in most
cases, such systems have not been described in the open literature. One exception is
SAFEGUARD (Gawron, 1975).

2 Principles o Eaul Toleranc

Detailed discussions of the general principles of software fault tolerance may be
found elsewhere (Anderson et al, 1979; Randell et al, 1978). Only a brief overview is
given here.

The following terminology will be adopted:

1. a FAILURE occurs whenever the external behavior of a system does not conform to
that prescribed by the system specification,

2. an ERROR (more accurately known as an erroneous state) is a state of the system
which, in the absence of any corrective action by the system, could lead to a
failure which would not be attributed to any event subsequent to the error,

3. a FAULT is the adjudged cause of an error.

' Research performed unnder NASA contract numbers NAS1-14101 and NASI-1 4472 while in
residence at ICASE, NASA Langley Research Center, Hampton, Va.
*0 Present address: Deptartment of Applied Mathematics and Computer Science, Science,
University of Virginia, Charlottesville, Va.

24-2

The term fault will thus be used to refer to any defect in a system which could
generate an erroneous state (for example, a defective hardware component or a "bug" in a
program).

Fault tolerance techniques can usually be divided into four constituent phases. They
are:

1. ERROR DETECTION. In order to tolerate a fault its effects must first be
detected. Clearly, this can only be achieved by performing checks to determine
whether any erroneous situation has arisen.

2. DAMAGE ASSESSMENT. Having detected that the system is in error, it will usually
be necessary to identify how much of the state of the system has been corrupted.

3. ERROR RECOVERY. Probably the most important aspect of fault tolerance is the
provision of an effective means of transforming an erroneous state of the system
into a well defined and error free state. Methods for achieving this
transformation can sometimes make good use of the information retained in the
erroneous state, but it can be more secure to simply discard the erroneous state
and reset the system to some prior state (a recovery point).

4. CONTINUED SERVICE. In order to enable the system to continue to provide the
service required by its specification, further action may be needed to ensure
that the fault whose effects have been obviated does not immediately recur and
thus ruin the whole approach. Unless the fault was transient and will not recur
in any case, it must either be rectified or circumvented.

The occurrence of errors in software is unpredictable. They do not arise through
component degradation (as in hardware) but have the characteristics of design Caults.
For this reason, the techniques adopted for the four component strategies described above
must operate in as general a way as possible. Thus, it is advocated that error detection
should be achieved by checking that the system is functioning acceptably. It is not
suggested that the more conventional approach of checking for specific malfunctions
should be discarded, but that negative checks of this type should be supplemented by
positive acceptability checks.

In an unanticipated error situation, an automated exploratory approach to damage
assessment would be difficult. It is appropriate to base decisions about the extent of
damage on assumptions of how the system is structured and the apparent severity of the
error.

A similar approach to error recovery entails mistrusting any of the state information
considered to be damaged and avoiding the use of recovery techniques which rely on such
information. In order to recover from the unpredictable situations which can ensue from
design faults, it is necessary to adopt the more drastic alternative of replacing all
suspected parts of the system state toge.'her with any other parts which must be replaced
for consistency. This may involve substantial processing and consequent delay.

Finally, in order to achieve continued service after recovery has taken place, some
means of preventing a rvpetition of the original fault must be found. It will be
necessary to obtain some estimate of the location of a software fault so that the module
containing the fault can be replaced by a stand-by spare. Given the nature of software
faults, it is clear that the spare module must be of independent design.

3 Faul Tolerance in Concurrent S m

While considerable success has been achieved in devising mechanisms to provide fault
tolerance in the software of sequential systems, difficulties arise when systems of
communicating concurrent processes are considered, particularly if real-time constraints
are imposed. Suggestions in this more difficult area have involved major assumptions
about the nature of the concurrency in the system (Campbell et al, 1979; Kim, 1976;
Randell, 1975; Russell, 1975; Shrlvastava, 1979; Shrivastava et al, 197b).

The basic problem is that if processes can communicate at will, then whenever one
process establishes a recovery point (for state restoration purposes) it is advisable for
all other processes to do the same. Thus the processes have to be synchronized. If this
is not done, system-wide consistent state restoration may only be possible by rolling
back the activity of the system to an arbitrarily earlier point in time. This is the
Domino Effect (Randell, 1975). All of the above approaches are aimed at avoiding the
heavy overhead incurred with large numbers of recovery points (and associated
synchronization) or extensive rollback.

The process structure of real-time systems contains many synchronization points which
are usually associated with timing constraints. Synchronization points occur within the
process structure where a subset of the processes are synchronized, and at frame
boundaries where all of the processes are synchronized. In fact, much of the
synchronization of processes in a real-time system stems from the need to synchronize
with the external environment, rather than from any inherent needs of the processes
themselves. Thus much more synchronization occurs than would be found in concurrent

24-3

systems that do not operate in real time. This means that although real-time systems are
concurrent, they have a characteristic which is highly desirable if recovery points are
to be provided without excessive overhead - the provision of fault tolerance need not
involve any changes to the process structure. Such systems are particularly amenable to
the application of a modified form of the CONVERSATION technique (Randell, 1975).

A set of processes which participate in a conversation may communicate freely among
themselves, but with no other processes. Processes may enter the conversation at
different times but, on entry, each must establish a recovery point. All processes must
leave the conversation at the same time since if an error is detected in any participant,
every process in the conversation must restore its recovery point and try again. If the
conversation structure is used to provide recoverability in a general concurrent system,
the necessary state restoration can be automated using a recovery cache (Horning et
al, 1974), which is a form of mechanised incremental checkpoint. Although this is
conceptually straightforward, if a recovery cache is not supported in the underlying
machine then extensive processing will be necessary to simulate its operation. Presently
available computers do not provide a hardware recovery cache although an experimental
PDP 11 with a recovery cache is being built (Lee et al, 1979). Except in particularly
simple cases, the overhead of a software recovery cache is prohibitive.

A particularly simple form of conversation occurs when processes enter the
conversation upon creation and leave upon termination. Practical real-time systems
frequently have characteristics which allow much simpler recovery provided this
restricted form of conversation is used for process communication. Specifically, full
state restoration need not be attempted since, in practice, a great deal is usually known
about the system state when processes synchronize. The repetitive nature of a real-time
system dictates that its state at a given synchronization point will be very similar on
each frame. No data, or very little, is generated which is used or modified from frame
to frame. Recovery mechanisms can therefore be based on re-establishing the processes as
they normally appear when initiated in a frame and then ensuring that any frame specific
data has its correct values. In view of the limited amount of data which is frame
specific, the recovery required involves little more than a reset. As such, hardware
assistance is not essential. Assuming all code and constants to be in a read only
memory, the reset procedure can be simply and adequately handled in software.

4 Error Classification

For the purpose of discussing the recovery mechanisms which have to be applied, errors
will be classified according to a set of definitions. This classification is basically
with respect to the apparent seriousness of the situation arising from a fault. The
definitions are:

1. INTERNAL error - an error that can be adequately handled by the process
responsible for the system being in error.

2. EXTERNAL error - an error that cannot be adequately handled by the process
responsible for the system being in error, but whose effects are limited to that
process.

3. PERVASIVE error - an error that cannot be adequately handled by the process
responsible for the system being in error, and such that other processes
generate errors not directly attributable to their own faults.

The incidence of errors will be classified according to the following definitions:

1. PERSISTENT - an error is persistent if the frequency of occurrence of tht
associated fault exceeds some predetermined threshold.

2. TRANSIENT - an error is transient if it is not persistent.

Given this classification scheme for errors, it is necessary to be able to determine
which class an error falls into once it has been detected. This enables appropriate
recovery techniques to be employed reflecting the extent of the damage incurred by the
system. In practice, a classification can only be A and, in general, it will be
impossible to classify all errors correctly. For example, an error could occur which was
in fact pervasive, but if the consequent damage to the other processes was not detected,
then this pervasive error would be indistinguishable from an external error. There is
nothing that can be done about this problem. Some form of recovery will be invoked even
when an error is wrongly classified and this may still be sufficient to ensure continued
service from the system.

5 Erro Dtection And Damage Asnassment

Errors detected by hardware are usually signalled by the generation of an interrupt,
but the signaling of software detected errors can take many forms; for example a flag
could be set, a branch instruction executed leading to an error handler, or an interrupt
deliberately generated. It is assumed in the following discussion that whenever an error

24-4

is detected control passes automatically to a system error handler.

On being invoked the error handler must make a determination of the extent of the

damage to the system state, and then initiate appropriate error recovery measures. In

the approach proposed in this paper, damage to the system is implicitly assessed by the

error handler classifying each error as being internal, external, or pervasive. For

external and pervasive errors, the recovery technique applied is also dependent on

whether the error is deemed to be transient or persistent.

In order to classify errors with reasonable accuracy, it will be necessary for the

error handler to retain information concerning the error history of processes in the

system. No information need be maintained for internal errors since such errors are

considered to be completely localized difficulties for which the recovery applied by the
process involved is adequate.

Whether an error in a process can be considered internal or not will be very system
dependent. The error handler makes this determination based on whether this particular
error is one for which processes are permitted to attempt local recovery and whether the
process in which the error occurred has the means of attempting local recovery. If local

recovery is available, permitted, and apparently successful the error is classified as

internal. Otherwise, the error will be dealt with as an external or pervasive error.

An error can be suspected to be pervasive if multiple non-internal errors occur in a
single frame. A persistent external error is suggested if an external error recurs

frequently in a particular process. Frequent recurrence of pervasive errors indicates a
persistent pervasive error. Quantification of "multiple" and "frequent" in the above
yields a well-defined classification algorithm for use by the error handler.

It is suggested here that if an external error has occurred in a frame, then any
further occurrence of a non-internal error in that frame should be classified as a
pervasive error. It is preferrable for the error handler to err, if at all, on the side

of caution.

Consideration of existing systems suggests that a less rigid approach can be adopted
toward determining the persistence of an external error. A straightforward frequency
test seems apprcoriate; for example, an external error in process P could be considered
persistent if -n external error in P had occurred either in each of the n previous
frames, or in p of the q previous frames (where n, p, and q are integers selected by the

system designer). A stricter version of the same test might be considered necessary to

detect recurring pervasive errors.

6 Rnyry an" Continued Service

6.1 Internal rroxr

Recovery from internal errors is only attempted for those errors for which explicit
provision has been made in the system design. Techniques for internal recovery by a
process include 'ad hoc' repair as a part of a local exception handler (Goodenough, 1975)
such as a PL/I 'ON' unit, or a more general approach such as the systematic state

restoration employed by recovery blocks. It is inappropriate to discuss the response to
internal errors because in any given set of circumstances, recovery is highly dependent
on the structure of the individual processes involved.

i 6.2 External Exrs

Recovery from external errors is assumed to be provided by state restoration using a
simple reset mechanism for the process involved. As discussed in section 3, this can be
easily achieved in software.

Three general approaches to recovery and continued service are possible following the
detection of an external error. They are:

1. No special processing. The error is ignored and the system continues trying to
provide service.

2. Provision of behaviour that is acceptable in the short term but is inferior to
that intended from the process in which the error is deemed to have occurred.

3. Provision of behaviour equivalent to the intended behaviour of the process in

which the error is deemed to have occurred.

Aproach I could be considered for processes which are not critical but for no others.

It I not recommended even under these circumstances since there is always the danger

24-5

that an untreated error could have unanticipated side effects.

Approach 2 is essentially the use of recovery blocks as proposed by Hecht
(Hecht, 1976). Although it was suggested in the context of timing errors, this approach
is equally applicable to other external errors. Essentially, the occurrence of a fault
in a primary process is handled by the execution of an alternate providing degraded
service. It is interesting to note that several simple alternates are possible. In
particular, in real-time systems with short frame times it is often acceptable to re-use
the outputs of the previous frame as the outputs for the frame in which the error
occurred. This is known as the "Skip-frame" strategy. Another possibility is some form
of extrapolation based on data from several previous frames.

Approach 3 is similar to approach 2 but assumes that non-degraded outputs must be
generated on every frame regardless of the occurrence of faults. In practice this
approach will be required only rarely in the treatment of transient external errors.
Most real-time systems seem able to operate acceptably despite momentary degradation of
service and, if an external error is truly transient, approach 2 will often be
appropriate. If an external error is persistent, repeated use of approach 2 will almost
certainly lead to a state which constitutes a system failure at some point. For example,
repeated use of the skip-frame strategy amounts to the system repeatedly ignoring changes
in the external environment. The primary intent of most real-time systems is prompt

response to changes in the external environment.

Hecht (Hecht, 1976) has proposed the design of a real-time executive which will remove

a defective process from the system and replace it by a new version. Using the model and

error classification scheme proposed here, this amounts to responding to a prsistent
external error by replacing the relevant process with a substitute. This substitute is
completely equivalent in its interfaces to the rest of the system but is constructed
differently so that, hopefully, it will not become erroneous under the circumstances
which caused the original process to become erroneous.

Thus, provision of continued service depends on whether the error is transient or
persistent. Both types can occur and so provision must be made for both. This suggests
that every process should be supplemented by at least one degraded service alternate to
cope with transient external errors and another version of the primary process to cope
with persistent external errors.

6.3 Pervasiv Ero

Pervasive errors are the most serious of the error classes. The fact that the error
is pervasive means that, in the absence of fault tolerance, total system failure is very
likely even if errors have only been detected in supposedly noncritical processes. So
much damage has probably been done that critical processes will almost certainly enter
erroneous states.

Strategies are limited by the gravity of the situation. The error will be classified
initially as transient and the only practical approach to continued service is to use the
simple skip-frame strategy discussed above. The system complexity required if an attempt
is to be made to execute more extensive alternates for many processes is almost certainly
unacceptable. If the error is indeed transient then this strategy is probably adequate
anyway.

If the error turns out to be persistent and pervasive then it is extremely unlikely
that the system will be able to provide any acceptable service. To all intents and
purposes, it has failed. Treatment of the error during its initial transient

classification will have attempted to ensure that acceptable service was maintained but
such treatment cannot continue. The only viable automatic treatment for persistent

pervasive errors is complete replacement of the software. If provisions for recovery and
continued service have been made for external errors, there will be a second version of
each process available and the replacement of each process by the second version amounts
to total software replacement. Once again, recovery can be handled by a simple reset.

7 Conclusion

A general approach to fault tolerance in real-time systems has been presented and it
has been suggested that these systems often have characteristics which make them
particul-irly amenable to the inclusion of fault tolerance.

There is a cost associated with the provision of fault tolerance and it may be
substantial. If two versions of a primary process are to be provided they must both
receive equal care and attention in their preparation. This could more than double the
total cost of the software. It must be remembered that in such critical systems as
commercial air transports, the software cost is not a substantial portion of the total
development cost. Copies of the software for additional aircraft cost nothing and so,
for an entire fleet, the cost of producing high-quality, fault-tolerant software may be
insignificant compared to the total cost of producing the aircraft. Irrespective of the

cost, in many cases the need for the utmost reliability dictates the needJ for fault

tolerant systems.

1. Anderson, T., Lee, P. A., and Shrivastava, S. K. : "System Fault Tolerance,"
1979, In: Anderson, T. and Randell, B. (eds.) Computing Systems Reliability:
An advanced course. Cambridge University Press, pp. 153-210.

2. Avizienis, A. : "Fault Tolerant Systems, " 1976, IEEE Transactions on Computers,
Vol. C-25, No. 12, pp. 1304-1312.

3. Campbell, R. H., Horton, K., and Belford, G. G. : "Simulations of a Fault
Tolerant Deadline Mechanism," 1979, Digest of Papers, FTCS-9, Madison, pp.
95-101.

4. Gawron, L. J.: "System Error Control," Bell System Technical Journal , Vol.
54, Special Supplement on Safeguard, 1975.

5. Goodenough, J. B., "Exception Handling: Issues and a Proposed Notation," 1975,

Comm. ACM, Vol, 18, No. 12, pp. 683-696.

6. Hecht, H. : "Fault Tolerant Software for Real-Time Applications," 1976,
Computing Surveys, Vol. 8, No. 4, pp. 391-407.

7. Horning, J. J., et al.: "k Program Structure for Error Detection and
Recovery," 1974, In: Gelenbe, E. and Kaiser, C. (eds.) Operating Systems:
Proc. Int. Symp. held at Rocquencourt. Lecture Notes in Computer Sc'ence 16,
pp. 171-187, Springer-Verlag, Berlin.

8. Kim, K. H., "An Approach to Programmer-Transparent Coordination of Recovering
Parallel Processes and Its Efficient Implementation Rules," 197b, Proc. Int.
Conf. on Parallel Processing, Detroit, pp. 58-68.

9. Kopetz, H., "Software Redundancy in Real-Time Systems," 1974, IFIP Congress 7,
Stockholm, North Holland, Amsterdam, pp. 182-186.

10. Lee, P. A., Ghani, N., and Heron, K. : "A Recovery Cache for the PDP-11," 1979,
Digest of Papers, FTCS-9, Madison, pp. 3-8.

11. Randell, B.: "System Structure for Software Fault Tolerance," 1975, IEEE Trans.
on Softwar- Engineering, Vol. SE-i, No. 2, pp. 220-232.

12. Randell, B., Lee, P. A., and Treleaven, P. C.: "Reliability Issues in
Computing System Design," 1978, Computing Surveys, Vol. 10, .o. 2, pp.
123-165.

13. Russell, D. L. : "Process Backup in Consumer-Producer Systems," 1975, Proc.
Sixth Symp. on Operating System Principles, pp. 151-157.

14. Shrivastava, S. K. : "Concurrent Pascal with Backward Error Recovery," 1979,
Software: Practice and Experience, Vol. 9, pp. 1001-1020 and 1021-1033.

15. ShrIvastava, S. K. and Banatre, J.-P. : "Reliable Resource Allocation Between
Unreliable Processes," 1978, IEEE Trans. on Software Engineering, Vol. SE-4,
No. 3, pp. 230-241.

.

ELECTRONIC WARFARE SOFTWARE

Rudy L. Shaw
Air Force Wright Aeronautical Laboratories

Wright-Patterson AFB Ohio

SUMMARY

The development and maintenance of software for computer based Electronic Warfare (EW) systems has become
a major problem and represents a significant percentage of the overall life cycle costs. This paper par-
tially summarizes a three year effort which looked at various software cost reduction techniques within the
framework of EW processing requirements. E processing characterization was the initial task undertaken in
this study and it will be su.mmarized in this paper. The intent of the characterization study was to pro-
vide a data base for the following investigations, which also will be summarized in this paper: (1) The
investigation of the compatibility of instruction sets, which are used or have a near term possibility of
being used in EW systems, to the EW processing tasks; (2) The investigation of High Order Languages and

software structuring efficiencies based upon bench marks which characterized major EW functions.

1. INTRODUCTION

Electronic Warfare (EW) systems represent the most demanding processing environment to be encountered any-
where. These systems must operate in near real time on an extremely high data rate environment with a high
degree of reliability. In addition, these systems must be configured to be easily reprogrammed and main-
tainable. The development and maintenance of software for these systems has become a major problem and
represents a significant percentage of the overall life cycle system costs. In 1978, the Avionics Labora-
tory Electronic Warfare Division of the Air Force Wright Aeronautical Laboratories (AFWNAL) at Wright-
Patterson Air Force Base embarked upon a program with Systems Consultants, Incorporated to investigate EW
software. This investigation looked at various software cost reduction techniques within the framework of
EW processing requirements. The data presented in this paper is primarily extracted from the AFWAL techni-
cal report (Ziesig, D., June 1981) resulting from this study.

The characterization of EW processing was the initial task undertaken in this study. As a data base for
this characterization, six EW systems were selected based upon various stages of development and available
data. Three systems were operational and one system each was in engineering development, advanced
development and exploratory development. As such the characterization was based upon a wide range of RW
processing techniques. The characterization study had three primary objectives, two of which will be
summarized in this paper.

The first objective was to characterize EW software to the extent necessary to generate an ideal EW instruc-
tion set (CALEW) which incorporated the needs of the W programmer. The basic cost reduction assumption
here is that by the proper choice of the instruction set architecture, significant economies in memory
size and program execution, higher visibility of the data structures and algorithms, clearer more concise
programs will result. The intent of generating the CALEW was not to recommend a new instruction set, but
rather to have a basis on which presently available or proposed instruction sets could be compared. This
characterization and instruction set comparison will be presented in this paper.

The second objective was to generate benchmarks which were representative of EW processing and use these
benchmarks to evaluate the effects of using a High Order Language (HOL) and structured programming in EW
systems. The benefits resulting from the application of a HOL to system development are many. One cost
benefit estimate, resulting from programming in a HOL, is typically based upon the theory that the number
of lines of source code per unit time is independent of the language used (Doty, D., February 1977). If
this is indeed true, using a typical expansion rate o' four machine code statements per HOL source state-
ment, the resulting cost impact could be 4:1. However, there is an obvious penalty to be paid in the form
of increased storage requirements and increased program execution time resulting from the HOL inefficiency.
Another area which has potential to reduce system development and maintenance costs is the use of Modern
Programming Practices (MPP) such as structured code, structured design, programming support libraries, and
chief programming teams. The results of work in this area indicate that the total person hours required
for developing and testing software can be substantially reduced when MPP are applied (Curtis, B., March
1980 and Milliman, P., February 1980). However, there are increased storage requirements and run time
inefficiencies to be encountered, related to using HOL and structured code in light of NW requirements were
pursued in this study and will be summarized in this paper.

2. EW PROCESSING CHARACTERIZATION AND INSTRUCTION SET COMPARISON

The characterization of EW software was approached frommany different aspects. The first aspect was a
thorough analysis of EW software data structures. This review covered 197 data structures and can be
summarized as follows. The primary data structure is the table which is implemented as a linked list.
There are numerous tables within a program which are linked together in order to resolve ambiguities. The
reasoning behind the predominant use of tables is the ease of reprogramming the system. The statistical
distribution of field widths among the data structures is shown in table 1. Note the large number of fields
which are only one bit and the large number less than 8 bits. This is consistent with the real world pro-
cessing of EW systems where items of interest such as pulse width, scan type, etc require small fields for
characterization. It is of interest to also note that of the 41% of the fields which were full wordsthe
majority of these fields were pointers to other tables and files. The fields within the tables were also
tightly packed irregardless of the instruction set support for manipulating partial fields. It a;.pears
that an instruction set which supports bit manipulations is essential for W processing.

F'ED FL .EN:FIT ALBUR'RBUTLCN TNSTK!'CTTON OA.FY try A FKIBl F;

1 T I 2 6." 6AA T RI EISI.
[OREFF kF SIR I .

IESS L.X" 8 i S -. BRANCU F s.

BRANCH TO SB
B BI IS S RECI'FR A[D SI'B .

I r' COTN .RO

I FSS TIHAN IF BIL 1 Bi F E[SE 1.0ICA 3.
O)'MPAR ..S

F1LILT WORD S:1 E1,)S I . TOTAL) . h

IABL 1I. I)ISI RIBLTION 0F EI FI EAML F 2. DISTRIBTI I(11F

LIEN; ;BS I NS'TR'CTION TYPES

Another aspect of EW software characterization consisted of a static analysis of instruction use. This

analysis consisted of simply counting the instruction usage in the programs. The results of the static

analysis are shown in table 2. As can be seen from this table, approximately 43' of the instructions
used were concerned with moving data. A flexible load/store instruction set is essential for EW systems.

Also, note the i,-ge number of branches. Branching is primarily based upon logically testing a variable

(i.e. a variable is less than, larger than, or beLween some set limits).

The variables used primarily range from -8 to +7 or 1 to 4 bits in length. These small numbers represent

data items such as the number of hits, the available jarmmer units, the number of active threats, etc. Tle
oredominant use of small numbers again emphasizes the need for an instruction set which is efficient in

,nanipulating small numbers. Note also in table 2., the small use of arithmetic instruction which consisted
primarily of adds/subtracts. EW processing is primarily logic oriented and sophisticated arithmetic mani-

pulation is not used to a great extent. However, this characterization may require modification as the

need arises to process more exotic emitters.

Another aspect of the characterization process, consisted of searching the operational programs tor groups
of instructions which were indicative of the type of processing involved in LW systems, but were not IonIo-
mented because of lack of instruction set support. This analysis coupled with the prev'ous characterization
approaches allowed the characteristic sequences shown in table 3 to be generated. This table is self

explanatory and summarizes the primary attributes of EW software.

OBSERVED SEQLENCES

BRANCH BASE) UPON MEM LOC. C OR NOT C

BRANCH BASED UPON RESULT OF L1OGIC.L. FECIISION OR! EE
OPERAT LION OR COMPARISON

SET A H B
CLEAR LAOS NON-COMP'TA l ONAL.

FEW ARITHMET IC FO IULAS
HEAVY USE OE SMALL NUMBERS

INCREMENT/DECREMENT POl NTERS
SMAL.L LOCALIZED LOOPS

SET/RET/TEST A BIT BL OT TEF:

MANIPULATE PARTIAL WORD FIELIDS

TABI. I. EN PRio:ESSINi; CLIARACTELRSTICS

After the EW processing characterization effort, an instruction set was generated which covered the features

necessary for real time processing, in general, and focused specifically on EW. The final CALEW consisted
of 110 instructions. After CALEW was generated, it was sent to companies which are speciflcally involved in
EW systems and EW programmers were requested to rate from I to 10, the value of each instruction in the

instruction set. This data was then averaged for each instruction and used as a multiplier to ultimately

compare instruction sets. Ten instruction sets were selected for comparison. They were the instruction

sets included in the characterization study and instruction sets which have near term potential of being
used in EW systems. Each instruction in the CALEW was compared against each instruction in the comparison
set. If the comparison set did not have the instruction capability, it was given a 0 for this instruction.

If the comparison set possessed the instruction, that instruction was given the value of the m,'tiplier.
The results of this comparison are shown in table 4. Note that MIL STD 1750 ranks highest P.in 'hose
instruction sets tested. In particular, it surpassed the competitors by its high degree of data ranipula-
tion capabilities, compare features, and efficiency in handling small numbers.

26-3

PROCESSORS % OF CALEW

1. MIL-STD 1750 81.6

2. AN/UYK-20 61.5

3. PDP 11/70 50.1

4. ATAC 16M 45.3

5. 4-PI 42.5

6. ROLM 1602A 42.3

7. T1 2520 40.4

8. LC 4516D 32.8

9. MAPS 32.4

10, ROLM 1601 25.7

TABLE 4. PROCESSOR RANKING

3. BENCHMARK SELECTION, HOL AND STRUCTURED PROGRAMMING ANALYSIS

During the EW processing characterization study benchmark algorithms were selected which characterized the
major EW functions. The benchmarks selected are listed in table 5 by name and function. These benchmarks
with the exception of DATAMAN and PURGE were selected as they existed in the six data base systems and
as such, these benchmarks did not use structured programm techniques. The benchmarks DATAMAN and PURGE were
selected to exercise the manipulation of tightly packed data, exercise the use of global data and linked

list operations. These operations are typical of all EW systems and are not readily extractable from any
one. The PRIDE I benchmark is a special case which will be discussed later. The selected benchmarks were
extensively documented to assure a minimum of ambiguity and interpretation difficulties. Documentation
typically consisted of 25-30 pages per 120 line benchmark. This is for more extensive than the 25-30 page
per 1000 lines of code typically expected (ref 2). The documentation consisted of verbal descriptions, svm-
bol dictionary, unstructured flow chart, data structure description, and structured algorithm description.

AFLOOK - PARAMETER MATCHING
- LINKED-LIST PROCESSING (SUBSIDIARY LISTS AND POINTERS)
- PARTIAL WORD MANIPULATION
- PRIORITIZATION

DATAMAN - USE OF GLOBAL DATA
- TIGHTLY PACKED, COMPLEX DATA STRUCTURE MANIPULATION

EID - PARAMETER MATCHING
- LINKED LIST PROCESSING (POINTERS)
- PARTIAL WORD MANIPULATION

EXD - SIGNAL DETECTION (INTERRUPT HANDLING)
- PARAMETER MATCHING

- USE OF FLAGS
- LINKED LIST PROCESSING
- ERROR DETECTION

EXEC - SCHEDULING
- PARAMETER MATCHING

- FLAG DETECTION AND SETTING

PRIDE I - PARAMETER MATCHING
and - TABLE UPDATES

PRIDE 2 - BINARY SEARCH

PURGE - LINKED LIST ADDITIONS AND DELETIONS

TABLE 5. BENCHMARKS

The HOL's and respective assembly languages (AL) selected for testing were JOVIAL (173), AN/AYKl5A (MIL STD
1750); CMS 2, ULTRA; and FORTRAN, MACRO-Hf. Benchmarks were also coded in ADA in order to assess any
language difficulties, but because of comiler unavailability, no quantitative data was collected. The
benchmarks selected were distributed to programmers proficient in the languages under consideration. All
HOL benchmarks were coded using structured programming techniques and all AL programs,with the exception
of PURGE, DATAMAN, and PRIDE 1, were coded from the unstructured flow charts. The PRIDE I benchmark was
reconstructed from the PRIDE 2 implementation by analyzing the PRIDE 2 function and redesigning the original
PRIDE 2 algorithm. The AL version of PRIDE I was coded using structured programming techniques only.

The number of lines of source code required for each benchmark is shown in table 6. In general, the amount

of HOL source code required was 57% of the amount of AL source code required. Specifically, the JOVIAL
Implementation required 232 less code than the AN/AYK1bA and the FORTRAN implementation required 511 less

2t,4

source code than MACRO. The CMS2 sample is small and no conclusions are inferred. Note than the benih-

marks implemented in JOVIAL required 35% more lines of code than those implemented in FORTK.RX. This is

attributable to the detailed data definitions required in JOVIAL ccmpared with the numerous default condi-

tions in FORTRAN. It is also worthwhile to note tihan, the benchmarks as implemented in AN/AYK15A required

237 less lines of code than those implemented in MACR . This supports the conclusion arrived at earlier

that MIL STD 1750 highly supports El: processing. During the benchmark prograanning the proarammer,
wer, re-

quired to keep track of their programmin time. In general, it took twice as long to implement Al. programs

as it did the HOL benchmarks. Since, in g~neral, the amount of AL source code was approximately twice the

amount of IIOL source code, the amount of time required t ,-ode ;consistent with the theory that the pro-

gra.-ting time per line of code is indtependent of the language used.

BENCHMARK 1 1! ' [AC CNS "IT

AFLOOI(32 125 267 121 W8

ETOD
1;8 (-7 9 4

EXD l? Iis-

EXEC 11iI C

PRIDE 2 163I 1 K 178

PURGE Se 22 '1 49 53

DATVMAN 7A 77 41 191 79 141

PRIDE I 190 198 128 267
a - -

!ABLE b. LINES OF SOURCE 7LOE

BENCHARK J73 15A FOR MAC CMS ULT

AFLOOK 966 530 1313 764 15r8 832

EID 386 236 663 270 432 408

EXD 1146 718 1282 758

EXEC 502 368 740 424

PRIDE 2 642 462 832 534

PURGE 252 160 262 204 384 220

DATAMAN 862 674 933 1196 668 572

PRIDE 1 814 594 1186 646

TABLE 7. MEMORY USE OF IN BYTES

The memory usage in bytes for the benchmarks is shown in table 7. In general, HOL benchmarks required 33"

more storage than the AL versions. By comparing the memory use contributed by those
benchmarks which used

structuring In both the OL and AL implementations with those benchmarks,
which used structured coding in

HOL and unstructured coding in AL, an evaluation of the effects of HOL implementation
and structuring can

be derived. The benchmarks, PURGE, DATAMAN, and PRIDE I were
implemented using structured programming

techniques in both the OL and AL versions. For these benchmarks, JOVIAL implementations
required 267 more

bytes of storage than the MACRO-lI versions. For those benchmarks which used structured HOL and
unstructured

AL, JOVIA. required 36 more storage than the AN/AYK1SA and FORTRAN required 23% more storage than MACRO-Il.

The code expansion contributed by structured coding then
appeared to be around 107.

Executable instruct ions for each benchmark were accumulated and execution
times estimated to derive total

benchmark execution times. These tabulations are shown in table 8. Since different execution times were

used for each machine, no comparisons among machines
would be relevant, but comparisons of language effects

and structuring effects within a machnie is relevant.
The comparison of ,tructured HOL to unstructured AL

shows an increase in execution time of 42% for JOVIAl, compared to AN/AYKISA, and 45% for FORTRAN
compared

to MACRO. The comparison of structured HOL versus structured AL shows an increase in execution lines of

28% for both JOVIAL vs AN/AYKISA and FORTRAN vs MACRO-Il.
The increased run time attributed to structured

coding then is approximately 14% for JOVIAL and 17% for FORTRAN.

BENCIA.RK J73 15A FOp MAC CMS 'LT

AFLOOK 569 314 492 281 641 11)

ETD 217 134 249 q1 194 171

EXD 748 396 511 314

EXEC 285 194 320 178

PRIDE 2 431 264 393 221

PURGE 131 99 113 79 197 8q

DATA!iAN 513 414 474 429 221 226

PRIDE 1 524 331 544 306

TABLE 8. EXECUTION TIMES OF RENC1eMARKS

4. CONCLUSION

The characterization of EW software provided insight into the capabilities the instruction set used to pro-
gram EW system should possess. Of those instruction sets presently used in EW systems or those which have
potential of being used in EW systems, MIL STD 1750 appears to have the capabilities most compatible with
EW processing. It is recommended that MIL STD 1750 be adopted for use in such systems, if assembly lan-
guage programming is desired.

Evaluating HOL and structuring, in light of the EN processing requirements, has given ins< ht into rhe
specific impact these areas will have on storage requirements and execution speed. In general, iL appears

as if EN systems could presently anticipate increases in storage requirements, due to HOL inefficiencies,
of approximately 25%. Of course, this number is a function of the specific compiler and could decrease as
better compiler optimization is implemented. It would also appear that 10% more storage would be required

when structured coding is implemented. The effects of structuring on execution time appears to be in the
area of 14% increase. And the price to be paid in execution speed due to implementation in an HOL appears

to be around 40%. Of course, these inefficiencies are also a function of the compiler and are subject to

change. Using these numbers as rules of thumb, the E4 system designer now has some insight to the price
to be paid for using HOL and structuring, but they should in no sense be used exclusively in determining
whether or not a system will utilize these techniques.

5. REFERENCES

1. Curtis, B., Sheppard, S., Kruesi, E., March 1980, "Evaluation of Software Life Cycle Data
from the PAVE PAWS Project," RADC-TR-80-28.

2. Doty, D., Nelson, P., Stewart, K., February 1977, "Software Cost Estimation Study," RADC-
TR-77-220.

3. Milliman, P., Curtis, B., February 1980, "A Matched Project Evaluation of Modern Programming

Practices," RADC-TR-80-6.

4. Ziesig, D., Scheer, L., Perry, J., June 1981, "Electronic Warfare Software Study," AFWAL-

TR-81-1006.

I

DISCUSSION FROM AVIONICS PANEL FALL 1982 MEETING ON

SOFTF4RE FOR AVIONICS

Session 3 SOFT.ARE DESIGN AND DEVELOPMENT PROCESS - Chmn B. Mlirailles (FR)

Paper Nr. 13 - THE IMPACTS OF STANDARDIZATION ON AVIONIC SOFTWARE

Presented by - Dr. D. E. Sundstrom
No Questions

Paper Nr. 14 - ADA STATUS AND OUTLOOK

Presented by - L/Cdr J. F. Kramer
Speaker - G. Lejeune
Comment - ADA is anticipated to be used by the US Air Force for 'Low Risk Programs'. Can you
define those programs more clearly.

Response - What I said is that ADA will be used by the US Air Force for *Low Risk Programs"
until adequate compilers and an environment is available. I define "Low Risk Programs" as those
where the programming language choice will not be on the critical path of a program, where a
production quality compiler for the program computer is not required until after 1985 or 86, and
where the program is not too large and complex. The Air Force may attempt to dr one or more
parallel Joviel/ADA developments to gain experience without having the implementation language
be the critical path item.

Paper Nr. 14 - ADA STATUS AND OUTLOOK
Presented by - L/Cdr J. F. Kramer
Speaker - H. Schaaff
Comment - Will there be any subsets of ADA allowced

7
If not, how will that be achieved'

Response - No subsets will be allowed. This will be achieved by the validation capability. This
does not mean that you can not choose to implement project management constraints on what you
let your prograners use, particularly the inexperienced programmers. It also does not mean that
a particular job code generator and run time can not be optimized to execute a particular
application language area and a certain portion of the language better than the rest of the
language. But an ADA computer must implement the whole language to be called an ADA compiler.

Paper Nr. 14 - ADA STATUS AND OUTLOOK
Presented by - L/Cdr J. F. Kramer
Speaker - H. K'einschmidt
Comment - Do >ou have a concept for the validation of ADA compilers)
Is there a well defined procedure'

Response - There are over 1400 routines designed to check the presence of features and the
absence of non-standard features. The tests are both compile time and run time tests designed to
check for the presence or absence of legal programs; link/load rejection of illegal programs and
self testing. The tests are publicly available, but will be run at certification time by
validation personnel with their own parameters input to the test.

Paper Nr. 14 - ADA STATUS AND OUTLOOK
Presented by - L/Cdr J. F. Kramer
Speaker - H. von Groote
Comment - You were mentioning that today preliminary c ompilers are available. Do You Know of
experiences gained in applications of ADA with these compilers and would you like to comment o
them'

Response - I know of one non-imbedded computer application for a parts inventory, accounting,
and payroll using the telesoft compiler on a Motorola 68000 microprocessor. Their experiences

for the first part of the system which the customer is using and has accepted are described in
the MAy, June 1982 ADA letters (Vol. 1, Number 4). They have now delivered the second increment
for a total of 70,000 lines and still feel the same. I quote from the article. "To the ADA
detractors who claim the language is too large, too complex, too limited, too slow. etc., we say
(resoundingly) "POPPYCOCK-*. There is another user of the Intellimac Computer at the Naval
Weapons Center, Dehlgren, who is using it for modeling and rapid prototyping and who is also
very positive and whose only regret is the features not yet available like generics. I think

users are indicating that ADA is a good language.

Paper Nr. 15 - STANDARDISATION DU LTR POUR CALCULATEURS EMBAROUES - LE PRESENT ET LE FUTUR
Presented by - ICA De Montcheuil
No Questions

Paper Nr. 16 - USE OF HIGH ORDER LA1OLGE FOR OFP PROGRAMMING WITH EMPHASIS IN THE USE OF ADA
Presented by - R. Westbrook
No Questions

Paper Nr. 17 - AN APPROACH TO A PORTABLE PASCAL LANGUAGE FOR DIFFERENT ONBOARD COMPUTER SYSTEMS
Presented by - Dr. H. Wiemer
Speaker - D. M. WeissCoent -Could you describe the method used to specify the target micro-processor to the c ode

table generator'

Response - The target microprocessor, to be precise the target assembly instructions, are
described by a sequence of generator instructions. By executing them the related bit (code)

1)3-2

patterns are generated.

Paper Nr. 17 - AN APPROACH TO A PORTABLE PASCAL LANGUAGE FOR DIFFERENT ONBOARD COMPUTER SYSTEMS
Presented by - H. Weimer
Speaker - W. Fraedrich
Comment - You said that for political reasons PASCAL was selected. In which programs/projects
are you using the described/presented features?

Response - The described features are almost in the development phase, therefore no
programs/projects exist, to which the dedicated system is applied.

Paper Nr. 17 - AN APPROACH TO A PORTABLE PASCAL LANGUAGE FOR DIFFERENT ONBOARD COMPUTER SYSTEMS
Presented by - Dr. H. Wiemer
Speaker - H. I. van Meurs
Comment - The topic you discussed handles sequential PASCAL. To cope with realtime applications
have you considered applying your methodology to concurrent PASCAL? An additional advantage
hereof is the independence of any manufacture-supplied operating system on the target, since CP
is based on a virtual machine implemented by a small kernel/interpreter running on the target
machine.

Response - Considering the possible realtime features we have taken a look at concurrent PASCAL.

We only adopted the datatype semaphore. The monitor concept was onitted.

Paper Nr. 18 - USE OF HIGH ORDER LJGUAGES ON MICRO-PROCESSORS
Presented by - R. M. Boardman
Speaker - E. J. Dowling
Comment - You mentioned that you had a requirement that during testing, all statements should be
executed at least once. Did you have any automatic tools to help decide when this had been
achieved?

Response - He had no requirement to obey all statements at least once during testing. This was

an objective set by myself as project manager. He did not use any automatic tools to help us
achieve this.

Paper Nr. 18 - USE OF HIGH ORDER LANGUAGES ON MICRO-PROCESSORS

Presented by - R. H. Boardman
Speaker - N. P. H. Haigh
Comment - You mentioned that the HOL should have an 'Assembler-Code Insert" capability, and also
that the programmer should be familiar with the assembly language of the target micro. Would you
comment on the lack of generality this might introduce?

Response - Short sections in assembler language were necessary to meet the timing constraints in
the target system. However in order to test the software on the host system we wrote equivalent
HOL text for each code segment. If a new processor were used this text could be used in place of
the assembler sections. It has been tested on the host and if the new processor could meet the
timing constraints it would work.

Paper Nr. 19 - SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT
Presented by - R. Dibble
Speaker - Dr. H. R. Simpson
Comment - Can you separate out the overheads due to CORAL from those attributable to MASCOT'

Response - The estimates quoted in the paper compare MASCOT systems with other CORAL based
systems and should therefore be wholly attributable to the use of MASCOT methods.

Paper Nr. 19 - SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT
Presented by - R. Dibble

Speaker - Dr. T. G. Swann
Comment In our somewhat limited experience of MASCOT we too have found high store-space
overheads. But these were largely due to deficiencies in the compiler, which was unable to

produce re-entrant, shared, code. The remaining overheads were only the normal overheads needed
to communicate between code modules. we would have had to have these even without MASCOT. Can
you comment'

Response - The overheads resulting from deficiencies in the compiler are separate from those due
to the methodology. Ferranti MASCOT systems are supported by CORAL compilers that do allow
re-entrancy. If you choose to communicate between modules as in MASCOT then you will incur a
curtain level of overheads. These may well be greater than might be incurred if you use an

alternative method of design. However that is not a criticism of the MASCOT method, but a
statement that S/M quality (in terms of reliability, maintainability, etc.) is not obtained
without cost.

Paper Hr. 19 - SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT
Presented by - R. Dibble
Speaker - Dr. A. A. Callaway
Comment - You had considerable experience with the CORAL Mascot combination for building
real-time systems.
Do you think we are actually going to see any significant advantages in moving to ADA? In other
words is it going to bias anything, or are we going just to be fashionable?

Response - They will buy either facility in 190 language rather than in 1970 language, extra

facilities, and I suspect in the short term it will cause you a lot of heart-ache, but maybe in
the long term it wll be worth it.

Paper Nr. 19 - SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT
Presented by -R . Dibble

Speaker - M. J. Looney
Comment - It was stated in your paper that the top level decomposition did not actually use
MASCOT techniques.
At what stage were they introduced?

Do you think that this might in any way have had an effect on the final overheads'
Do you consider that the proposals put forward by Dr. H. Simpson in his paper will make the use
of MASCOT for large systems easier?

Response - For the projects discussed in this paper, the ACP diagram was not used at the top
level of software design but was used at the task level (Level 2). ACP diagrams have been

produced retrospectively for each system at the top level of S/W design and, in the particular
system (system I) with which I was associated, did not show up the need for any design changes.
With regard to the decomposition process, MASCOT overheads would seem to be a function of the

final level of decomposition. To terminate this process at a high level, to reduce overheads
would seem to regale the M ASCOT aims at modularity and design ,visibility. I do not think we

would have ended up at a different level of decomposition if we had used the ACP diagram at the

highest

level.

With regard to the final question. Dr. Simpson's presentation was my first contact with these
new proposals and I would wlsh to reserve judgement until I have had a chance to study his paper
iwhich was not included in the Conference Preprints).

PAper fIr. 19 - SOFTWMARE DESIGN AND DEVELOPIENT USING MASCOT
Presented by - R. Dibble
Speaker - M. J. Looney
Comment - The prospects of several implementations of MASCOT existing appears to disturb you.
Why should MASCOT be limited to one version, we have already heard of numerous compilers for ADA
and several APSE systems

?

Response - I am not disturbed by the existence of several MASCOT systems. What I said in my
presentation was that the existence of different implementations might undermine the MASCOT aims

of portability and standardization. If the handbook is not sufficiently precise in its
definition of MASCOT this could happen.
Taking your own example, in ADA great efforts are being made to allow only standard ADA
compilers to exist.

Additional Comment by M. Looney

Due to comments originating from MODiUK) contractors using MASCOT, a MOD working party was set
up to look into how the firms were using it. The working party, of which I was chairman, held

talks with ten different organizations, representing both users and users/suppliers about their
experiences in using MASCOT to develop software systems.
A summary report on the findings of the Working Party has recently been issued. I will be glad
to send a copy to anyone interested if they give me their name and address, or contact me a'
ASWE.

Paper Nr. 19 - SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT
Presented by - R. Dibble
Speaker - Dr. D. J. Martin
Comment - The size of 960 words per activity sounds large in comparison to good programing
practice. Does MASCOT drive you towards larger modules'

Response - As I stated in the presentation. The activity size estimate was based on a limited
sample and I hope to be able to refine this figure in due course. We would certainly agree that
for a functional decomposition the resulting functional modules would be small. Several projects
had halted the decomposition process at a higher level to reduce the nunber of activities and
hence MASCOT overheads. So it does seem that for current systems the use of MASCOT will result

in larger basic software modules.

Paper Nr. 20 - SAFETY CRITICAL FAST-REAL-TIME SYSTEMS
Presented by - Dr. B. Gusmann
Speaker - Dr. N. J. Cullyer
Ccmment Should the whole *C" language be used or are there constructions which should be
barred'

Response - None of the constructions we used proved to be dangerous. However, we did not examine
all the constructions in the language.

Paper Nr. 21 - USEABILITY OF MILITARY STANDARDS FOR THE MAINTENANCE OF EMBEDDED COMPUTER
SOFTWARE
Presented by - Prof. N. Schnexdesxind

Speaker - J. P. Sudworth
Comment Standards are only meaningful if they are enforceable. Does not this imply that we

should incorporate into the standards we impose on suppliers, the testing methods and tools we
propose using to establish that delivered software conforms to the standard. Are adequate tools
available'

14

Response - Yes, testing methods and tools should be included in the standard. A good idea'

Paper Nr. 21 - USEABILITY OF MILITARY STANIDARDS FOR THE MAINTENANCE OF EMBEDDED COMPUTER
SOFTWARE
Presented by - Prof. N. Schneidewind
Speaker - Capt. J. Astley
Comment Since MIL-STD-I679 is to an extent itself modular in that it normally calls out the

associated DIDs (Data Item Descriptions) which define documentation form and contents, would it
not be more appropriate to put current analysis methodologies in these subservient and more
easily modified DIDs rather than the main body of the standard'

Response - An interesting idea. My first reaction was that using a DID would save a lot of work

in achieving the goal of updating a standard, upon further reflection, I concluded that this
would not be a good idea because relatively few people read DIDs as compared to those who read

the standard itself. In order to give the new parts of a standard wide distribution, tne updates
should appear in the standard itself.

Paper Nr. 21 - LISEABILITf OF MILITARY STANDARDS FOR THE MAINTE44ICE OF EMBEDDED COMPUTER
SOFTWARE
Presented by - Prof . N. hchreidewind
Speaker - H. R. Simpso,
Ccement - icu said that when considering standards, method is more important than harcaare
technology. I agree with this. However, method should tale some account of target environment.
One ;mportant new feature of computing technology is the use of distributed procensing system=.
L'ould you not agree that methods ,eed to change to cope w4ith this, particularly by placing
oreater emprscis on parallel ism rather thar, changing to methods too strongly based on sequential
concepts

Response - No.

,c,.ment - Supplementary Point briefly mentioned in author s tallI'
The concept of mode can be difficult to apply in distributed processing systems due to

information propagation delavs. Consequently formal techniques which rake use of system modes
may be flawed when applied at the level at 'hich system operation tales place at several
processing sites etecuting concurrently.

Response - One of the tenents of a -tandard is that it should specifv what is required but rot

"how" to achieve the requirement. If the suggestions were implemented this principle would be
violated. A new methodology for analyzing distributed systems would be appropriate for inc-lusior
,r. a standard; the technology of distributed systems would not be appropriate for inclusion in a
-tandard.

Paper Nr. 22 - SOFTWAiRE CONFIGURATION MAGEMENT AT AORK

Presented by - Dr. Jan T. Pedersen
Speaker - S. Oxman
Comment - The paper ended at certification. What about post-certification field audit'

Response - Since in Norway, we normally maintain all our software, even for defence customers,
we normally have control of the maintenance process. Our types of procedures are adherred to

also in the post-development phase of a software system, thereby implicitly achieving scare form
of post-certification field-audit. However, we have not specifically focussed or esactly that
issue.

Paper r. 22 - SOFTWARE C0lJFIGURATION MANAGEMENT AT WORK
Presented by - Dr. Jan T. Pedersen
5peater - A. Cameron
C(cement four paper has discussed mainly the ways ir, which the tIngsberg staff are controlled
in order to produce a high-quality product. Please indicate the manner in which the customer is
controlled to prevent unnecessary interference and disturbance of the Kingsberg staff.

Response - Customers are intensely informed about our methods for controlling software projects.
When they are con,,inced that we are 'ble to perform, they limit themselves to participate in
scheduled reviews and progress report meeting-.

Paper fir. 2-3 - CNF IGLURATI01I MANAGEMENT A1ND THE ADA PROGRAMiIllG SUPPORT EIlIRONIENT
Presented by - Chf. Eng. K. Pulford
Scealer - . P. PRunnalls
C orment - I think you will agree that there is no need to wait for AD. to introduce :,utomated
configuration control along the lines you sugges

t
; indeed our e~perience is that it the

tacilities of a standard commercial operating system like UNIX are exploited, the necessary

tools c-an be produced with remarkably little effort. One area where we have found difficulty.

however, is in dealing with diagrams. Have you any proposals or comments in this regard'

Response - tes, this is true but there are two points that must be added. Firstly the sPSL has a

general database which allows all data, including not only configuration management data but
other project data, to be accessed in a uniform way. This is not strictly true for 1,111.

Secondly/ with this growing prevalence of APSEs the sorts of problems described in this paper
will become more common.

.e far ;s storing diagrams, there are already many techniques in CAD for storing diagrams so it

is certainly feasible to do this and certainly desirable if one is also storing the contents of

I-I III I

the document

Faper r. 23 - CCFJFIGURAT IL Ct*AGEMENT AND THE ADA PROGRAMMING SUPPORT EN"'IRNIENT
Presented by - Chf. Eng. K. Pulford
SpeaIer - T. F. Kensey
Comment - Configuration Management covers wider aspects than put forwjard in this paper. H- the
author considered the various resource aspects regarding the cost Of implementation in terms of
core occupancy, comnputer time lcading, cost of Implementation, or impact upon deliver,-

Response - The author has rot considered the problems of the resources required to supprrt
a system which are really outside the scope of the paper. But the author is worried about the
resources th.' will be require to support at, kP3E.

Paper Nr. 23 - COIFIGLIRATIOA MANAGEMENT AND THE ADA PROGRAl-t-ING SUPPORT ENVJIRONMENT
Presented b, - Chf. Eng. K. Pulford

Speaker -Mg. Cdr. . Barker

ommert - To what estent are the faci Ii *le; ,u deucribe a recesar componert rf the HPSE

Response -- r4l the tools described are not necessarily part of the AP'-E. It would -till be
possible to develop a project on the APSE using normal configuration.

Paper hr, 2-3 - CCVIFIrLRTIhfN t1A&EMEJT AND THE A[n PROGRAIIING SUPPORT EUQIFC01EtJT
Presented by - Chf. Eng. F5. Pulford
S-peaker - E. A. bowal ing
Ccomment - Au a comment, rather than s question, there will o, coarse be a large rumber or APS, Es

and quite a lot of MAPSEs and KAPSEs. It will only be possible to easily transport configurstion
management 'and other) tools if there is some attempt to standardi-e database interfaces . etc.

Re-ponse - Agreed, But the lack of portabilityo; does not affect the conclusion
=

of the paper.

Paper Nr. 24 - SOFTWARE FAULT TOLERANCE FOR REAL-TIME AUIONIC cE, STErlr,
Presented by - Dr. John knight
Speaker - B. Malcolm
Comment - We must pay for fault tolerance through effort spen t on additional ccde and

compleuity, which in turn might have an interesting effect or overal reliabilit,. Giver, your

reluctance to reduce effort spent on fault-intolerance a'e you saying that this is a way' of

adding additional resources to a project when some kind of limit has been reached with what can

be achieved is fault-intolerarcy or could it be that there might be a balance between the tao

within a given budget?

Response - In critical applications where the digital system has to remain operational.

reliability is the key issue. I would prefer to see fault tolerance used solely to improve

reliability. I can see the argument being used that software fault tolerance can be used to

improve reliability within a figed budget by reducing the attention paid to fault ntolerance. I

think it is too early to tell whether this is appropriate.

Paper Nr. 24 - SOFTWARE FAULT TOLERANCE FOR REAL-TIME AIONIC SYSTEMS

Presented by - Dr. John Knight
Speaker - Dr. J. Martin
Conv ent - You suggest that fault tolerance should be an addendum to fault intolerance. I shall

outline a case where we have used "fault tolerance" as the basis for producing a high integrity

system.

Paper Nr. 25 - Cancelled

Paper Nr. 26 - ELECTRONIC WARFARE SOFTWARE
Presented by - R. Shaw
No Questions

AN EIGHT POINT TESTING STRATEGY
FOR REAL TIME SOFTWARE

R.E. W:LSON

N. HIGSON

Marconi Avionics Limited
Elstree Way
Borehamwood

Herts.

SUMMARy

This paper describes a strategy for testing real time modular software systems. It gives an eight point

strategy with its structure, its objectives and documentation considerations, and includes as an appendix,

a glossary of terms used in the paper.

The paper considers the responsibilities of programming staff using such a strategy and the problems

entailed in re-testing as result of errors detected at higher levels of testing.

I. INTRODUCTION

Software testing of a real time modular software system is often the least structured aspect of

development. This paper describes an eight point strategy which distinguishes between bureau machine

testing and specialised system testing environments (fig. 1). It considers the impact of correcting

errors detected at high level of testing and the experience of using such a strategy on a real time

system. The paper concludes with a glossary of software component terms used.

The strategy described here presumes the design of a real time system to be decomposed (fig. 2) into

software 'module' units that do useful work by manipuliting parameters or data areas. The concept

includes the 'process' which is a unit of software with its associated data areas that is recognised
by an operating system so has known attributes within the total system, and the 'suite' in which

groups of processes provide system facilities.

2. TESTING STRATEGY

The strategy is based upon the assumptions that a software system is designed from a specification

and that the top level design sub-divides into progressively smaller software components which with

data areas do useful work within the system. The software components are implenented in code and by

their build-up and testing to larger and larger components a completely tested system is generated.

The testing strategy, which has 8 points, requires two testing environments nsmely, a bureau machine

environment and System Testing environment with specialised hardware.

2.1 Bureau Testing

The first 4 points of the strategy, require test of the software on a bureau machine environment

with normal software development aids to support the programming language in use and all such testing

within the control of a commercial Operating System.

A fundamental principle of the strategy in the bureau enviroment is that a module in the hierarchy

structure has input and output criteria which remain constant no matter how much of the structure is

present during a test. Therefore, it will be seen that the input criteria used during a Point 1 test

for a top level module are the same as for a Point 4 test for the module.

2.1.1 Point i: Module Test

This testing applies to all modules whatever their hierarchy position in the design. Any lower

hierarchy chore called by the module under test is replaced by a test stub and its test harness

controls the input and output information.

The aims of this test are:

(i) to test rigorously a module especially with all exeptional conditions (including error situation)

(ii) to show that the input/output criteria meet the design requirements.

This test is carried out by the programmer who implemented the module, and is responsible for:-

(a) Coding the module
(b) Defining input and output criteria for the module

(c) Coding a test harness
d) Coding test stubs if required.

On completion of this point, all information pertaining to the test should he rcgistered in a soft-

ware library. This information should contain test harness, test stubs, input and output data and

running instructions such as Job Control Language details. At this registration, documentation for

the chore in the form of a functional flow diagram and test information should be provided. See

Fig. 3 for Module Structure, and Fig. 4 for Module under test.

____i_____Be__i_________________

27-2

2.1.2 Point 2: Small Hierarchy Module Test

This is the first stage of integration in that tested modules are grouped together in their hierarchy
sequence, rhe number of modules qrouped will depend upon their size, complexity and function.

The aim of this test stage is:

(i) Integration test: the compilation of the module should test for correct use of common data

areas, detect:on of name clashes and provide the beginning of the link command details.

(ii) Module interfaze test: by replacing test stubs by the actual modules, the test shows if the
module interfa es are correct.

(iii) Independent test: to provide an independent check that the original test criteria of all modules
were valid and complete.

The tester should be a senior programmer, ideally with little involvement in the production of the
modules.

The input and output criteria for this stage of testing are the same as those for the top module when
it was Point 1 tested.

This testing does not generate more test results but c nfirms those from Point 1. However, documentary

proof that the test has been completed should be registered and signed by the tester.

2.1.3 Point 3: Module Group Test

This stage of testing is an extension of the Point 2 but with different aims.

The aims of this test are:

(i) to test functions instead of compilable units.

(ii) to test that valid data is processed correctly.

This means that some modules will not have all their low level modules or test stubs compiled since
only those modules needed to provide a particular function are compiled. Tests at this stage should
not aim to testing all combinations of error conditions for the input criteria, but test that valid
data is processed correctly, the correct files are manipulated and control returns properly. Error
conditions should have been tested at Point 1 or Point 2 for such functions. This level of testing
is the responsibility of the Team Leader who should provide documentary evidence of this test such
as hardcopy output from the test run. Module group testing should, of course, be carried out for all
functions.

2.1.4 Point 4: Partial System Test

This test is the summation of Point 3 tests. All modules for a particular task are integrited
including the control chore for the whole task. The task is tested as a unit with test stubs to
other tasks and the input and output criterion is the sum of the Point 3 criteria. At this stige the
testing should be restricted to simple functions with minimal exceptional conditions and the testing
should be supervised by a Team Leader.

The aim of this point is:

(i) to produce a tested task ready to be transferred to a specialised test environment of the
next stage.

Documentary evidence should be provided by the Team Leader that this stage is complete for a task.
Since the task will be transferred out of a Software Generation team's control, the Team Leader
should ensure that all testing aspects and documentation for the task are complete and any amendments
that have arisen from testing have been applied to the registered information.

2.2 System Testing

The software generated and testing during the irst 4 points of the strategy produce tasks that have
been tested on a bureau machine running under an Operating System and therefore, the testing has been
static testing of the software components with no "real-time" considerations. The latter 4 points
require facilities which allcw the software to be run in real time with representative hardware
interfaces.

The testing of the software for the first 4 points will have been the responsibility of a Software
Generation Team(s) but that for the last 4 points should be the responsibility of an Integration
Team. This team should be independent of the original generation teams and they should be familiar
with the specialised hardware required for System Testing.

The bureau testing will have produced software components that corr spond to a design task but before
such components can be integrated further, they ma need to be re-cormpiled into a process so that

4 they interface directly with an Operating System.

27-3

During System Testing, documentary evidence of tests should be produced since many of the tests will
not produce hardcopy results. A test certification document should be raised by the Integration team
for any test stating the test environment, aim of the test and results, The certificate should clearly
note the hardware configuration since failure during system testing can be attributable to hardware
and software.

2,2.1 Point 5: Integration Testing

This test comprises the grouping of a number of processes from the suite which perform a function
and testing them as a single unit. ThIs testing requires an environment in which processes can
function directly with a resident Operating System but the interface between the processes can be
monitored.

A test harness is needed which gives access to the inter process data files and can monitor the

control flow between processes and Operating System.

The input associated with special hardware interfaces should be controlled by the test harness so
that simulated data can be loaded into an input buffer, processed by the software under test, and
the software's output buffer cleared by the test harness.

During this testing, the processes should be run as close as possible to their final configuration
but access to other processes not under test will need to be replaced by test stubs.

The aims of Point 5 testing are:-

(W) to test that transferrance from bureau testing to System testing is successful

(ii) that processes are providing the required functions.

See Fig. S for Point 5 testing environment.

2.2.2 Point 6: Suite Testing

This testing is an extension of Point 5 testing in that the test harness is replaced by software to
interface to real hardware and all the processes associated with a suite are combined for this test.
Since a suite is a design grouping of tasks, this test will still need test stubs to other suites not
under test.

The aims of this test are:-

(i) to test hardware and software interfaces.

(ii) to run the test in real time with simple tests to exercise the software.

Since this test is run in real time with special hardware, the documentary evidence of a test with
hardware and software configuration is essential.

See Fig, 6 for Point 6 testing environment.

2.2.3 Point 7: Facility Testing

A number of suites are combined for this test so that test stubs to other suites are replaced by
software components. The combination of suites should be selected to provide system facilities and
the test data used for the previous stage used for this testing.

The aims of this test are:-

i) to run all tests in real time

(ii) to repeat Point 6 tests to check for System integrity, particularly access modes of date areas

(iii) to test functions that require more than one suite.

.2.4 Point 8: System Testing

All suites of the system are combined and the whole system tested by re-running the Point 7 facility
test data.

The aims of this test are:-

i) to run the whole system as realistically as possible to its final requirements.

(ii) to test that Facility tests of Point 7 are still valid.

(iii) to test more complex inter-suite functions particularly little used ones or complex functions.

(iv) to prepare the system for Acceptance testing.

/

27-4

3. PROBLEM OF RE-TESTING IN A LARGE SYSTEM

When the system has satisfactorily completed the Point 8 testing, all information for the system

should be registered in a software library. This includes link commands, test harnesses and job
control language details that have been developed during the System Testing stages.

A bonded system should be produced for Acceptance tests. Errors detected during acceptance testing
and system testing should be brought to the attention of the software generation team. Assuming the
error needs software correction, then the generation team should edit and re-register the revised
chores.

This raises the question as to how much re-testing should be done to check the correction. To test
minor alterations through all 8 stages of this strategy would be impractical and so the correction
should be classed into either code only change, data area change or code/data change. Depending upon
the class the amount of re-testing can be judged.

3.1 Code only change

The incorrect chores should be edited and registered and all changed chores should De subject to
Point 1 testing. This may mean changes to the test harness. A re-run of the Point 4 testing to give
a confidence check for the process should be made and then a new system generated and subjected to
Point 8 testing.

3.2 Data area change

If there is no code change with data area change, then the system should be re-generated and the
system subjected to Point 8 testing.

3.3 Code and Data area changes

Such alterations can have far reaching effects upon a system. However, by good design and implement-
ation, the extension of a data area can be minimised and the use of access routines to data areas so
that the code changes are restricted to a few chores can reduce the effect of such data area changes.

Within the strategy, the revised chores should be subjected to Point I testing. A change effectin4
a single process can be tested by Point 4 and finally the system testing (Point 8) but a change with
wider implications can be tested by sampling testing using Point 3 testin! and Point 6 testing if more
than one process has changed.

There are no hard and fast rules for re-testing but a good integration testing environment will quickly
show if a minor change at chore level has cured a fault and has or has not introduced new ones.

4. BENEFITS OF THE TESTING STRATEGY

This strategy has been developed on a large system. The system resulted in approximately megabyte
of real time software comprising 16 processes produced from over 300 chores. When Point 8 testing
was started, it took less than a week to complete the link commands and generate a system and the first
generation produced a system stable enough to start preliminary investigation into system testing
without it frequently crashing.

The benefits from using such a strategy are:

(a) it provided a means of controlling the testing of a system which was created by a large
software team

(b) it gave a clear distinction between bureau testing by small programming teams and system
testing by an Integration team

(c) the linkage commands generated at each successive point were closer to the final system
requirements so that the privileged access needs of code and data could be checked at

each Point.

The strategy discussed in this paper involves software staff following a well defined structure and
producing evidence of testing a' each stage.

The end result is a much better tested product.

APPENDIX: SOFTWARE COMPONENTS USED IN THE TESTING STRATEGY

A1.l The software components considered in this paper are given below. The suite, task and chore are
design concept components.

A1.2 Suite

In a design, a suite is defined as a logical grouping of software tasks which participate in a common
function. For example, the software tasks required to provide an Operator Interface of input cotmmands
and output display infermation. In a system's implementation, the majority of the tasks equate to a
process" and so a suite is a collection of processes providing a facility of the system.

AI.3 Task

This is a design component which is dedicated to the performance of a particular function that is
identifiable as a major part of a% operational requirement. For example, th.e software required to log
hardware "Built-inTest" information when it is reported to the system.

AI.4 Chore

This is the software component in the hierarchy structure for the lowest design level. Its functions
range from control chores which have enough logic to control other chores in the correct sequence to
chores that do some useful work such as transferring data between files. A chore is the fundamental
building block for the system and so its rigorous testing is essential to this strategy. A chore
must be a testable unit with input and output criteria.

AI.5 The Basic Code Unit, Module, Process and Integration are Impl ..- ation components.

AI.6 Basic Coded Unit (BCU)

This corresponds directly to a chore, it comprises the code for a chore and it has an input and output
specification. This input/output data may be via parameters as in a procedure call or via data areas.

A1.7 Module

This is defined as the BCU of a chore with any local data areas required to support the function of
that chore. When a chore is under test, the test harness calls, in fact, the module associated with
the chore.

AI.8 Process

Modules are built up as defined by the design up to tasks and a task that is controlled by a resident
operating system is called a "process", some times called a "program". Since the operating system
recognises a process then it has known attributes within the total system. For example, its read/
write access within the ystem can be limited to maintain system integrity.

A1.9 Integration

Within the context of this paper, integration means the linking of tested software components to
produce processes or the total system.

Al.1O The test stub and test harness are Software Test Tool components.

A1.11 Test stub

For a module to complete its function, it may require access to lower hierarchy modules. The module
under test would either pass parameters or set data before the call and on completion of its function,
the lower module returns control. A test stub is sufficient software to emulate the lower level
module so that the output of the calling module can be monitored. It should be capable of replying
with the correct data so that the module under test cannot distinguish between the stub and the real
module.

A1.12 Test Harness

This is sufficient software to handle the following:

(a) Input data. The setting up of initial conditions, fixed data or parameters. It may interface
to an operator .or the input of variable data if required.

(b) Output data. The storage of output data from the module, displaying of data areas on entering
or on completion as required.

(c) Test stubs. Providing the stubs and monitoring the information passed between modules.

(d) Lower Hierarchy modules. A facility to replace test stubs by tested modules.

27-6

_Point7
Numbe Input Test Stage Output Resporsibility

1 Start criteria Module Tests End Criteria Progrosmer
(parameters) (BCU + data)

2 Start criteria Small Module Hierarchy End Criteria Senior
(parameters) Tests. 2 or more modules (parameters) Programmer

3 Message structure or Group Module Test Specified Team
data file (functions) Results Leader

4 Sum of Group Test Sub-systems Modules Specified Team
Module data (suite/tasks) action Leader

5 (Interation testing

6 Simulation Test Suite testing Specified Integration

7 Data Facility testing action Team

8 system testing

FIG. 1. TEST POINT CRITERIA AND RSPONSIBILITIES

Sy t S stem

Ta sk
Chorie I

C~hore 2 4Core 3J Chore 4

Chore 5 Chore 6

1 Chore' 7

FIG. 2. HIERARCHY STRUCTURE OF SYSTEM

External

file

I I- .

Chore

I I

FIG. 3. MODUILE STRUCTURE

T Harness

SLocal
/-(. fil e

FIG. . oTEST 1 4ESS STRUCTURE

4f * 4

Datgo....~~s ' Ts Tas k a E-) * /PFaske
Data

Syste

FIG. 5. EXAMPLE OF POINT 5 TESTING

6e EXAM'-E OF POINT 6 TESTING

. .

TORNADO FLIGHT CONTROL SOFTWARE VALIDATION:

METHODOLOGY AND TOOLS

by

Roberto PELISSERO

AERITALIA - Gruppo Sistemi Avionici ed Equipaggiamenti
10072 CASELLE (Torino) - Italy

ABSTRACT

In the development, integration and ground testing of avionic systems real time techniques are essential

for software validation and verifica'ion especially when flight control systems are concerned.

The aim of the presentation is to describe methods and tools adopted in the Tornado project to perform

at ground the following a-tivities:

- Software confidence testing

- Investigation of failure effect

- Performance prediction
- Assessment and read across between simulated and in flight behaviour.

The real time facility in use is based on an integrated hardware/software system that has been ad-hoc

designed to allow closed loop testing of the Tornado TF/AFDS Subsystem with particular emphasis to the

Autopilot. The real equipments of interest are installed on an avionic rig and the flight condit :-.

are obtained via a data flow to/from an external computing facility which performs both the acqiS:ti n

stimulation functions and the various simulations (aircraft, engine, sensors, etc.).

The validizy of the results achieved by the presented facility is confirmed by repetition of manoeuvres

performed during previous flights.

In addition an overview of other possible applications of such a facility is sommarized.

1. INTRODUCTION

The utilization of an avionic system rig has been demonstrated very useful during the 19
7
0s in aircraft

development.

The rig system purpose is to provide the capability of performing avionic system integration. The sim-

plest arrangement is obtained by using a bench reproducing the aircraft electrical wiring: this makes it

possible to test individual equipments and to connect each other the various avionic units.

A second step is to handle the avionic signal flow by a computer able to make static and dynamic data

stimulation and acquisition. Such an arrangement allows to perform:

- hardware/software integration

- system investigation

- flight back-up

- support for avionic system changes.

When an automatic flight control system, athe Tornado one (Terrain Following/Autopilot and Flight Direc-

tor System), is to be considered, the use of open loop tests is not sufficiently representative of the real

behaviour due to the nature of the system itself.
A real time simulation system with hardware in the loop is the most flexible and realistic tool to per-

form tests and analysis on Tornado TF/AFDS subsystem in order to provide necessary information to clear

the various operating modes and their combinations. As a closed loop simulation system is very closely

representing the actual environment of operation of the real system, it can be used to perform all the ac

tivities for the clearance recommendations and flight envelopes definition.

The closed loop capability is achieved adding to the data stimulation and acquisition system previously

mentioned the aircraft dynamics simulation. The two functions, i.e. signal handling and simulation, can

be performed on a single computer only if its characteristics, in terms of speed and usable program spa-

ce, are able to satisfy the testing requirements, otherwise a two computor solution is preferable.
The testing objective of a rig having the real time closed loop capability (Closed Loop System) is to
prove the performance and the hardware and software integrity under normal and abnormal operating condi-

tions of the system to be tested. For the automatic flight controls this includes also:

- verification of correct implementation of the control laws and mode/failure logics

- performance evaluation with tests equivalent to the ones carried out in flight

..

2-

- failure analysis

- software validation

The set up of a facility simulating in real time the behaviour of the controlled aircraft ali~ws to

perform this kind of activities efficiently and cost effectively.

A SYSTEM TO BE TESTED

the Tornado Autopilot and Flight Director System AEDS) is a digital integrated autopilot, flight direc-

tor and autothrottle system which has been developed and now is being produced by Marconi Avionics and

Aeritalia - Gruppo Sistemi Avionici ed Equ,paggiamenti.

The AFIS has been designed to provide automatic control of the aircraft in the longitudinal and lateral
axes in various operating modes (autopilot) and to provide the necessary information t(the pilot instru-
mentation so that monitor of automatic performance or manual aircraft guidance shall be possible. The au-

topilot controls th aircraft by means of manoeuvre demand signals to a triplex fly-by-wire primary

flight control system which is called Command anJ Stability Augmentation Systo m (CSAS). In addition an
"au',throttle mode" facility allows c-alibrated airspeed hold, via engine thrust control, and a "pi* h

autotrim" facility maintains, via autotrim motor control, the pilot stick in the trimmed posi~ion.

The Autopilot system is duplex to satisfy safety requirements and to have flight director facility

available in case of autopilot malfunction. The two computers (AFDCI and AFDC2), which are self monio-
rod, have identical computing and only differ in the output interface circuits; the former computer

prfovides triplex analogue pitch rate and roll rate autopilot demands to the CSAS, whilst the latter
provides signals to F.D. displays. autothrottle and autotrim facilities.

The two computers are continuously cross monitored: in the event of a failure of either AFDS computer, mo

de computations results are applied to the output interface of computer 2 as F.D. information only.
The ystem moreover contains:

- a control panel allowing the pilot to select the operating modes, to perform the preflight and first

line procedures and to see failure indications

- an autothrcttle actuator for the thrust control

- pitch and roll stick force sensors giving information to the computers of the overcoming of prefixed

stick force thresholds. (This enables the pilct to take up the control of the aircraft overriding

autopilot operation just making the correct effort on the control stick).

The redundancy philosophy applies also to the AFDS input signals; from this point of view they are di-

vided in the following groups:

- signals for which failure protection is provided by manoeuvre limits within the control laws

- signals which are fully monitored at source

- signals, coming from different sources, which are monitored within the computers,

The AFDS operating modes allow control in pitch, roll and thrust. As the control always acts on both

pitch and roll axes it is no! allowed to select a mode on a single axis. The mode selection is performed

according to compatible mode combinations, predefined in the mode and failure logic system.

The operating modes are the following:

- Attitude/Heading hold mode (basic mode)

- Heading acquisition mode

- Track acquisition mode
- Barometric altitude hold mode

- Autothrottle mode
- Automatic approach mode

- Terrain following mode
- Radar height hold mode

Other AFDS facilities are:

- CAS datum adjust that can be used in autothrottle mode

- Autotrim, for the longitudinal modes

- Automatic steering override (ASO), for basic modes

- Stick Force Cut Out (SFCO), for other modes combinations
- Instinctive Cut Out (ICO), for all the modes

The AFDS during its operation is interfaced with the following equipments:

- Command and Stability Augmentation System (CSAS)
- Inertial Navigator (IN)

- Secondary Attitude and Heading Reference (SAHR)

- Air Data Computer (ADC)

- Main Computer (MC)

- Hurizontal Situation Indicator (KSI)
- Radar Altimeter

- :errain Fj)llow ing Radar
- Head-up Display (HUDI
- Attitude Director Indicat,,r A:1 I

- Approach aids

HUD and ADI receive AFDS signals, CSA rec-ives~prviJes signals from/to AFDS; all the other systems can

be considered as AFDS data sources. (F g. I .

The signals interchanged with the ,ther luip-ents are of various types:

- serial digital

- analogue

- synchro

- discreteo.

3. TESTING FACILITY

In accordance with the trend usually followed during the 1970s, the three companies (MBB, BAe, AIT) of

Panavia Consortium during the development phase of the Tornado aircraft used avionic rigs with the

capability to test individual equipments and all the integrated avionic system. Each company had speci-

fic tasks to be performed and, as a consequence, every rig was set up differently to obtain the required

capabilities.
To cover some involvements in automatic flight control area, the AERITALIA rig system, that initially was

just used as a Flight Back-up Rig, was improved with the capability to perform dynamic real timt closed

loop testing. The present AERITALIA Closed Loop System is based on three main items:

- avionic integration rig

- data handling computer

- simulation computer

The real control loop is essentially composed by:

- Autopilot and Flight Director System (AFDS)

- Command and Stability Augmentation System (CSAS)

- Sensors: Inertial Navigator (IN), Secondary Attitude Heading Reference (SAHR), Air Data Computer (ADC)

and their controls

- Main Computer (MC) and its controls and displays

- Displays: Head-up Display (HUD), Attitude Director Indicator (ADI)

- Control panels, manual commands

- Aircraft and environmental conditions.

The behaviour of this real system is reproduced by fitting the avionic rig with the equipments (AFDS,

sensors, displays, control panels) and closing the Loop through software models of CSAS and aircraft

dynamics. (Fig. 2).

The avionic equipments are connected as on the aircraft: their input/output signals are controlled by the

data handling computer via special interfaces and through dedicated patch panels. The operators can use

the various equipment control panels and keyboards as in normal aircraft operations. The manual aircraft

control is performed by the use of a dedicated hardware/software system which is representative of stick,

trim and throttle functions with the limitation that artificial q-feel at present is not implemented.

The two computers are connected physically via a standard high speed communication interface and logical-

ly by two jobs operating respectively on the data handling computer and on the simulation computer.

The operational data flow in the system is fulfilled according to the following steps:

the output signals of the avionic equipments are acquired by the data handling computer and sent to the

simulation computer

- these data are used as input signals for the software models by the simulation computer which computes

the avionic equipments inputs to be sent to the data handling computer

- these computation results are used by the data handling computer to stimulate the avionic equipments

that consequently produce new data to be acquired.

All the process is monitorized not only, as obvious, by the various aircraft displays, but also by

additional measurement devices and by using video display/line printer and plotter for alphanumeric and

graphic representation respectively.

A complete evaluation of the test is done performing alphanumeric and graphic replay of the relevant

signals recorded on the appropriate mass memory devices (disk/magnetic tape) during the test Itself.

The data handling computer is a DEC PDP 11/45 with peripherals and terminals (like disk units, magnetic

tape units, teletype, video display unit, paper tape reader/punch unit, plotter, line printer, card

reader) and some standard and special purpose interfaces, able to handle the various kinds of signals

used in Tornado avionic system, i.e.:

- serial di ital signals
- parallel digital signals

*1

28-4

- binary coded decimal signals

- synchro signals

- discrete signals
- analog signals

The simulation computer is a DEC PDP 11/60 with limited peripherals and terminals (disk units, magnetic

tape unit, line printer, video display terminals).

The physical connection between the two computers is obtained using a standard ,FC intercommunicat r

interface. (UMClI).

The closed loop system makes use of special software on both the computers.

The data handling computer is provided with the so calld Closed Loop Data Aoy isit;. -::J Sti'und t: a:
System (CLDASS) which was developed by AIT starting from the Data Acquisition and :"'a': y

(DASS) designed by MBB, with AIT contribution, for open loop testing purposes (hardware software integra-
tion, system investigations, flight back-up, support for avionic system changesi.

The CLDASS allows real time testing and off-line replay.

The real time functions are (Fig. 3):

- Recording on magnetic tape and/or disk of:

data acquired from the avionic rig

data received from the simulation computer

- Monitoring on video display or line printer and/or plotter of:

data acquired from the avionic rig

data received from the simulation computer

- Dynamic stimulation with:

data stored on magnetic tape and/or disk

data received from the simulation computer

- Substitution of serial digital data with:

data stored on magnetic tape and/or disk

data received from the simulation computer

- Data transmission to the simulation computer

- Event processing and subsequent action

- On line commands

(for control of test, monitoring and stimulation).

The off-line functions allow to replay the recorded data on:

- line printer or video display (alphanumeric replay)

- plotter (graphic replay)

and to make use of all the necessary utilities including system generation and avionic data bank mana-

gement.

In addition to data transfer handling, the most important difference between DASS and CLDASS is that
DASS basic functions are rig data acquisition and rig data stimulation, while in CLDASS monitoring,

recording, st~mulation and substitution apply not only to avionic rig data but also to simulation com-
puter data. For the rest th two systems are philosophically similar even if CLDASS was completely

rewritten. The following concepts apply:

- operation under DEC Disk Operating System (DOS)

- use of Fortran IV and Macro 11 Assembler languages

- use of modular programming techniques

- use of special purpose device handlers to meet the real-time testing requirements

- use of test oriented file format
- use of system priority structure
- software organization in line with rig testing activities

- availability of a test oriented language

The software implemented on the simulation computer includes some programs running under the DEC RSX1I-M

operating system.

The simulation computer software (Fig. 4) consists of three main systems:

- aerodynamic data handling programs
- tests preparation interactive program

- real time simulation program

whose functions are detailed in the following.

The three parts have been designed and developed with the purpose that the limited resources of the
machine (speed and word length) should not affect the ability to perform real time testing and that, at
the same time, the computer should be utilized at the maximum of its hardware capabilities. During the

project, in fact, the strongest constraints were:

- the need that the simulation program running time is shorter than a prefixed one, i: order to maintain
the global cycle time at a value enabling a realistic operation

- the address limitation of a 16 bit computer just allowing 32 K words program when overlay techniques

can not be used for time consuming reasons.

The "Aerodynamic data handling programs" system collects a set of programs allowing the aerodynamic data

management with the capability of selecting a certain desired portion of the whole flight nvelope.

Its functions are:

- data selection in accordance with the test to be performed

- data generation in accordance with the aircraft configuration

- data interpolation for intermediate situations

The "Tests preparation interactive program" system provides all the data/information necessary to the

test, acting on previously selected data and on the basis of a man-machine dialogue. Its functions are:

- selected data formatting

- trim conditions computation

- fixed parameters computation

- logic commands interpretation and formatting.

The "real time simulation program" is the most important software running on the simulation computer

because it is used during the real time test.
It contains the software models of all the non avionic items like aircraft dynamics, engine, control/sta-

bility augmentation system, environmental conditions and, in addition, of some avionic sensors so that

the use of either real or simulated sensors is allowed.

For the aircraft simulation a six degree of freedom non-linear model, expressed with forces and momenta

equations methods, is used. The simulation program has been written mainly in DEC Fortran IV plus; on-
ly some particular routines and a special purpose DMC11 device handler are written in DEC Macro 11, as

requested by real time optimization. The data in the program are obviously in floating point format; so

every data exchange with PDP 11/45, where the information is in Tornado avionic format, is in conjunction

with the appropriate conversion.

The programwhich was developed using computer oriented real time techniques, allows the following:

- starting phase

- avionic data acquisition from data handling computer
- avionic data conversion into floating point format

- atmospheric conditions computation
- CSAS and actuators output computation

- aircraft dynamics equations integration
- airframe/engine parameters computation

- sensors outputs computation (simulated sensors)

- sensors stimuli computation (real sensors)

- failure/disturbances generation

- data conversion into avionic format

- data transmission to data handling computer

The facility is very flexible and simple to use (Fig. 5). The first thing to do when a particular test

has been decided is of course to install the equipments on the rig including the proper software and

mission data. If, for any reason, an important equipment is not available it will be properly simulated.

After rig and connections set up, a list of all the involved parameters is to be prepared considering

which signals are to be used as stimuli and which signals are to be monitored and/or recorded.

Then the following have to be defined:

- test operations sequence

- correspondence between avionic and CLDASS channels

- sampling and resolution time of every function (the sampling time is the period of the operation,

the resolution time is the interval in which the operation must be completed).

- maximum foreseen running time (the test is automatically stopped).

After that, the physical connections can be made on the various patch panels and the appropriate CLDASS
instructions can be written.

At this point it is possible to start the operation on the data handling computer with the test program

instructions interpretation.

On the other computer the teat preparation has to be performed following the various preliminary steps.

The programs related to management of aerodynamic data are not to be runned every time as the same por-

tion of flight envelope is used for several tests and large files archives can be arranged. On the con-

trary, the interactive program is normally runned before every test, this has not to be considered a

limitation or a problem due to program execution rapidity and to possibility of organizing the resulting

data files into appropriate archives.

According to the operator's answers in the dialogue the appropriate values are arranged in two files to

be used as inputs and initialization by the real time simulation program.

The real time closed loop process, during its cyclical part, is governed by the programmable real tite

clock of data handling computer which beats the global cycle time. However the data handling computer in

order to be enabled, after test program instructions interpretation, needs to receive 'from the simulat ion

computer a first data message for equipment initialization.
The test actually starts after adequate PDP 11/45 keyboard command: the data flow between the two corps-

ters follows predefined transmission/reception sequences with continuous verifications of transfer ope-

rations status to always guarantee use of updated and coherent data. For instance on the POP 11/n) the

program checks if the reception of a new set of data is completed before using them in the next computing

cycle.

During test execution it is possible to follow its proceeding both on the various avionic rig displays

and PDP 11/45 monitoring devices and to interfere properly with the on line commands facility.

The real time test can be stopped by the appropriate PDP 11/45 keyboard command: the two jobs running

on simulation and data handling computers finish correctly and every interface buffers are resetted.

The same happens if the predefined end time is reached.

The data set collected during the test on magnetic tape or disk can be evaluated using the off-line

replay program.

4. FLIGHT CONTROLS TESTING ACTIVITY

4.1. Tests typology

When the various hardware units are available the need for an integration rig and especially for a faci-

lity with closed loop capability becomes more and more evident. The Closed Loop System allows testing

of all the system functions with very high level of flexibility and accuracy.

The availability of such a facility is useful in any phase c. aircraft project because it makes it

possible to:

- display and test all the functions and logics against system specifics"
- detect incompatibilities or failures at any level

- study and verify corrective actions

- anticipate the system in-flight behaviour
- reproduce in-flight situations

- produce results for the flight clearances
- perform training activities for company and customer personnel

Rig testing is of course performed in parallel with the flight trials: the cumparison bet.cn flight test

results and real time simulation is a very important feature which maker esserial the permanent Closed

Loop System support during the various phases of development and in-service.

After all the acceptance test procedures of the various avionic units have been accomplished and all the

required integration tests have been finished it is possible to start the real time simulation activi-

ties.

The first one is of course the validation of the facility itself: this is carried out it! separate steps

by comparing the obtained outputs with the various off-line simulation results, the development flight

simulator data and, as final step, the flight trials traces.

The Closed Loop System gives the opportunity to perform a software confidence testing on the program

implemented in the automatic flight control system computers.

Appropriate test procedures must be prepared to verify the correct implementation of control laws and of

mode compatibility/failure logics. All the mode combinations are tested and the rig results are compared
against the expected one. The various limits, thresholds, switches and selectors are checked to verify

if the corresponding actions are in the desired direction.

The mode and failure logic is proven by simulation of mishandling actions and various types of external
malfunctions including lack of the sensors and also of the power supplies.

In case the system is extended to include also the primary flight control system in hardware, even the

integration between automatic and stability systems could be checked: all the possible aspects to be
verified before flights, including interface malfunctions and possible hardover failures, can be cove-

red with a high level of confidence.

The performance analysis tests are to be intended as a validation activity more than a verification one.

The investigation on automatic flight control system is extended by exploration of a very large number

of flight conditions covering as much as possible of the complete flight envelope including several air-

craft configurations.

The performance verification, or software validation, has the purpose to control whether the specifica-

tion is met, i.e. whether the software is working as expected. The tests must cover all the autopilot

operating modes in all the possible combinations.

The presence of the other avionic equipments gives the possibility to perform the tests in the same

context of the real mission. The crew can participate to the fests acting as during real slights.

The performance tests have the following purposes:

- predict the in-flight behaviour giving more information to the test pui ,ts and t the system popi e

- investigate the flight envelope portions not explored during prot,-typet Il ight trials

- evaluate the obtained performances against the specification requirements

- study possible software modifications in case the performances are not 'onsidered sat sfacto C

- -lear the various modes and Lheir combinations

- provide, in conjunction with flight trials activity, clearance rec-mmendations and flight envelopes

definition with respect to specification requirements.

The rig testing objective is not only to prove the performance and the hardware and software integrity

aider normal operating conditions, but also in abnormal situations, in fact due to the extreme flexibility

and e asy use of the Closed Loop System, a large variety of tests can be carried out in failure analysis
area.

The main test objective is to check the failures detection by AFDS and the aircraft recovery analyzing

their effects on the subsystem functions and on the aircraft motion.

The failures to be investigated can be summarized as follows:

- lanes failure including open and short circuit of interfacesI - interface failures including hardovers. specific variations and power fails- component failures

For the open circuit failures it is required to investigate the effects of interruption of data fl w on

digital channels or cut of analog lanes in connection with various equipments which may dialogue with

AFDS.

Similar investigations are requested for short circuit failures.

The hardover failures examination leads to define exactly the authority limits and the flight envelope

that can be allowed in all operating modes in any situation. (As previously mentioned this activity can

be really performed only when it is possible to integrate also the primary flight contrail system).

In the category of the so called "specific variation failures" the flilowing typ .. t s,Isn:,

are considered:

- failure to zero

- step failure

- failure to last value

- ramp failure

These failures are to be applied to every significant parameters involved in the control system in ever,

operating mode and situation,

Power fails investigation includes power change over and power interrupt of the aircraft power genera-

tors.

The in box failure simulation represents the deepest investigation as far as the failures art, concerned.

The related tests are to be defined on the basis of all the safety studies and of all the results of the

other failure tests.

Moreover failure analysis activities comprise investigations on sensors data tolerances and mishandling

operations.

The tests on sensor data tolerances are performed to check the influence of various signals tolerances

upon aircraft performances and system protection. The tests control the correct implementation and the

adequate definition of the various monitor thresholds of the system.

Mishandling tests are performed to check influence of deviation from normal operational procedures on

aircraft motion and system functions.

Fitnally the last thirig to be carried out is the investigation of AFDS disengage characteristics in

normal operation, emergency and failure conditions.

A collateral, but not less important, activity is represented by the continuous support to the flight

trials. This support extends from answering the test pilots questions to reproducing strange in-flight

occurrences.

With the Closed Loop System is in fact possible to repeat flight manoeuvres, therefore this allows

deeper investigations on any events occurred during real flights.

The read across between in-flight and real time simulation results at last leads to a very high level

of confidence in making the necessary assessment on safety and performances.

All the above mentioned rig activities together with the flight tests allow to give the various in servi-

ce clearances.

The Closed Loop System is also important for training activities: it is a very efficient tool for crew

familiarization with the various mission operations and procedures and it is also very useful to train

technicians and engineers.

4.2. AERITALIA involvement

The Aeritalia Closed Loop System was developed in 1977-79 as a back-up of their own AFDS flight trials

and to spport on opportunity basis the MBB rigs. Since 1980 Aeritalia have been giving contribution to
Lij ".ious clearances for in-service activities especially in the following areas:

iIi

- performance prediction and evaluation

- interface failures effect testing

- read across between real and simulated flights behaviour

- crew and engineering training

The facility was validated using all the kind of results available within Tornado program: flight simu-
lator, off-line models, actual flight trials data. (Fig. 6 a + c show a comparison between in-flight ind

rig time histories).

Performing the above mentioned activities the various hardware and software capabilities of the Closed

Loop System are fully exercised.
For instance very large use of "substitution" is made as this function allows to replace a direct link
between two equ.pments by a connection through computers and thus to substitute the desired signals
by the simulated ones before the stimulation. (An example is given in Fig. 7 a+b).

For failures simulation few special words were arranged: each bit can be modilied by use of appropriate
on line command in order to inject various failure conditions. In addition for open circuit failures
relays actioned by computers are also used. All this to allow failure injection exactly when requested
by the operators and to record the failure command together with the other parameters.

The performance rig testing activity is devoted to the so called cruise modes in all their possible
combinations: attitude/heading hold mode, barometric altitude hold mode, mach hold mode, heading acqui-
sition mode, track acquisition mode and, in addition, autothrottle mode. (Some typical parameters are
shown in Fig. 8 a+d).

The mode performances have been evaluated not only against the specification requirements but also con-
sidering the system behaviour taking into account the operating missions requirements in all their com-
plexity. This is carried out examining in addition to the typical autopilot and aircraft dynamics para-
meters, also some other ones not considered by the AFDS specification (because without inlluence on the

autopilot itself), but having a certain importance with respect to the evaluation of the system beha-
viour. For instance the rapidity of certain manoeuvres is to be evaluated: time to reach foreseen values
during manoeuvres (e.g.: maximum bank angle in heading acquisition mode) and when the manoeuvre purpose
has been accomplished. (e.g.: zero ban angle after the desired heading has been acquired in heading ac-

quisition mode). All what above to assess the suitability to the mission success of the various AFDS

modes.

The facility has been continuously used as a valid support to the flight trials: every phoenomenu en-
countered in flight was examined reproducing the same conditions to discover its cause. The investiga-
tions are often let easier to be made by the possibility of obtaining dynamically transfer functions
between two internal points of the system provided that they are a-cessible.
the manual controls implemented on the Aeritalia rig system allow to drive the aircraft and so to test

also flight performances.

In conclusion the Aeritalia Closed Loop System is able to perform all the possible AFDS cruise mode
testing activi'ies with the following limitations:

- the address computer limitation does not allow to change aircraft configuration during a rig trial (it

is n'cesnary to stop the test and re-start with a new data package)

- the lack of stick forces simulation does not allow to test realistically ASO ed SFCO facilities for
which at present just the electrical signals are simulated.

5. FURTHER AVIONICS RIG TESTING ACTIVITIES

The Aeritalia Closed Loop System, which was developed mainly for activities related to Autopilot and

Flight Director System, allows to perform several testing activities in other avionic areas; it is in

fact, an efficient tool for the verification and the validation of every kind of avionic software.
Therefore studies and tests have been carried out on the navigation/attack areas with particular at'en-

tion to air-to-air and air-to-ground attack procedures.

In this kind of tests the bench is fitted with the necessary equipments, the Main Computer is loaded with
the Operational Flight Program under consideration and with the appropriate mission data.
The loop includes not only the sensors/displays used during AFDS testing but also all the equipments

involved in the nay/attack mission with their own displays, control panels, etc. The AFDS itself is not
so important, in fact it is not used at all in air-to-air attacks while can be used in air-to-ground at-
tacks.
On the contrary, in these nay/attack simulations it is essential to drive the aircraft manually using

pilot stick and throttles.

Similarly to AFDS testing activities also for the nay/attack system the following have to be carried out:

- software confidence testing
- performance prediction and evaluation

- failure assessment on failure effects

- flight trials support.

7551

Moreover als, software maintenance activities have to be considered.

Among the activities rece tly carried nut in Aeritalia the one related air-'c-ar alaces at te s.e5.-

rized as an example. Air-to-air tes i;g requires installation on the oen-1. (.r sv-ulatl,ri n ->

f radar sensor, Stor Management System in addition to the equtiperts d . r -ej ,[' I-,tc:' s

wh~le the presence of AFDS is not relevant. The real time program to be ised for this testing onIta:ts

also the target motion simulation. A symbol, representative of targ- psit-r -with respec' *, the .,ir-

craft, is visualized on Head-Up Display; the type of movement cf this synthetic target is chosen no ap-

propriate answers in the dialogue of the interactive prepl , ion program.

luring software development or for software maintenance purposes it is - reover useful to have acurate
simulation model of the software to be implemented withi. the on-hoard compu te.. She fodels can ce c ,

serted in the real time program or better in at. appropriate rff-line progra for their eval at lin.

The software model validation is carried out using off-line procedures.

After this validation the software is implemented in the MC: the real time testing must then be performed

and successively the results evaluation is made uising the same -ff-line procedures.

If unsatisfactory conclusions are obtained, to liscover the MC software faults, the software model can

be stimulated by the same input as used for the actualiy implemented softwar, - aiat a comparison ret-

ween the two sets of output is allowed.

As previously mentioned the air-to-air attack manoeuvres are to be performed manually. Since test pilots

are not always available for this kind of activity and being quite difficult for engineers to repeat the

various manoeuvres in the same way, special pilot software models were also added in the real time simu-

lation program.

The pilot models were prepared taking into account literature examples and traces obtained in various

manned simulation trials.

The pilot model acts in answer to HJD information and assures repetitive and exact attack manoeuvres.

So it is possible to completely validate the air-to-air attack software both for not manoeuvring and for

manoeuvring targets.

6. CONCLUSIONS

The Aeritalia Closed Loop System is a facility that is continuously updated and upgraded both hardware

and software speaking.

The goal is to gain the capability to simulate every kind of mission of the Tornado aircraft.

The upgrading activity is accomplished by the addition of new functions or by the improvement of the

existing ones normally following operator's requirements or system changes.

In next future the facility will be used for:

- AFDS cruise mode performance evaluation to produce necessary documentation for complete in-service

clearance

- AFDS auto-approach mode performance ejaluation in normal condition and under failures

- Air-to-ground attack procedure investigations

- Failure analysis.

In addition the facility will be prepared to be able to perform software maintenance activities.

Moreover due to the experience gained on this kind of facilities in the Tornado program and due also to

the high quality of the results, it is Aeritalia intention to continue to follow this approach in future

for avionic system development. In particular for the ongoing project of the new close air support

aircraft, the AERITALIA-AERMACCHI-EMBRAER AM-X it was decided to design a rig with at least the capabi-

lities of Tornado one. The AM-X rig will take profit of all the improvements in computer technology

and in operating systems design.

FIG. 1 - ~~~AUTOMTCFIHCOTROLLO LC IGA

IIU
RADARNUNCAIO PILOTAC

FIG. 2 AUOAI CLSED ONO LOOP YSTEM SETGRUP

STIMULATION/SUBSTITUTION

NTCRX DK

DK AVIONIC

DATA HANDLINGRI

PL COMPUTER

0 ACQUISITION FOR

MONITORING, RECORDING
0 LP

AND EQUIPMENT STIMULATION

DP SIMULATION

COMPUTER
0

KB 0 ______

CONTROL

FIG, 3 - CLDASS REAL TIME FUNCTIONS

MT A/C DATA DFNTO
FILE

AERODMNICEQIMN
T4 DATA HANDLING TN

PATCH PANELS lS RGA

THAST

PREPARATIION

REALPIMEAPOCES PRETATION R A~

B~mmREALA

DK COMANDSAND TMANSD

S1EVALUATION

TO/FROM
PDPII/45

FIG. 4I - SIMULATION SYSTEM FIG. 5 - CLOSED LOOP TESTING: OPERATIONS SEQUENCE

RIG ___

a-PITCH ANGLE

b B ANK ANGLE

c. ROLL RATE

FIG, 6 -COMPARISON BETWEEN RIG AND IN-FLIGHT RESULTS

a-SIJLATI9D PARATER b - TRUE PARAlKTIRR

FIG, 7 -INTERFACE FAILURES: SUBSTITUTION EXAMPLE

U.

UU

Lo

-

I-

00

APPLICATIONS OF NETWORK MODELING
AND ANALYSIS TO SYSTEM VALIDATION AND VERIFICATION

Gary M. Sundberg
Tracor, Inc.

65 West street Road
Warminster, Pennsylvania 18974

SUMMARY

Historically, Software V&V efforts have been undergoing an evolution. Initially V&V meant matching
coding to specifications, and tracing specifications to an analytical basis. There were no well-defined
techniques or tools for accomplishing these tasks. Most V&V efforts took the form of either physical
or empirical testing. Gradually these evolved some standardized flow charting techniques and automated
aids for code tracing and simulation. Then there came a number of relatively 3ophisticated automated
tools which could be used to evaluate test provedures as well as test the subject program. Recently
a system approach, applying generic system analysis techniques to the software problem, has been used.
Network Logic Modeling and Analysis is such a system tool.

Network Logic Modeling and Analysis (NLMA) is a manual analytic process derived from network analysis
and Boolean logic. Its main purpose is to verify and validate romplex systems or concepts at any stage
of development. The NLMA technique has been used as a V&V tool by several (6) Navy projects, thus
establishing a record on which to base its effectiveness as a V&V tool and to provide specific examples
of applications.

The purpose of this paper is to:

1. Emphasize the importance of applying V&V techniques early in
any development effort and continue their use throughout the
)roject life cycle.

2. Describe Network Logic Modeling and Analysis.

3. Provide specific examples from a project which used NLMA showing
applications at each phase of the life cycle and types of
discrepancies detected.

As more and more new systems are developed based on computer and software technology the more
apparent it becomes that applying techniques and methods used in the acquisition of hardware based
systems are not always adequate for the acquisition of software systems. One of the biggest areas
which require change is in the concept of V&V. Because the quality of the hardware system was based on
industry or government standards for such easily defined characteristicsas strength, power, dimensions,
etc., V&V usually took the form of physical tests conducted near the end of the development cycle.
However, sucn easily defined characteristics do not exist for software; in fact what constitutes quality
in software is a subject that could fill volumes. It is the intent of this paper to show how to achieve
quality rather than to provide a precise definition. With this goal in mind the first item to
emphasize is that the old idea of physical tests as the only method to determine quality must be
abandoned when applied to software.

To help understand why, we should first define the types of software errors. Simply stated,
there are two types of software errors: performance and logic. The first are performance errors.
These errors are commonly referred to as "bugs" and are usually program errors that are easy to detect
because the program either stops running or produces obvious mistakes. The second type of error is
logic errors. These errors fail independent of space and time. Logic errors can be made during the
definition state of a program by incorrectly stating or omitting requirements; in the design stage by
not satisfying the requirement in the definition specification or by incorrectly representing the
design; and also in the construction stage by incorrect implementation of the design. Because logic
errors are usually discovered late they become very expensive to fix, running as high as 50% of the
total program cost. Performance errors are usually the last to be made (during coding) and the first
to be discovered (during initial testing). Even though this type of error constitutes nearly 80t
of the errors in any program they usually require only 20% of the funds spent to correct the programs.
Logic errors are usually the first to be made and the last to be discovered.

It should be apparent from this discussion that the early detection of logic errors can have a
tremendous pay off in both quality and cost. Therefore, the idea of testing must be expanded to
include all phases of the developmental Life Cycle. The "testing" of software before it is coded
and compliled is actually a test for reliability and a check for testability. The "tests" are
evaluations of the product at each phase for correctness, completeness, consistency, i.e., reliability.
Such testing ensures a firm product and a consistent program structure at each phase of the development.
Network Logic Modeling and Analysis was developed to provide a testing tool and structured approach
to perform this testing.

The foundation of Network Logic is built upon principles of heirarchy and the dependencies existing
among all elements contained within a hierarchy. Among dependencies and elements there exists ordering,
derivation and interplays. Elements, when combined, form a scheme for a system or concept whose dynamic
behavior may then be challenged or measured against any arbitrary criterion of choice, such as performance,
reliability or effectiveness.

I _ _ _

19-2

Every major system acquisition begins with a concept that originates to serve an objective or
goal. The goal generates requirements or needs that are to be satisfied in order to achieve the in-
tended goal. Requirements give rise to functions or tasks that must be performed, which in turn evolve
into subfunctions. As all functions and subfunctions are evoked, decisions are needed to be made to
determine how the concept or system is to be mechanized with combinations of hardware, software, and
human elements so that functions (tasks) can be performed. With all the requirements satisfied then
the objective or goal can be achieved.

In essense, Network Logic Modeling Analysis is an ordered process of deductive reasoning that
organizes all appropriate elements of a system or concept into their respective places and locations
within the hierarchy. The hierarchy representing the system can then be verified analytically to
determine if it is capable of achieving the goal. The network models the hierarchy and determines how
the concept or system is organized, and the logic determines the exact nature of the interdependency
existing among all elements. Recursive and iterative features as well as interfacing facets are developed.
From these, the network identifies the correlation and cross-correlation of functions and subfunctions
and clarifies how they are mechanized. In doing so, visibility and insight are obtained into the
organization of the system interfaces, interconnections and common functions. After a system is so
defined, the analysis can be used for a number of applications. From a critical viewpoint of management
control, determinations can be made of system adequacy.

Before continuing, a brief description of a system life cycle's phases and program management
should be included. The generic life cycle for computer programs consists of the following phases:

Conceptual - System operational Identifier (Requirements)

Definition - Program Performance Specification (PPS) (Design)

Development - Program Design Specification (PDS) (Coding)

Integration - Testing

Operational - Life Cycle support

The management and control responsibility for these phases is greatly facilitated through the
establishment of baselines. These baselines serve as technical references from which the individual
elements become operational functions and form the basic system for which configuration control is
established. The four major configuration baselines are the following:

Functional

Allocated

Product

Operational

The Functional Baseline is established through definitions and descriptions contained in a high
level document such as a Prime Item Development Specification.

The Allocated Baseline is defined by the IDS, CPPS, PDS and DBD. This baseline should be
confirmed by audit prior to certification.

The Product Baseline identification of the program is described by the approved Test Plans and
Procedures, Operator Manual/System operator Manuals, Command and Staff Manual, Tapes, Decks, and
Listings. The Product Baseline provides the necessary information for procurement, integration, and
acceptance of the program for subsequent versions.

Due to the shift of responsibility, funding and accounting for software in Combat Systems when
the production phase ends and the software program becomes operational, the Operational Baseline is
established.

Network Logic Modeling Analysis provides a visual representation of the Functional, Allocated,
and Product Baselines and becomes a baseline document itself. Each function and subfunction is
rigorously defined, thus enabling an accurate identification of function design and the inter-
relationship of hardware, software, and operational elements. During the NLMA development, each

function will undergo a comprehensive verification and validation process with all discrepancies to

the program and/or its supporting documentation identified.

With the model developed the NLMA will provide a graphic representation of the Product Baseline.
This baseline is a valuable configuration management tool enabling the program manager to maintain
control over the implementation of changes to the Operational program and evaluate the program
trouble reports written against it.

Because Network Logic Modeling Analysis was developed a system tool emphasis was placed on
keeping the language simple so that it could be understood by systems personnel and individuals other

than computer specialists. The symbols used were also simplified to avoid confusion or a lengthy

learning period.

i ______________________________________

29-3

K j MISSION, OBJECTIVE, OR
MAJOR SYSTEM FUNCTION

CSYSTEM PERFORMANCE REQUIREMENTS

SYSTEM FUNCTION
ELABORATED ELSEWHERE

*WHEN USED. INDICATES OUTPUT

FUNCTION OR
FUNCTIONAL SUBSYSTEM

*WHEN USED, INDICATES SYSTEM CONDITION

FUNCTION OR
FUNCTIONAL SUBSYSTEM

SOFTWARE ELEMENT

HARDWARE ELEMENT

HUMAN ELEMENT OR
OPERATOR FUNCTION

AND A.B BOTH A & B MUST BE PRESENT
TO PRODUCE AN OUTPUT

SEQUENCED A AB BOTH A & B MUST BE PRESENT
AND (APRIOR TO B TIME SEQUENCE)

OR AZ--__ ')-A+B EITHER OR BOTH WILL PRODUCE
AN OUTPUT

EXCLUSIVE 4-1 -- EITHER A OR B BUT NOT BOTH
OR 0 PRODUCE AN OUTPUT

0 (NOT) WHICH READ A AND NOT BAS IN B

Figure 1. - Network Logic Symbology

The Network Logic symbology utilized is shown in Figure 1. The interpretation of logic gates
requir-s strict adherence to rules of logic. These rules determine the exact nature of inter-
dependency existing among system elements. By following those rules, rig~r is achieved during the
analysis. While an interpretive process governs the initial selection of appropriate logic, sub-
sequent tests for validity determine whether the logic chosen correctly represents the behavior
of system elements within the hierarchy.

Figure 2. is an example of a completed subfunction and is presented to illustrate how an NLM
chart is "read". The subfunction is Re-Initiate UYS-1 (Acoustic Processor). The function is described
and modeled based on PPS Reference 3.4.2.7.2.6 and has been verified to the PDS level, references
3.4.2.1.89. Starting at the bottom, the processing is initiated by the ASO operator selecting the
REINIT UYS-I switch. This action will cause the LAP (a light indicating active or activated switches)
to light momentarily, an interf ce messages to reinitialize the processor is sent (S-P 002) and a command
to configure for default processing is sent (S-P 001). The processing of these command (outputs) are used
as inputs on chart Ul 0. Additionally, if contact data is currently being processed (described on chart
PP 4.0) a lost contact message (S-A 034) is sent and the OSC contact files are cleared. The processing
to up-link this message is described in C 1.0. The PDS beside two of the symbols indicate that
this processing was specified in the PDS only and not by the PPS. They are included because the represent
important information. The next step in the processing was to determine if the REINIT results in
detection of errors. There are two mutually exclusive paths. If errors are detected an error status is set
(output to N 3.2) and an alert is displayed to the operator. If an error is not detected the system is

LI- L

29-4

configured for default processing, a test complete alert is displayed and the UYS-1 status is set to go.
Regardless of which path was taken the next step is to determine if the UYS-1 status ha- changed. If
it has it is indicated (output) in an S-N 042 message and sent to the NTDS; if not. ro further
processing is performed.

S~ r A41 D
MSG. %-k.7. .:

,

II<. fill

"F'J- N - T 71RRO
T!RRNIY ST 7nWA 7U T')I I-EPTA~

TUNFD RVR NRT Tn A- 7-,

ito

r PupI _"'',1-

By introducing rigor into the analysis of complex systems, Network Logic contributes to the
effectiveness and decisive control of weapon system software development. This extremely sensitive
area has, until recently, evaded rigorous control partially due to the undeveloped state of software
design and control methodology and partially to lack of understanding of software acquisition teams
on the peculiarities of software generation. With these shortcomings, software proliferation has been
permitted to evade rigor and to provide results that are generally unpredictable undisciplined
and unstable. To relieve this problem, Network Logic forces software to assume its proper and appro-
priate place within the system heirarchy. It is treated as an essential constituent satisfying

functional requirements. Its role in functional interplays is exposed to scrutiny and is compelled
to undergo tests for validity and adequacy. Its structure within the hierarchy is defined, organized,
and focused in perspective with all other elements. Because of its logical orientation and emphasis
of software requirements and can be used to control the acquisition and generation of software.

As stated previously NLMA was designed for application at each phase of the life cycle. The
following describes a few of the specific applications and examples to highlight how requirements
and design problems were identified and the model used.

1. CONCEPTUAL

During the conceptual phase the system top level document is modeled and its requirements
evaluated. The following analysis methods are used at this state. the first is visual inspection
for any obvious oemissions. The second is an examination to testability, because vague or untestable
requirements will leave validity of the product in doubt. The Third and most useful at this level is
to "run" a scenario of intended use, using the model to verify that all elements required to achieve
system objectives are provided for. The example below is from the Weapon System Specification for
the LAMPS MARK IlI System. One of the first tasks required by the system's scenario was to load and
initialize all of the subsystems.

INITIALI ZE \4 3.2..1,.,t

SINITIAL % /IN iTIAUZA

IPAM LCO PM3L

ENTRY // E N-TR~Y/

This exapmple presents two problems. The dashed symbol and lack of a WS reference indicates that
a program load and initialization requirement was not contained in the Weapon System Specification. The
PPS references are added to the support including those on the chart. Detailed descriptions of these
functions can be found on Chart Numbers IR 1.0, 2.0 and 3.0. The second and more serious problem is
indicated by the double stars located on the charts in the reference blocks. This indicates that
these requirements are not met by the next level of documentation (PPS). This represents Top Level
Requirements that will not be performed by the system and would be considered a major discrepancy.

The next example also shows a Top Level Requirement which also has a symbol without any reference
to a lower level of processing. Upon first observation it seems reasonable that a visual sensor would
not be found in the software specification. However, during analysis of the system and incoming inter-
face message was found to have a word to indicate a visual contact. The contact tableau, which is where
all the other information in the message was displayed, did not provide for processing this word. This
was also considered a major discrepancy.

ACOI5TIV IPI

2Q-6

2. DEFINITION

During the definition phase the Computer Program Performance Specifications (CPPS) is
modeled. The model is then analyzed for compatibility, traceability, mechanizatio, completeness,
and evaluation of functions. In the example below the four dashed symbols connected by the "OR"
gate represent different subfunctions which all specified stimulating the processing shown on this
chart. The CPPS paragraph which describes the remainder of the processing shown on the chart did
not list these functions as input or describe them as stimuli. All dashed symbols represent functions
or processing that was not specified by the documentation but is included as a result of the analysis.
All dashes should be accompanied by references to support their inclusion (not always the same
document).

I- M - j M

In the next example, the CPPS stated that the processing shown was stimulated by the receipt of
a test message return. This message is actually the last in a chain of interface messages as described
in the next level of documentation (PDS). The dashed symbol to set the status to go in data base was
also referenced in the PDS. All the dashed blocks are shown to represent the complete function and
aid in program visability. This would be considered a minor documentation error. (See example below.)

DI 2,

/SCT 5TA sTu S4\,

/-rb I~oof / N/TOCO ,N /
SIH-A MX 5E /ATA I EE I

IN(IN

_T M S 4 , 'R 1

In ~ ~ ~ ~ ~ ~ ~~ x ths-teapeteC tte htteocsi n shw a/tmltd ytercito

a~~~~~~ ~ ~ ~ test msaertr.Timesg iscuaytas t nacaisfitefclesae s ecie
in th nextlevelof doumenation(PDS The ashe symTboFIl t o set thestausto oi dta1asewa

also~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ reeecdi h D.Altedse lcsaesont ersn h opeefnto n

Figure 2. models a complete subfunction that resulted in the following observations. The first is
that the abnormal processing (dashed symbols) is not specified by the CPPS. The lack of references
for these dashed symbols means that these are educated guesses on the part of the analyst but cannot
be supported by other documentation. Second, is the dashed symbol shown with a reference number which
had to be added because it is part of the processing, supported by the reference, and was an important
element for this function. Third, the reference which has been circled was not specified in the CPPS.
This was added later to aid the chart user. Last, the function was evaluated. This function is
basically an emergency operation; as such, subjecting the processing to the 40 track limitations was
evaluated as poor definition and should instead be put on a priority basis.

':-1'1-T
; - .:..;.;2, '. , - -

/D15~PLA 'E7

I rri rA1E "'PI-

L /

ST'T

" ~ ~ T ; "s F-,b7 ~A l,

~E~iEY -

Fiur 2. Ii Ar"f t

Figure 2. - Downed Aircraft Function

2g-x

In the next example the references that are circled were added as the result of the analysis.
The implication is that there are two Assign/Engage displays. The processing described displaying
only one. Further analysis discovered that the first display is put up if the indicated symbols
are in close control. The second would be put up if the ASW aircraft were in close control. This
would be a major discrepancy because it represents incomplete design. The output referenrPS indicate
that this function's processing output is used as an input to Charts TA 2.26 and TA 2.27.

TA ;LV7

L)PDA-1E I LA

D)IrKA'T/ I \LEGAL I

I AI FRT I

F J
-.. /... \~I

\1 A5IKb,/ \A
' IG I

z , -

STATUS IN Q1,0 UBUFAE 1WI

M<D CON TA(I~"AP SINKEN?>

29-9

Most of the preceeding examples are discrepancies uncovered while developing the model. Once the
model is complete it can be used to evaluate overall design and interaction of functions. When
weak design or conflicts exist, tests can be developed to determine the impact of these findings. In
the example below, three subfunctions of Reinitialize and Test Controls Functions require the use of
the USII-26 tape unit. They are REINIT LISH-26, Reload UYQ-21 and Reload UYS-1.

~(MITI 342,

PLA FO~fl PthQ- '
NTI "rT t LoAD I

IC 5-r /

,jy(-LI

DL 2-
,I.f. 2.7 2.,..Z7jq .7 2.

YE I N IT.

Y, 11- 'ITZI

3....2-7.

Eac of- the fucton weeeamndt e htmaue a entae opeld nefrne

Eac ofpl the funcritons eeeie toalenty see whathrmeasr es a ien aken o precludeinterferen

the IREINIT USH-26 was selected followed by a Reload UYS-l. the system "crashed' which required a
complete system reload and initialization to recover. In addition to uncovering this problem a simple
"fix" could also be recoimmended, add the Reload UYQ-21 provision to not process switch to the other
two functics.

- F'P 1'.2'' 2.27

C LC AN "0' .'1 . 90

1.'/(-n

PRcc. %V111C 3L ANflP(/(ITIA LlZL /SA ZI 1

cR -ThV~, Dvpj~5 '2C.Z C1MA 1 L6FT LAP

* v cPP Y (,' - Z -1 " r , I ~ t"L

29-10

3. DEVELOPMENT

During the development phase the model can be used to develop or verify Test Plans and
Procedures, to track other documents (IDS, PDS, etc.), to evaluate Software Change Request (SCR),
or Engineering Change Proposal (ECP), and to continue program evaluations and program weakness
studies. This type of analysis usually requires more than one chart to give a more complete example
of this type of processing analysis. All of the above mentioned applications were found to be very
useful and did provide significant results. Due to the limited number of pages allocated for each
parer, more specific examples of these analysis could not be included.

4. INTEGRATION

During the integration phase, analysis can be expanded to include Program Trouble Report
(PTR) evaluation and Fault Diagnosis. Using the Model to evaluate PTR's has uncovered four basic

problems. The first was when the PTR writer did not have a proper understanding of how the program
was designed to ..rk. Second, the problem was unique to the laboratory environment and should not be
included in an operational configuration. Third, if corrected by the PTR, a bigger problem could occur.
Many times this type of problem was due to poor design and should have been submitted as an SCR rather
than a PTR. The fourth was PTR's that did not contain enough data to evaluate the problem. The fourth
problem was most evident during fault diagnosis. In the example below, the PTR states two problems;
1) "Test Complete" information alert did not appear, and 2) CMTU Tapes did not rewind.

IEQUIPmEN I / 1sP-AY OFI EQOiPMEKTI 0 MKPAY OFS STA1U0 00m E RWR uALE
/TO/ANO-GO./, I L1r" ASO --IaO ZERO< /SAO (o&0l /I ALERT/

5 ITATU 5

RC Pr PS 3.1-7.7.3

.A(PS 3,..;. 1,%6

First of all the PTR is stated incorrectly. If the Tape Unit did not rewind this would have
constituted an error condition. As indicated by the exclusive "OR" gate, the test complete alert is
displayed only if the processing is error-free. Going through the fault diagnosis process is the best
way to identify information which should have been included in the PTR. Starting with the switch
depression (circle).

1. Did the LAP Light momentarily? NO - possible hardware switch problem.

2. Was Rewind Command Set? NO - possible keyset switch code problem.

3. Was Tape Unit On-Line? NO - could be a design error with software
working correctly. CPPS does not specify
processing if no return is received and
there is no time event associated with
the processing.

4. Tape Unit Did Send Return NO - See 3. or command message could be in error.
(Error or Error-Free) YES - and neither aler displayed could indicate

system status monitoring error.

As part of the Fault Diagnosis a simple test procedure could be written to answer these questions to
help isolate the possible causes of this problem.

1 I

29-1 I

5. OPERATIONAL

During the operational phase the program comes under a Life Cycle Maintenance Plan.
Application of the model to Life Cycle Maintenance involves management edification and program control.
Effective management control requires an intimate knowledge of system architecture, capabilities, and
complexities. In this contest, the ability to compare configuration changes, evaluate change proposals,
or commit to system growth or contraction can first be evaluated in the model to determine what ripple
effects can develop throughout the entire system. One of the simplest illustrations to observe a
ripple effect is to arbitrarily cross out selected key elements in the model and note what capabilities
are affected or lost and to what degree those losses degrade the system. A cost exchange trade-off
is helpful in determining how significant, sensitive, or attractive any proposed change is in terms of
program pay-off.

During Life Cycle Maintenance, situations often occur where small fixes appear to solve local
problems only to find out later that they produce other unwanted problems elsewhere in the system.
The Model, applied to the evaluation of program fixes, can easily predetermine system impact and avoid
unwanted problem proliferation. Using the model as a continuing system engineering tool should produce
important cost savings and help maintain schedule integrity by substituting analytic methods which
are effective and relatively inexpensive for trial and error methods whose results are generally unknown
in advance.

CONCLUSIONS

Notwithstanding the preceding discussion, no single technique can provide a guarantee to an
error-free, high quality software configuration. However, if a discipline such as Network Logic
Modeling Analysis, a technique that provides uniform applicability at all phases of development
without massive expenditures, is applied, a significant reduction in errors and costs can be realized.
The following summarizes the advantages of NLMA.

Advantages of Network Logic Modeling Analysis

VISIBILITY

AIDS UNDERSTANDING OF FUNCTION OPERATION

SHOWS RELATIONSHIP OF OPERATOR/HARDWARE INTERFACES

SINGLE POINT FOR REFERENCES WS/PPS/TP/SOM/IDS

VISUAL REFERENCE TO EVALUATE PTR CORRECTNESS

VISUALIZE SCR IMPACT

TRACEABILITY

TRACE UP TO REQUIREMENT

TRACE OUTPUTS TO OTHER SUBFUNCTIONS

TRACE IDS MESSAGES ALL THE WAY TO "OTHER SYSTEM FUNCTIONS"

TRACE BACK TO INPUT ORIGIN

EVALUATE RIPPLE EFFECT

VALIDITY

ENSURES ALL INPUTS PROVIDED

ENSURES ALL PROCESSING CLOSED LOOP

ENSURES OUTPUTS PROVIDED

ENSURES COMPLETE DOCUMENTATION

QUICK, EASY REFERENCE FOR FUNCTION OPERATION

CONFIGURATION MANAGEMENT

ESTABLISHES VALID BASELINES (PPS/TP/DOM. ETC.)

EASY EVALUATION OF ECP/SCR's
RIPPLE (INTERNAL-EXTERNAL)
DOCUMENTATION

PTR EVALUATION - WEED OUT BAD, INCORRECT, INCOMPLETE, ETC.

FAULT DIAGNOSTICS

30-I

IDA - LANGUAGE DE TEST DU LOGICIEL ET OUTILS ASSOCIES

IDA - SOFTWARE TEST LANGAGE AND RELATED TOOLS

G. LAMARCHE et P. TAILLIBERT

Electronique Serge Dssault (ESD)

55, Quai Carnal

92214 SAINT CLOUD

Tfil. :602.70.17 / 602.50.00

RESUME

Ce documsent dficrit lea rfisultats dune Etude ayant pour but de dfifinir un ensemble de moyens

permetlant d'informatiser les opfirations de test des logiciels temaps rgiel. Cette Etude a abou-

ti A la dfifinition d'un langage de test dont lea principales caractgristiques sont tout

d'abord pr~sentfies. L'article 6voque ensuite leg diffirents problLises pouvant 6tre rencontrfis

lore de l'ulilisation d'un tel langage et leg solutions apportfies par l'fitude (dgfinition d'un

macro-langage et d'une bibliolthque d'outils standard). Le dernier clupitre est consacrfi A Ia

description d'un outil de test part icul Arement adaptfi au cas des logic lels comportant des

processus parallales.

MOTS CLES:

Test de logiciel, langage de lest, logiciel lemps r~el, test en lemps rfiel, processus

parallales, r~sesuK de P~tri.

I - INTRODUCTION

?dalgr& lea efforts de recherche entrepris depuis n certain nombre d'ann~ses sur les 6tapes de

spficification, de conception et de codage, l~e test des programmes conltinue doccuper une place

importante dans le processus de d~veloppement des logiciels.

Ce potnt est particuliZlrement sensible dans le cas des logiciels avioniques pour lesquels le

caractare ai~atoire des Aivfnements commandant lexticution des diff~rents processus et les con-

pou ateinre s fabiit&habtuelemnt equse ource type de programme.

Il nous semble donc justifi6 de proposer un ensemble de moyes destints A amfiliorer les condi-

tions d'ex~cution des opfirations de test des logiciels temps r~el et A en ditsinuer lea coats.

1.1. Objectifs gfinfirau de V'Atude

La prfisente fitude, men~e sous contrat de l'Agence De l'Informatique (ADl) a permis de

dfifinir la moycus n~cessaires pour aboutir B une spfacification plus formal is~e et J one

automatisation plus pouss~e des opfirations de test des logic iels temps rgel.

Ce qul dans cette fitude eat dfisignfi par test du logic ic. pent Atre dgfini cosase un en-

semble d'opfirations syant pour but de comparer le comportement de cc logiciel A un ca-

portement de r~ffirence ; a formajLSat on de cc comportement et des difftcrentcs

opfirations de test permet d'opfirer Sur des rffrences mieuc spficifi~es et plus completes

qu'avcc les mfithodes informelles.

L'automatisation quant 41 she, diminue les risques d'erreur humaine et permet

l'application rgpfitfe de Is totalitfi des tests d'un programme A chaque correction ou mo-

dification (tests de non r~gression). Elle favorise figalement la misc en oeuve des tech-

niques d'dvalustion de Is couverture des tests.

Trois critares principauK ont 6tfi retenus pour Is conduite de I'Astude

- is gfinrlitfi, supposant Vindfipendance des moyens de test par rapport aucK langages de

programmation des programmes testfis ct A Ia machine sur laquelle ils scsxfcutent.

- Is portabilitAi, nacessitant quc la outils Soient dfifinis hors de touic hypoth~se

d'implantation autre quc celle de pouvoir s'ecgicuier sur lea mini-ordinateurs

- :assiques. Riatlitoulo ecnritsduiiainprrpotaccn

- l s_ pit__ __ian Vntdutine _ntate _utiigtin arrapor ax on

ditions actuelles de dfiroule ment des tests.

Enfin, bien que le but viagi par cette Aitude concerne le test A proprement parler

(dratection des erreura) et non pas la misc au point des programmes (identification de Is

cause de I'anomalie et correction), l'utilisation d'IDA facilitera notablement lea opfira-

tions de miac au point lorsqu'nne erreor aura Ai* dfitectfie (remise antomatiquc en condi-

tion dserrenr, 6criture d'nn programme sp~c~al de diagnostic ...)

30-3

1.2. PrincipauK rfisultats

L'gtmle se place dans le cas ot) lea tests sont commandfis A partir d'un autre calculateur

que le calculateur cible ;cette approche permet Is conduite des tests en temsps r~el

c'est-A-dire sans perturbation du programme A tester. line interface mat~rielle, connect~e

sur le bus interne du calcuisteur sous test, permet d'effectuer lea observations nfices-

saires soc tests des programmes.

L'Etude a permis de dfifinir

*Un langage de test permettant de d~crire de mani~re formelle et standardis~e les opEra-

tions qui sont habitoellement ex~cutfies lors du test d'un programme. Ces opfirations

peuvent 8tre regroup~es en trois grandes fonctions

- commande du programme test&, permettant l'efcution de tout ou partie de celut-ci Bur

on jeo de stimuli d'entrfie.

- !!,esuredu programme testfi par observation directe ou enregistrement des valeurs pro-

duites par ce programme.

- v~rification _par comparaison des valeurs mesurfies aUC valeurs de rgference ou plus

gingralement, du comportement observ6 A on comportement de rffrence.

* lne bibliothbque d'ootils de test rfaslisant, A partir des primitives du langage, des

fonctions de test plus 6vologies. Elle comporte en particulier de puissants outils

d'enregistrement 00 de modalisation do comportement do programme sous test.

* lne interface standard entre ma- hine de test et machine sous test ayant pour but de fa-

ciliter l'implantation do systbse sur on matgiriel donn*.

*Un macro-langage a fif dfifini poor faciliter l'utilisation des outils de Is bibliothA-

que et pour rfialiser l'adaptation do langage de test (gfinfral) soc langages utilisfis

pour l'fcriture des programmes A tester et soc processeurs de ces langages.

Le chupitre 2 prfisente les carsctfiristiques principales do langage de test, le chapitre 3

fivoque les problames posfis par is miss en oeuvre d'un tel langage et les solutions prfi-

voes pour 1em rfisoodre. Le chapitre 4 dficrit on outil de test permettant le contrale d'un

programme par rapport a on modale dficrit A l'side d'un rgiseao de Pfitri.

II-LE LAINGACE DE TEST

Un langage de test dolt offrir des possibilit~s algorittisiqoes adaptfies soc traitements les

plus fr~quemment rencontrfis dans les op~rations de test ;matis, et c'est IA un aspect

important, 11 dolt permettre Is description et Is manipulation d'objets actfirieursau program-

me de test lui-mAme (donnfies et procrgdures do programme A tester).

30-4

2.1. Description des objets du programme A tester

Les objets du programme A tester s r~partissent en deuc catfigories :lee variables et

lea poiats de contr8le.

a) Les variables sont dficrites par la structure de la donnfe mais Igalement par les in-

dications n~cessaires pour y accrader ('adresse" et proc~d6 de lecture ou d'Acriture).

Pour cela, un type v arfiable-:tes~Le permet d'indiquer

- le type de la donnfe,

- une procfidure d'acc~s en lecture d~crivant lea opfirations ngcessaires pour acqu~rir

la valeur de cette variable,

- une procfidure d'accAs en Scriture.

On d*finit ainsi une application de la repr~esentation de ce type, de la machine test~e
vera Ia machine de teat. Un param~tre supplfimentaire (attribut adresse) peut atre prfi-

cis& A Ia d~claration d'une telle variable et rgf~renct- dana les proc~dures d'accAs.

Ainsi par exemple, toutes lea variables entiZres basfies par rapport A I'adressePR'

peuvent 6tre dlcrites par le type ci-dessous

type entier-proc-1 is tested-var

integer (32);

redngi Procfidure permettant I'

-- acc~s en lecture auK

-- objets du type

etnd reading

writing is

-- ProcUtre d'acca en

-- criture

end writing

end tested-var

Lea obj eta de ce type sont dficlarfis par:

$TOTO at 20, STITI at 100 :entier-proc-1

- le caractbre $ permet de distinguer les objets du programme de teat de cent du pro-

gramme sous test.

- 20 et 100 sont lea "attribute adresse" des objets dficlarfis.

30-4

b) Les points de contr8le :un point de contr8le permet de d~crire certains points par-

ticoliers de Ia structure de contr8le d'un programme (6tiquette, dfibut de proc~dure,

de bloc, numniro d'instruction ...) . 11 peut 8tre utilisf! comae point de lancement,

point de surveillance ou point d'arrAt d'un programme ;dans ces detx deiers cas,

le passage du programme sous test devant on tel point peut engendrer lactivation

d'un fivinement dans le programme de test ou l'arr~t du calculateur sous test.

La description de ces objets se fait par l'interidiaire d'un type "poitit de contrale"

o Von indique

- un Erologuedcrivant la sfiquence d'opfiations A rgsliser lorsque le point de contr&-

le est utiliag comme point de drpart (y compria le passage fiventoel de paramatre au

programme anus test).

- on d~tecteur pr~cisant les op~rations nficessaires pour utiliser ce point de contrale

comme point de surveillance ou d'arrit (action sur le mat~riel ou modification du co-

de do programme sous test).

Comae dans le cas des variables Ia dficlaration d'un tel objet eat accompagnce d'one

constante enti~re "attribut adresse" qui contriboe so calcul de l'adresse do point de

contr8le.

2.2. Manipulation des objets do programme a tester

Elle se fail par l'intermfidiaire des ecpressions, des fonctions de conversion o des pri-

mitives d interface.

2.2.1. Ekyressions

Lea objets do programme testfi peuvent apparaitre dana one cipreaaion so nigme titre que

ceuc do programme de test ;lea ophirateors du langage (+, -, x, , -)pouv~nt Atre re-

dfifinis poor lea nooveatc types Biventuellement intrcduits.

Ikemple:

A :- B + $C

- $C fitant un objet do programme sous test

2.2.2. Conversions

La redfifinition des opfirateurs eat one op~ration relativement loorde et peot Atre Bivi-

tfie par la d~finition de fonctions de conversion vera un type do programme de test et

sinai utiliser directement lea opfirateura classiques.

Afin de fadiliter cette opfiration, ls fonction de conversion porte le nom do type

cible, l'objet A convertir Bitsnt pasaBi en para.Btre. Ainsi dana l'ecpression suivante

A -B + FLOAT ($C)

FLOAT ($C) reprfisente le rfisultat de Is conversion de $G (lui mains d'un type rWe du

programme anus teat) dana le type pr~d~fint FLOAT.

30 -6 2 .2 .3. Interface standard i sie

La rffrence A un objet du programme sous test dans one Epression provoque Vexcution

de la procbdure reading oo writing dafinie dans le type correspondant. 11 en eat de me-

me pour le prologue ou le dfitecteur des points de contrie. L'ficriture de ces procadu-

res naicessite la manipulation de I'interface entre lea deuK machines. line telie

manipulation est figalement nacessaire lorsque l'utillsateor souhaite qu'un &v4nement

salt activi bora de l'arrlvaie du programme sous test daons on 6tat donna.

Afin d'assurer Ia portabllt6 des syst~mes de test, Vlnterface entre machine de test

et machine sous test a fit standardisfie. Elle Be compose de procidures, dfifinies par

lour spficification ecterne, que chmqoe impifimentation dolt rfiallaer en tenant compte do

matfiriel de l'installation. L'implfimentatlon de ces procfidores pout se faire en parti-

culler grace a on sous-ensemble do langage de test (sous-ensemble d'interface) ne com-

prenant paa lea constructions qui manipulent lea objets de Is machine sous test.

Cette interface comprend en particoller

- copie de maimoire .1 mfimoire

- dAmarragi et arrift CPU

- pose de point de surveillance et d'arriat

- contr8le d'acc~a A la mfimoire.

2.3. Instructions facflitant Il'apression des tests de logiciel

Un certain nombre de constructions ont btfi introdoites dons be langage afin de faciliter

l'epression des opfirations de teat lea plus fr~qoemment rencontrfies. Parmi celles-ci El-

gorent:

- l'itfirateur

- la geation du temps.

2.3.1. Itfirateur

L'obaervation des techntiques otilisgies pour effectoer lea tests d'une unitf! de program-

me avant son Intfigration (test onitaire) fait apparaltre l'importance de Is structure

de contr~le rfipftitive. En effet, le test consiste dana Ia plupart des cas A acaicuter

on grand nombre de fois Ie programme poor diffairentes conditions et A comparer le com-

portement observfi so comportement pr~vo conditions et comportement de rffrence Be

tradoisent tr~s souvent par des tableaoc de valeurs our lesqoels porte Is rfipftition.
Cette constatation a conduit I privoir one construction sp~ciale appelfie "ittrateur,.

(LIS 771 permettant d'engendrer une soccession de valeurs sur lesqoelles porte

I' itgration sans 4tre contraint de stocker ces valeurs au prfialable dans un tableau

approprigi. Cette construction eat analogue A one fonction, opgrent our des variables

r~msnentea, initilse A Ventrfie dune boucle et dalivrant one nouvelle valeur A cin-

que appel. Mle prasente Aigalement Il'svntage d'amaliorer Is structoration des pro-

grammes de test.

30-7

tkemple

Type donnfie-test is

record

ENTR integer ;-valeur d'entrge

SORT integer ;-valeur de sortie

end record;

r :donnfie-test

iterator valeur-test (paramatres formals) yields donnfie-test is

-dftermination de l'ensemble des couples

-(ENTR, SORT) A raison d'un couple par
--activation.

end valeur-test

for r in valeur-teat (paramatres eff~ctifs)

loop

-- initialisation du test avec ia valeur ENTR

-- sccution

-comparaison de Is valeur de sortie A SORT
end loop

2.3.2. Gestion du, temjs

Le langage de test itant principalement destinEi A Is vfirification de logiciels temps
r~el, ii est nficessaire qu'il dispose d'ootila pratiques de gestion do temps ;ce be-

soin se fsit plus particuliahrement sentir loraque l'utilisateor d~sire commander ou ob-

server lenvironnement de lia machine sous test. L~a prracision des outils habitoellement

impl~mentis peut a'avhrer Ineufflaante couple zany do fair que ces opfirations aunt aou--

mises A alft
5 1

g do "scheduling" logiciel. Cest pourqooi les constructions agissant soc

le temps peuvent Otte utilis~es en detK modes distincts:

- le mode "normal" obiiIs synchronisation eat rfialisfie par lea mficanismes habituels de

scheduling.

- le mode "prracia" oa1 so contraire l1opfirstion ear rfialisle spras one attente active

garantissant sinai one meilleore pr~cision.

Une instruction du langage permet de prficiser

- la date de dfibut de l'action associEc

- as pfiriodicitEi

- one clause de fin de rfip~tition (durfie oo condition)

- one clause de prficision

tkemple

at time 10 every 0.4 sec: during 3 sec schedule

30-8

III MISE EN OEUVRE

L'utilisation du langage de teat qui vient daOtre dfifini conduirait A certaines difficijlt~s
s'il ftait utiliagi seol. En effet, ii obligerait loutliateur A redficlarer tous lea objeta du

programme sous teat qu il dfialre manipoler ;d'autre part, on peut conatater que le langage ne

comporte pas de fonctiona de teat tr~s filabor~ea, celles qui y figurent devant plut
8
t atre

conaid~rfies comue on ensemble de "briqoes" A partir deaquelles peuvent Be conatruire des oo-

tils plus Isvniuga. Cea difficultga ont fit rgaoluea par Ia dfifinition d'un macro-l_angage,

d'une biiliotbque-d'outils standard et de quelquea E;6.&es f.aL-R'aepntation

3.1. Le macro-langage

Un ayst~me de teat "r~aliate" ne dolt paa obliger aon utilisateur A redficlarer toua lea

objeta du programme A teater ;cette op~ration myant fitf faite bora de l'6tape de codage,

if eat aouhaitable que cea objets aoient connoa "implicitement" dana le programme de

teat.

Pour abootir a un tel rfisultat toot en reatant ind~pendant do langage de programmation

utiliAi et de sea proceaseura, on niveau de langage aupplfimentaire a fit& Introdoit afin

d'aider Ilutilisateur A dAclarer lea objets du programme soua teat. Ce macro-langage eat

muni d'opfirationa d'entrfie-aortie lot permettant d'accfider auK difffirentea tablea produi-

tea par lea proceaaeura do langage de programmation et at nficeasaire ao tecte source do

programme A teater. If autorise la gfinfration dlinatroctiona reprfisentant les dficlara-

tiona aouhatuiea ftabliea A partir dea informationa recoeilliea dana lea tablea.

11 eat ainal poasible poor on utiliateor particulier (soft home syat~me, aoft aimple-

ment premier utiliateor) de dfifinir poor chaque couple langage - procesacor on enaemble

de procfidores que l'utiliaateor final pourra utiliaer poor dficlarer lea objeta et lea ma-

nipuler avec pratiquement Ia n~me facilitAi qoe of l'exiatence de cea objeta Aitait

impl ic ite.

3.2. Biblioth'bque d'outilesatandard

Mle a poor r8le de foornir on certain nombre dootila rfialia~a A1 laide du langage de

teat et du macro langage et couvrant one bonne partie dea beaoina lea plus couranta. Wle

permet ainal de rfiduire notablement le tempa A conaacrer au dfiveloppeaent dea programmea

de teat. Elle aert Ggalement de structure d'accueil auK outila de teat plua apficifiquea

d'une m~thodologie ou doune application.

La bibliothique standard comprend en particulier

u ne macro- Inatruct ion d'ericution autoriaant le 'lancement du programme anus teat en

un point de contr8le particulier ou au d~but dune procidure (11 eat possible dana ca

caa de fournir des paramAtres effectifa A I& procbdure). Cette macro-instruction per-
met de apcifier on invariant aous 1& forme dune ecpreaaion qoi eat Gvalu~e avant

pois apr~a l'eKcuction at dont I& variation entrain. on diagnostic d'erreur. Enfin,

il eat 6galement possible de demander Ie calcul d'une variation et de pr~ciser une

duene limite.

30-9

* un outil de simulation d'instruction utilisable lorsque certaines instructions machi-

ne ne peuvent pas Otre ecficutfies (entries-sorties non c~blfies) ou que certaines pro-

cfidures ne soot pas encore au point. Il eat possible, grAce A cet outil de substituer

I 'esccution d' une procgdure du programme de test auK instructions ou procfidures

absentes.

* un enregistreur ayant pour r8le de mfimoriser pendant lacKcution du programme un cer-

tain nombre d'informations. Le test consiste alora A dfipouilier l'enregistrement amn-

si obtenu. L'utiliaateur doit pr~ciser _jnj enregistrer (point de contrale, acc~s J

un domaine ..), _uolenregistrer et 'juand cesser l'enregistrement.

* un outti de mod~lisation permettant de contr~ler le comportement d'un programme par

rapport A un mod~le dfcrit A l'aide d'un r~seau de Pfitri. Cat outil eat dficrit ende

tail au chapitre 4.

3.3. Implfimentation

11 peut Atre lourd ou difficile de spficifier a priori de mani~re formelle at dbstaillfie

l'ensemble des opfirations de test A effectuer sur un programme.

En consfiquence, ii eat utile qu'une implfimentation d'IDA prfivoit des possibilit~a

d'flaboration interactive et projressive des programmes de test de telle sorte que

l'utilisateur, partant d'un canevas d~fini a priori, puisse disposer en fin de test

d'un programme couplet qui pourra atre rfiecfcutfi automatiquement chaque fois que

nficessa ire.

Sans pour autant offrir toutes les posaibilitfi d'un traducteur incrfimental, le sysame

permettra A l'utilisateur d'effectuer l'adjonction de certaines instructions ou de com-

plater le domaine d'itgiration d'une boucle de test.

Ces possibilitgis d'filaboration interactive portent 9galement sur lea fichiars manipuis

par les programmes de test. A cet effet, ii eat possible de prendre le contr8le en des

points particuliers, et de compl~ter le jeu d'essai.

IV -UTILISATION DE LA TECHNIQUE DE L'OBSERVATEUR POUR LE TEST DES

PROGRAM4MES TEMPS REEL

Ce cispitre dficrit, A titre d'ememple, i'un des outils de test en tampa r~al dfifini au cours

4.1. Objectif

I1 s'agissait d'offrir A llutilisateur lea moyans permettent le contr8le sans perturba-

tion du programme sous test

- du comporresant des processus parallblcs (sync hronisa tion, partage dcs ressourres...)

- des contraintes de date ou de dur~ie d'exicution.

30,10

Dana l'ftat actual de disponibilii des outils de test, Ie second point peut atre par-

tiellement pris en compte grice A ioutiisge utiags habituellement pour lea tests du

matigriel (analyseur logique, oscilloscope,...).

Par conire, en cc qui concerne le test du comporiement des processus parallales, le
programmeur se trouve r6eilement diuni. Ainst Is simple varlfIcation du fait que detx

sgiquences ne s'ecficutent jsmais simultantment ne pourra Atre effectufie quospris une mt-

se en oeuvre iaborieuse d'un 6quipeuent mal adapt6 (analyseur logique "performant").

4.2. Principe

11 a'appule sur le concept dobservstcor [AYA 79-2) et est schfimatii par is figure 1

ii met en jeu:

- le programme sous test

- on modale dgcrivsnt le comporiement de r~f~rence faisant l'ob2e do test

- un ensemble de connec ions entre programme ci modile;

- un "contr8leur" chargE de faire fivoluer le modtle paralilleaent au programme tout en

slassurant de is validitf de son givolution.

CONNEXIONS

MODELEPRGAM

CONTROLEUR

MACHINE DE TEST MACHINE SOUS TEST

Figure1

*Le programme tetf set inchmng& par rapport so programme dfifinitif at aucune pertur-

bation nlest Induite par ie contr8laur ;il eat nicessaire poor cela de disposer

d'une Interface particuligre d-observation afire Is machine 4e test ct Is machine

test~e.

Ce point sera d~valopp6 so paragraphse 4.4.

30-11

" Le mod~le eat one reprisentation d'une certaine partie du programme correspondant au

comportement dont on veut tester 1'implfimentation.

" Les conneciona permantent d'&tablir une correspondance entre programe et modale afin

que Ie "contr~leur" puisse varifier qu'ils 6voluent de manire cotirente. Les con-

neaiona sont rgialisfiea grice A des points de contr8le de telle aorte qu'A chaque pas-

sage du programme devant on tel point un signal soft 6mis vera le contr8leur pour que

celul-ci s'assure que l'ftat courant du modale eat cohairent avec l'givoiution consta-

tfie du programme.

" Le contr~leur a pour r8le de comparer l16volution du programme A 1'6tat du modale et

de faire 6voluer celul-ci en conagiquence. 11 ne dapend bien entendu que do type de

moda le utilisfi et non de chaque, r~alisation.

4.3. 1hemple

11 eat parfois nficesaire, dana lea programmea tempa rfiel, de slassurer que deu alqoences

ne seceicutent jamals almoltangment. Ce peut Otre le caa. par ecemple si IVune dVentre

elle acquiert one donnac utilisfie par l'autre. La cobairence de la donnae nficessite one

excluaion atricte entre lea deuK sfiquences. Cette r!Agle poorra Lttre modfilagfe A i'aide
d'un rfiseau de Pfitri et etaque transition associree A on point caractfiriatique, des eaiquet-
cesa exciusion (figure 2.) Le contr8leur, activai A ctuque, paasage do programme devant

le point de contr8le, sassorera que lea jetona aont dana lea bonnes places so bon moment

et lea fera 6voluer en constiquence.

Ofibut Si

F in Si

j / - - fibut S2

Figure 2

30-12

Remargue :Les rfiseatK utilisfis resteront en gfinfirfl simples ;en effet. ii ne s'agit pas

de modfiiser tout le programme (comae lorsque V'on dfisire prouver l'absence de blocage)

mais uniquement le comportement A conir~ler. Ainsi pour s'assurer qu'aucune perte

d'interruption nintervient ii. suffira de dgcrire le rbseau ci-dessous.

-Dfibut IT

--- ~ ~ Fin IT

Figure 3

Enfin, loutil propoaBi dans le syst; me IDA permet le contr8le des temps inter-

transit 'ons.

4.4. Implimentation

Afin de ne pas perturber le programme sous test, linterface entre machine de test et ma-

chine sous test se limite A une observation du Bus interne de is machine testre et des
queiques signati permettant d'identifier les informations y circulant.

Une telle interface permet d'effectuer malgrfi ces restrictions

- is dfitection des points de contr8le et leur datation;

- is dfitection des modificatins intervenant dans certains emplacements m~moire dfisignas

au pr~alable.

Cependant, is prise en compte de tels fiv~nements par Is machine de test West pas possi-

ble en temps reel. (Ceuc-ci pouvant apparaltre ponctuellement de manibre tr~ls rarprochfie)

une telle prise en colapte nWest d'ailieurs pas utile, lea contr~les pouvant atre effec-

tu~s en difffirf pourvu qua Is chronologie d'apparition des Gv~nements soit respectfie.

En cons~quence machine de test et machine sous test sont d~synchronisfies ;une file

d'attente contenant lea fiv~nementa observfis (points de contr8le on modifications

m~moire)et leur date d'apparition permet d'"adapter" Is charge de travail de I& machine

de test (figure 4).

30-13

Inter face Bus Interne

fi iguraten4

Le mat~ ~ ~~~atriel de dtcin a gla rc ncmaaerdnmqefrBdn B

moire R~l dunecapacit d'dessg tgl to cellec de ahn etee ueinu

Remarnde

DaLe am oela ahie sfttou teat reat6gr multiposseracluu processue mun dune

mitrfe Md'e atectfi is chronoge dae A calsne s mareintrs tat retiune loguce

aue datin moesc dan biquti. tene

Upe brle proame a te t es u-ge-cnsssAporme.ctemior

apussae dear estls eatlie drectemenet a Ia pissnc Les chnies propolls~

L'abnce deti permtubtin deat, pour ma pt, dupeur ait qu sinuma de oeratrionsfu

gDtive e as o machine sots pemttent demtroe eneur he is aestiude tmn 'n

Litirfatine de ctioui, et ehrnparticuder dviemeis modalisti piat rseau e Pgri,

que dens Ios mirsures possble). autre p'atlea rteau rr etn ipe op

t.5 Utlten ufi u all opreetatse otO oaiae o a

1'ensembui ien daplction dcomme el et isc oreffectuer des tet envanafles tatiqusn

La uiscsancedlestssetlfedrceetAI pisnedsmdlspoofs

benin on petratuon qeat poutis part, rde au gandsqu sevic es porvaion u

potinti prgame lorut, e epreulr dean ItB dtcae ogumaiuationsprrieu ePti

montnssres Vpour attn trovamI caue.tl a orefcurdsaaye ttqe

.Lmmsm...s...sgim, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

30-14

V - CONCLUSIONS

Les "moyens de test" qui viennent d'ftre present~s (langage de test, macro-langage et biblio-

thque d'outils) permettent d'envisager la conduite des tests des logiciels I haute scuritA

sous Un jour nouveau :

- pratique 8ystfiastique des tests de non-rOgression,

- application de jeuK d'essais longs et compleKes grace A l'automatisation introduite par lee

outils,

- contr8le Je comportements dtfficilement observables jusqu'ici grace A la puissance de modL,-

1 isation disponible.

L' Ind~pendance de ces moyens per rapport au langages de programmation et auK calculateurs ci-

bles a 8t8 8tudite afin de minimiser lee co~ts d'adaptation A cheque utilisation particulitre.

Un Interprbteur d'un sous-ensemble du langage de test a Stg r~alis* a 1'Electronique Serge
Dassault at est en emploitation (syst;ime LOTUS (VIE 81]).

Enfin, une baje de mise en oeuvre, munie d'une Interface matfrielle rempliasant lea fonctions

dfcrites prfcademment, est en cours de dfveloppement pour un calculateur de I'ESD.

REFERENCES

(AYA 79-1] JM. AYACHE

A Methodology for specifying Control in Electronic

Switching Systems

International Switching Symposium

PARIS MAI 79

[AYA 79-2] AYACNE-AZEHA-DIAZ

Observer : a concept for on-line detection of control

errors in concurrent systems

9 th International symposium on fault tolerant computing

MADISON JUIN 79

[ESD 82-1) ELECTRONIQUE SERGE DASSAULT

IDA - Manuel de r~firence du langage de test Document ESD NE 39 186

Mars 1982

30-1 5

[ESD 82-2] ELECTRONIQUE SERGE DASSAULT

IDA - Manuel de rffrence du macro-langage

Document ESO NE 39 428 Mars 1982

[ESD 82 -31 ELECTRONIQUE SERGE DASSAULT

IDA - Ebauche de spfiification ecterne d'outils Document ESD NE 39 522 Mars 1982

[HAL 81] N. HALBWACHS, P.CASPI

Modblisation et validation de systbmes temporis s discrets

Journfie d'6tcaie AFCET

Mars 1981

[LIS 771 LISKOV-SYNDER-ATKINSON-CHAFFERT

Abstraction mechanismis in CLU

Communications of the ACM

Aout 1977

[PER 78] R. PERRET

Pr~sentation de LASICO. Langage de simulation et de commande

Journfies BIGRE

NOVEMBRE 78

[SIF 79] J. SIFAKIS

"Le contr8le des syst'bme asynchronea: concepts, proprifitfs, analyse statique"

Tbse es-sciences, USMG - INPG

GRENOBLE Janvier 79

(VAL 76] M. VALETTE

Sur Ia description, i'analyse et la validation des syst~mes de comande parrall~le.

Th~se de Docteur d'Gtat

Universitt Paul Sabatier

TOULOUSE - Novembre 1976

[VIE 81] G. VIENNET - J.C. SEGUIN - M.ESTEVENY

Manuel de r~ftrence du syst~tme LOTUS

Documaent EMD

JUl14 81.

31-1

SOFTWARE VERIFICATION OF A CIVIL AVIONIC AHR SYSTEM

Dr. Michael Kleinschmidt and Dr. Norbert Sandner
Litton Technische Werke - der Hellige GmbH

Lbrracher StraBe 18
D-7800 Freiburg

SUMMARY

The trend in civil aviation towards highly integrated digital avionics systems implies a new and thorough
set of procedures for the generation and verification of the associated software. The objectives of these
procedures are to raise the quality of the software product and to reduce the expenses for development and
maintenance. For the development of an Attitude and Heading Reference System in strapdown technology, new
methods and tools are described following the general guidelines set up by the aviation industry and its
associates.

These methods and tools used in the process of validation were accepted by aviation certification autho-
rities. The certified avionic system has been successfully operational in a transport aircraft, Airbus
A300, since May '82 with no software errors having been detected. For both methods and tools, extension
is in progress to enhance the advantages measured in the current project.

1. INTRODUCTION

The theory of software testing and validation has been under discus .for several years. Unfortunately,
most of the contributions have only forced the maturity of the commerciai and purely computational part of
that field, neglecting the particular problem of verifying and validating software used in advanced tech-
nical applications.

For those applications, several avionic groups (users and suppliers) have developed standards for Software
Design and Verification derived from the general testing techniques. These standards describe the require-
ments in general form and must be tailored to fit any individual application.

1.1 LTR 81 - LITEF ATTITUDE AND HEADING REFERENCE SYSTEM

LITTON Technische Werke in Freiburg (LITEF) is a company which has been building military and civil navi-
gation systems since 1962. The modern design of those systems in advanced digital technology attaches a
large portion of the systems' logic to computer programs.

The LTR 81 System is the first civil avionic product to be built at LITEF in all digital technology with
a medium-sized computer program (about 20K of computer words in assembler language). LTR 81 is an atti-
tude and heading reference system for use in transport aircraft similar to the A300. It is designed in
strapdown technology using 2 two-degrees of freedom, dry-tuned rotor gyros, and 3 linear pendulous ac-
celerometers to comply with ARINC 705 specifications. The dynamic attitude is measured to plus and minus
0.25 degrees and the heading to within 2 degrees. The instruments are combined with a dual 16-bit micro-
processor set, common semiconductor memory, and the required interface electronics. All computer pro-
grams are written in assembler language using the facilities of implemented high order commands.

The LTR 81 system is classified as "flight critical" in the Airbus A300 installation (forward facing cock-
pit configuration), as it is the only reference for both attitude and heading during automatic precision
instrument approaches and landings. In addition, LTR 81 is the basis for a product line of AHR systems
currently under development at LITEF for various civil and military applications.

1.2 GENERAL VERIFICATION REQUIREMENTS

The purpose of the software verification is to ensure and document that all system requirements (product
specifications) and software requirements have been achieved and that the software development standards
have been followed, thus assuring that the software performs all intended functions and does not perform
any unintended function. Furthermore, it will ensure that the final product is easy to maintain and that
its documentation is easy to understand. The "criticality" of the system has a strong impact on the de-
sign, programming, verification, and documentation of the software.

The verification is a formal process of analysis and testing of the flight critical software including
all applicable documentation. The general criteria are defined by the primary customer of this parti-
cular system. These requirements are similar to the recommendations as described in document DO-178 by
the RTCA and other papers for avionic software.

Using the described documents as general guidelines, new methods and tools have been developed at LITEF.
These methods cover all customer requirements, as well 's additional LITEF requirements for maintenance,

All verification actions are depicted in Figure 1 in relation to other development activities (definition
and design).

31-2

CERTIFICATrON LEVE

__VALIDATION LEVEL

PRO,UC SISTE PERF

Dhes aTEnVRfATcai ,

2. ~ ~ ~ ~ O TOOL FOR SOTWR VRIIATO

Figure : Development Actions including
Design and Verification

2. TOOLS FOR SOFTWARE VERIFICATION

The complete process of software design and verification is controlled and documented by a Software Develop-
ment Support ystem (SDSS) usine an ONYX C8002 minicomputer with a UNIX operating system. The indivdual
parts-of the SDSS (see Figure 2 have been defined and developed at LITEF. The methods and tools allowapplications in various civil or military projects.

The complete implementation includes:

a tools for the control of
- software development

- software verification

- configuration control

- change control

e documentation for software design and software verification

This paper is restricted to the tools and methods for software verification.

2.1 CONTROL OF THE VERIFICATION PROCESS

The main items which control the process of software verification with respect to the completeness of the
tests and documentation and those which facilitate maintenance are listed below.

2.1.1 ANALYSIS OF THE SOFTWARE REQUIREMENTS

A formal review is performed and documented to analyze the Software Requirements for system level tests.
The review is performed by system test engineers with the aid of system and hardware designers. It defines
and documents in a standardized form all testable items of the system, as described in the Software Require-
ments. These resulis are the basis for establishing the corresponding Test Evaluation Matrix.

31-3

Figure 2: Software Development Support System

2.1.2 ANALYSIS OF SUFTWARE DESIGN

A similar review as described above is performed to define software tests at module level. The formal
analysis of the Top Level Design and the Module Description yields a basis for the corresponding Test
Evaluation Matrix.

2.1.3 GENERATION OF TEST EVALUATION MATRICES

Figure 3 shows by example of system level tests a scheme of the Test Evaluation Matrix. The Software Re-
quirements Manual is the basic reference document used for system level tests. Thus, the matrices relate
this document to a complete set of test procedures for system level tests (Hardware-Software Integration
Tests). In order to reduce the overall size, the complete matrix consists of two levels (top and bottom).

On the top level, the Software Requirements are divided into functional groups of requirements (e.g., real
time requirements, systems mechanization requirements, self test parts, etc.). The functional test groups
are defined by the review described in 2.1.1.

On the bottom level, each functional test group is divided into its separate testable items as defined by
the review described in 2.1.1. Each item is then identified uy a test numbcr which includes a reference
to the tost group and the software requirement paragraph and subparagraph.

Furthermore, all software modules participating in the performance of the required function are attributed
to each item in the matrix. Thus, the matrix relates a complete partition of the systems functions to
test reference numbers and the associated software modules.

Additional information can be included for the Software Version, Test Version, and Test Status of each ma-
trix element. The matrices are stored in a suitable form on the SDSS for easy automatic processing and
updating.

2.1.4 CROSS REFERENCES

From the above described matrices, various Cro:s Reference Tables can be generated automatically.

There tables relate:

- modules to their individual test,

- modules to Software Requirements

- Software Requirements paragraphs, sabparagraphs, statement to their individual tests.

This tool is important for controlling the tests after a software modification.

For each change in the Software Requirements, the Module Design, or the Program Code, complete list of
necessary regression tests is generated by the system. Furthermore, the various tables yield for Quality
Assurance or Certification Authorities a direct and clear reference from requirements to tests.

AO AM2 131 SOFIVARE FOR £A IONICSIUI ADVISORY ~DU FOR AEROSPACE if.RESEARCH AN DEVELOPMENT NUUILLI ASEINE (FRANCE)
.JAN 63 AGAND-CP-330

UNCLASSIFIlED F/a9/2 ML

Ehilil

Igo11 11112.0
Ial. 136

1.1 ~ 1.8III1 II~g III~8
1.25 jfj 4 ((6

MICROCOPY RESOLUTION TEST CHART

NAT,ONAL 9UPEAU O STANOAAOS-,9
6

3- .'

'I
11-4

T!'C~U EST rTODP -E'CI%

/ \// \ \ //' \

TES'

PEFSEE^

Figure 3: Test Evaluation Matrix

2.1.5 STANDARD TEST PROCEDURES

A standardized Test Procedure form has been developed for Hardware/Software Integration Tests. This form
ensures the completeness of the test definition and eases the access to the Test Procedures for updates or
modifications.

2.1.6 UPDATE OF TEST PROCEDURES

All elements of the Test Procedure which depend directly on a specific software version can be updated
automatically on the SDSS by releasing a new software version. This tool ensures the completeness and
correctness of the update and decreases considerably the time needed for the definition of the regres-
sion tests.

2.1.7 AUTOMATIC COMPLETENESS CHECK

This tool ensures and documents that each item of the Software Requirements is covered by a Test Design
and a Test Procedure or that each relevant Test Procedure has been modified and updated for regression
tests.

The above described tools and methods guarantee that the process of software verification is controlled
and documented in a complete and consistent way. The tools ease maintenance and facilitate for customers
and certification authorities the insight into the organization of the process.

___________________________________ ____

aI

3 15

3. METHODS FOR VERIFICATION

The different parts of software verification, as shown in Figure 1, are described in general in applicable
papers for software verification and validation. Flight tests are not included in the verification pro-
cess, although 'hey are necessary for validation of the avionic system. They are not subject for discus-
sion under the topic of this paper.

3.1 DESIGN VERIFICATION

Two major verification activities are performed during the design phase of the software:

A) The Preliminary Design Review ensures that the software requirements are complete, correct, and con-
sistent with higher-level systems requirements (e.g., Product Specification).

B) The Critical Design Review ensures on the higher level that the Top Design is complete, correct, and
consistent with the Software Requirements. On the lower level, the consistency and completeness of
the Detailed Design with the Top Design is checked.

Both reviews are performed by a group of systems designers, software designers, and software test engi-
neers and follow a formal, defined procedure. This procedure ensures the completeness of the review and
documents the results in a standardized form. Additionally, extensive simulations of all mechanization
algorithms and control logic are performed in parallel using high order language programs on a host com-
puter to verify the basic systems design.

3.2 PROGRAM VERIFICATION

For all program verification procedures, the tester issues a Discrepancy Report to the Software Control
Board in case an error is found.

That Board defines the necessary change actions and the regression test activities following the general
procedure depicted in Figure 4.

PASS

SGF T ARE

Figure 4: Action Flow for Tests and Resulting Changes

N_______T_____________&RAT_______________ION_______

31-6

3.2.1 STATIC CODE ANALYSIS

The first process of program verification using the actual code is the static code analysis. This action

is started when one of the programmers is satisfied with any program part (module). In this project, the
team of analyzers was independent of the programmer team.

The objective of the code analysis is to detect all errors unintentionally implemented during the coding
process. The nature of the errors expected to be found in a real-time application implemented in assembler
language differ from problems in ordinary applications in high order language, i.e., as descirbed by Howden.

A comprehensive checklist was developed to analyze the code against the Software Design Manual for correct-
ness. Additional tests were implemented to test the safety and maintainability of the code against LITEF
coding rules. Test subjects are the individual software modules with an average size of 150 statements of
assembler code.

The completeness and the results of the analysis are traced and documented using the tool of the status
matrix processing implemented in the SDSS.

3.2.2 DYNAMIC MODULE TESTS

The main objective of the dynamic module tests is to verify that the tested module is capable of exactly
performing the logical and arithmetic functions defined by the designers. Compared with the static code
analysis, the dynamic module tests are more independent from the generated code. While the code analysis
verifies how the module is performing its task, the dynamic testing mainly verifies that the module is
performing the task. In this manner, the dynamic module test is almost totally independent from the
program language used for code implementation; however, the requirements to drive the hardware environ-
ment (integrated sensors) of an avionic system have a strong impact on the test case and test data selec-
tion for the relevant modules.

Module tests in our definition may include actual or simulated modules at levels in the calling hierarchy
different than the module under test. If additional actual modules are used for the test, they must be
tested in advance. The allowed configurations are shown in Figure 5.

The test data sets are designed manually using the requirements of the Software Design Manual and included
in the test driver programs. In most cases, the test drivers compare the program response with expected
results. These expected values are calculated on a host computer using high order language implementation.
of the test subject to increase the level of diversification. Tools have been oeveloped to unify the con-
struction of the test drivers.

The definition of the tests, including test case selection, is traced using the Module Test Evaluation
Matrix on the SDSS.

The results of the tests are traced and documented in the same manner as for the static analysis.

7_ F -.. __1 I . IO

.... 71 L
L"- L

ui

8A 1 -T A 81 B2 CA CB

Figure 5: Possible Module Test Configurations

Test drivers include test data and
expected results. The actual module
in Configuration B2 has to be tested
in a configuration other than C.

3.2.3 HARDWARE/SOFTWARE INTEGRATION TESTS

Hardware/Software Integration Tests verify the software performance at the system level. The complete pro-
gram is implemented in PROM's in the real hardware environment. No restriction, modification or extension
of the code is permitted for these tests.

The tests verify in particular

* the hardware-software interface

S the real-time behavior of the system

* test of module groups

* the basic systems mechanization

* self-test capabilities

The test equipment consists of various stimuli generators for all possible external inputs, recording
facilities for normal outputs, and a real-time emulator and logic analyzer to trace the program flow in
real time under operational conditions on code level (no "black box" testing). Hardware failures can be
induced to check the self-test part of the software.

The test design is based on the Test Evaluation Matrix. To enhance the readability of the test procedures
and to make certification and maintenance easier, the design of the tests is done in two steps:

A) The Top Level Design, which gives an overll description of each individual test with the expected re-
sults;

B) The detailed test procedure, which specifies unambiguously the complete set-up of the test equipment
and all actions to be performed.

As mentioned before, the Test Design and Test Procedures are implemented on the SDSS for automatic update
and documentation. For each individual test step defined in the Test Evaluation Matrix, one Top Level
Test Design and one or several Test Procedures exist. The Test Procedures are identified by the Test
Reference Number specified in the Test Evaluation Matrix.

4. RESULTS OF THE VERIFICATION PROCESS

As described in the previous paragraphs, the three different levels of program verification will normally

detect errors on different software levels:

The static code analysis generally detects:

pure programming errors, missing or incorrect comments, violation of coding rules, etc.

The dynamic module tests detect:

errors in the bottom design of a module as incorrect dynamic behavior (overflow, underflow), errors in the
implemented logic, inaccuracies in the arithmetic. etc.

The system level tests detect:

errors in the top level design of the software, the real-time behavior, and the hardware interfacing.

The results of the individual tests have been traced during the entirety of the verification process and
are plotted below (Figure 6). The shape of the distribution is influenced by several facts:

A) The verification process started when the program and the documentation were already in their nearly-
final states.

8) Several new software versions released during the verification process due to changes of the system's
requirements (see bottom curve).

C) For each version, the tests were performed in the order:

- static code analysis
- module tests
- hardware-software integration tests

The errors or inconsistencies in the documentation fSoftware Requirements, Software Design Manuals, etc.),
module headers, comments, etc. take the majority of all findings of the verification process.

From the errors in the program, the main part is detected during the code walk-through procedures, fol-
lowed by module tests and hardware-software integration tests.

The steadily decreasing error rate, even in the presence of numerous software changes, indicates the
effectivity of the applied methods,

31-8

ERRORS

)OF1 Docume, 3tion, ec

soLJ 7/o Headers, etc.

Errors detected during
20- Code Walk Through,

10- /not including 1)

Errors detected during

20- (Module Tests

10- not including 1)

Errors detected during

-. Hardware/Software
200 Integration Tests

10- |not including 1)

- - -- Software Changes due only to

©- Hardware
- Customer

0 1 2 3 . 5 6 7 B 9 10 11 MONTHS

5. CONCLUSIONS

After completion of the verification process and thorough company and customer flight tests, the LTR-81
AHRS has been certified by government authorities for a A300 AIRBUS installation.

The systems have been in normal continuous installation for more than three months.

As a measure of the quality of the adopted design and verification methods, one can consider the number of
program errors detected during operation after completion of the verification process. With a total esti-

mated time of software operation of about 2,500 hours after verification, no program error has been detected.

Thus, the successful application of the design and verification methods to a medium size assembler program

has been demonstrated.

Furthermore, the special methods and tools developed for the verification control have proved to be time-

and cost saving for the test design and maintenance. The implementation of the complete documentation on

a computer system eases updates and enables rapia lelivery of new versions.

After a critical review of the complete LITEF software verification process, the primary customer strongly
recommended a similar approach to the manufacturer of n inertial navigation system, currently under deve-lopment.

The developed tools will be expanded in future to cover larger parts of the design and in particular, the

design verification processes.

Furthermore, test driver and test data sets for module tests will be extracted automatically from the de-

sign specifications.

. ..I. _. .

.0

REFERENCES

Aerospatiale "Quality Demonstration of Airborne Computer Software for Certification,"
Aerospatiale Draft, Nr. 451 285/81. May 22, 1981.

ARINC "Attitude and Heading Reference System," ARINC Characteristic 705,
Annapolis, USA, Version 3, April 22, 1981.

BDLI "Annehmbzre Methoden fur Entwicklung und Nachweisfuhrung von Software,"
Bund der deutschen Luftfahrtindustrie. Ausgabe 1.0, November 22, 1979.

EUROCAE "Recommendations on Software Practice and Documentation for Airborne
Systems," Final Draft by the European Organization for Civil Aviation
Electronics (EUROCAE), Paris, October 1980.

M. Fujii "Independent Verification of Highly Reliable Programs," COMPSAC 77,
pp. 38-44.

W. Howden "A Survey of Static Analysis Methods in Software Testing and Validation
Techniques," IEEE Computer Society Press, 2nd Edition by E. Miller and
W. Howden, 1981.

E.F. Miller and W.E. Howden "Software Testing and Validation Techniques," IEEE Catalog No. EHO 180-0,
Library of Contress No. 81-81431, 1981.

G.J. Myers "Software Testing Principles and Practice," Johr Wiley & Sons, New York,
1976.

RTCA "Software Considerations in Airborne Systems and Equipment Certification,"
Radio Technical Commission for Aeronautics, DO 178, prepared by SC-145.

UNIX UNIX is a trademark of Bell Laboratories.

Progress in
Verification of Microprograms

Stephen D. Crocker
Director. Information Sciences Research Office

The Aerospace Corporation
P.O. Box 92957

Los Angeles. California 90009
USA

Development of a usable, practical program verification system has been a goal for a number of years. Although
systems are not yet available for general use, substantial work has been done by several groups and relatively
powerful systems are coming into existence. We describe our own work on the development of a microcode
verification system and give a picture of how such a system might be used in the near future.

Microprogram Verification

A microprogram is a program written for the interior or lower level of a two level machine. Although
microprograms are just like other programs in many respects, there are certain distinctions peculiar to
microprograms.

Microprograms usually implement the instruction set of an upper or target machine. The specification of
the target machine is generally subject to precise specification. In contrast, formulating a precise
specification for other classes of programs, e.g. interpretation of radar images, may be difficult and
uncertain.

The architecture of the host machine is usually more complex than the architecture or programming
language at higher levels. A large number of operations may be in progress at the same time, and some
of these operations may take more than one cycle to complete. Characterization of the behavior of each
microinstruction may be difficult. In this respect, microprograms tend be mcri, complicated than other
classes of programs.

Efficiency is a primary concern in microprograms because the microcode is at the heart of the execution
of every program. Speedups in the microcode result directly in speedups of the overall system. This
concern with efficiency leads to intricate programs which are hard to debug.

Because microprograms are at the heart of a system. assurance of their correctness is worth quite a bit.
In this respect. microprograms tend to merit greater effort to assure correctness than other classes of
programs.

Since correctly operating microprograms are a requirement for military applications and since microprograms are
often very complex, application of formal program verification techniques to microprogram correctness was
recognized as potentially quite valuable. Our group began work on this problem in 1977 at the University of
Southern California Information Sciences Institute, and we continued this work when we moved to The Aerospace
Corporation last year. The chief result of this work has been the development of the State Delta Verification System
(SDVS).

Although the SDVS is not quite complete, it is reasonablv close to its final form and has been used to verify several
pieces of microprograms. A large scale test is scheduled for fiscal year 1983 and 1984. In operation, the verification
system will be used in the following manner.

1 A formal description of the host machine is prepared. This description is written in ISPS [1] and
captures all of the information needed to understand how any microinstruction will be interpreted on the
actual machine.

2. A formal description of the target machine is also prepared. It specifies how the target machine is
supposed to operate. It is written in ISPS.

3. The correspondence between the state information in the target machine and state information in the
host machine is worked Out by the microprogram designer. This correspondence covers such things as
which register in the host machine will hold the program counter for the target machine.

4 The microprogrammer then writes the code and annotates the code with his reasons for believing that
each segment of the microcode implements particular aspects of the target machine. These
annotations are an important part of the input to the verification sjstem.

322

5 As the microprogram is developed, the microprogrammer uses conventional tools such as an assembler

and simulator to check out the code, but he also submits the code to the verification system. The

verification system checks that the microprogram implements all aspects of target machine. To carry
out this check, the verification system uses the description of the host machine and the correspondence

between states to compute the effect of every sequence of microinstructions. The annotations in the
microprogram provide guidance to the verification system to see what case analysis and what induction

steps to carry out. Discrepancies between the simulated behavior and the required behavior are flagged

for the microprogrammer to consider.

State Deltas

In order to build a verification system. there must exist a clear theoretical basis for reasoning about the behavior of

programs. We have chusen to use a formulation of machine behavior based on "state deltas" [2]. In the state delta

formulation. machines are viewed as sequential engines that step through a large number of states. At each state.

the state description vector is potentially very large. and ,s best thought of in terms of current values of access
functions, For example, in the course of interpreting a single microinstruction, a typical machine might step through

a few dozen tiny steps. The state space consists of the main memory, the control store, the registers, and the

internal control sequence status. Each step causes a change to only a small part of the total state space.

Since we expect to work with a large number of state transitions and we expect each transition to affect only a
small traction of the total state space, we focus our attention on h. nq.$ to the state space over inera of state

transitions. Formally, a state delta is a formula that relates the differences between three states, known as "now".
"precondition time" and "postcondition time." A state delta formula, written schematically as [P -L.. 01. has four

parts, an environment list (E), a precondition formula (P). a modification list (M) and a postcondition formula (0). The

meaning of a state delta is

It between now (the present state of the machine) and some future time, the precondition becomes true

before any of the places listed in the environment list are modified, then there will come a yet later time at

which the postcondition is true and (at most) only the places listed in the modification list will have

changed.

The precondition and postcondition are logical unquantified formulas using the usual predicate connectives (and,

or, not, etc.) and the usual arithmetic (+, -, 1. etc.) and logical (bitstring-and, bitstring-or, field selection, array

element selection, bitstring concatenation, etc.) operators over terms, References to values in the precondition

state are made using a prefix "." operator. In the postcondition, references to the new value of a place are made

using a prefix "# " operator.

We translate the ISPS machine descriptions mentioned above into state deltas. For example, the ISPS fragment

A - MEM[PC]

translates (approximately) into the state delta

[2., #A=.MEM[.PC)]

except that in the actual translation there is a representation of where this action fits into the sequence of actions.

These translations are then used inside the verification system as the forma! basis for the proof. (In the actual
implementation. the translation is carried out incrementally and is interwoven with the actual proof process, but the

effect is the same as if the translation had been carried out previously.)

The primary advantage of State deltas is that attention is focussed on the changes that take place during segments

of computation. This permits great economy of expression in the characterization of the behavior of a machine

The State Delta Verification System

As described above, the role ot the verification system is to accept descriptions of the host and target machines, a

copy of the microprogram, a mapping between the state space at the host level and state space as viewed at the

target level, and the annotations by the programmer. Having accepted these inputs, the system then checks whether

every required aspect of the target machine is indeed implemented by the microprogram as it would execute on the

host machine.

Our verification differs from many others in that it does not try to intuit the proof without aid from the
i.croprogram designer. Instead, we ask only that the verification system follow the rationale Supplied by the

designer. In principle, this reduces the key element of the verification system from a theorem prover to a mere proof

checker. Although there is a large theoretical difference between a theorem prover and a proof checker, practical

considerations tend to blur the distinction. Theorem provers are necessarily incomplete. This means that there are

always theorems that are true but beyond the power of the theorem prover to prove. In practice, this means that

theorem proving programs have to be interactive and accept hints or other help from the user. This help serves the
same role as the formal proof supplied to a proof checker, although it is often assumed that far less help is required
for a theorem prover than for a proof checker. At the same time, proof checking programs are often augmented with

algorithms to prove various classes of lemmas automatically, thereby reducing the length of the proof needed from

the user. The result is the clean theoretical distinction between a verification system that uses a theorem prover and

verification system that uses a proof checker may not be so clean in practice. Nonetheless, the emphasis remains a
bit different, and we have specifically chosen the proof checker style of System design.

The verification system is implemented with the following major components.

Proof Language Interpreter
The annotations supplied by the microprogram designer are interpreted by this component to

guide the proof process. The key elements of the proof language are directions to symbolically
simulate until specific state is reached and decisions to initiate suboroofs. case analysis proofs,

and induction proofs.

ISPS Translator As mentioned above, the descriptions of the host and target machine are written in ISPS and
translated into state deltas within the verification system.

Simplifier A large fraction of the verification work consists of normalization of exp-essions and other

completely straightforward arithmetic and logical simplification. The simplifier consists of a

number of cooperating decision procedures that see all of the consequences in specific areas.

For example, there is a congruence cosure algorithm that determines the truth of any formula

that is related to other formulas only through substitution of equal terms. There is also a

component that determines whether a conlunction of linear inequalities is satisfiable. The

simplifier is based primarily on the work of [3], but we have extended to Nork with bitstring

arithmetic, set partitions, bags, sequences and multiplication and division of integers For some

of these domains, only partial decision procedures are possible, and we try to characterize for

the user exactly what the simplifier is capable of proving,

Symbolic Simulator
This component maintains state descriptions, applies state deltas and steps through !ime from

one state to another.

The SDVS is written entirely in lnterlisp and currently runs on both a Digital Equipment Corporation VAX 11/780

and a Xerox 1100 ("Dolphin") Lisp computer.

Experience

Although the system is not quite complete. we do have some experience with earlier versions of the system and

can give some idea of how expensive it will be to use verification tools in the future.

Formal descriptions of the host and target machines have to be written Our experience is that it takes between 6

and 12 months to write a full and accurate description of a medium sized computer. A large fraction of the time is

spent on the details, since the documentation is usually incomplete in various ways. As part of this process. we have

found it essential to have easy access to the designers of the machine in order to get answers to a myriad of

questions. In our most recent experience, we have enjoyed access to the machine designers via the Arpanet. and

this has been ideal. Responses have been very timely and the use of the system allows us to capture all of the

interactions almost automatically.

The resulting formal descriptions range between 20 and 50 pages. depending on the complexity of the machine.

We have adopted the policy of writing these as perspicuously as possible and using the formal descriptions for

documentation of the machines and automatic development of emulators for the machines as well as for input to the

verification system. These added uses of the formal description do not materially affect the time or cost to write the

description, but they do materially enhance the utility of the result.

A natural result of the description phase of a verification project is that some errors are noticed and corrected.

Our experience is that the majority of the errors detected at this time are simply discrepancies between how the
machine works and how it is documented. The useful effect is that the documentation is brought up to date.
However, detection of mistakes in machine design or microprogram design may be detected during this process,

Errors detected as the result of formalizing the machine descriptions are sometimes the source of a small
philosophical co,troversy. Depending upon one's point of view, these may or may not "count" for credit as "errors

detected through formal verification."

Turning to the actual proof, an interesting question is how extensive must the annotations be? A potential hazard

is that the annotations might have to be several times a" long as the microprogram itself. If this were so. there would
be strong resistance to use of a verification system Fortunately, our experience is that the annotations are
reasonably short. For example. it often suffices to direct the system to simulate execution of the microcode until the

goal of the subproof is reached. The simulation may span several microinstructions, yet only the single command

is needed to direct the system. In general, our experience confirms Wegbreit's findings 14).

324

The speed of the verification system is always of concern. In the present form, we estimate that it is now capable
of simulating approximately one thousand microinstruction per hour. This is slow, but satisfactory for our current
work, If the system were to be turned into a production system, there are a number of refinements in the
implementation that would be appropriate. These refinements include rewriting the system in an implementation
language and precompilation of the semantics of each microinstruction. Other refinements will be discovered as the

testing and use proceed. Taking all of the refinements together, a complete rewrite of the system is likely to yield

about two orders of magnitude improvement. Execution at that speed would bring it into the range of ordinary
compilers and assemblers and permit its use within a production programming environment.

References

[1) Barbacci. Mario R.. Gary E. Barnes. Roderic G. Cattell, and Daniel P. Siewiorek.
The ISPS Computer Description Language.
CMU-CS-79-137, Carnegie-Mellon University, Computer Science Department. August. 1979.

[2) Crocker. Stephen D.

State Deltas: A Formalism for Representing Segments of Computation.

PhD thesis. University of California, Los Angeles, 1977.

[3) Nelson, Greg. and Derek C. Oppen.
Simplification by cooperating decision procedures.
ACM Transactions on FPogramming Languages and Systems 1(2), October, 1979.

[41 Wegbreit, Ben.
Constructive methods in program verification.
IEEE Transactions on Software Engineering SE-3(3):193-209, May, 1977.

.1••

\AIIAl IfIN 01; S0IvVMARI IOR iNI[(;RATION 01 NIISSILI S
VkITII AIR(RAI I SY511 \MS

J, R. Nkic\ant,

Nasal Wicpois Center
(hina Lake. CA. LSA

SUMMARY

Tle integrattion 01 colinputeri/ed missiles with the LIS. Nasy attack airalft hads resulted in In creased omplemsit ot require-
mntt tot s aiidation testing of thei slware for tile allrerafis embedded rirniputer is tenis Also tihe cost ari d ial ahili\ t

* ~these weapon roundS prohibits tre widespreatd utilizat ion of (lie ao Iual weapon in tie firinig% as a mecans to) support s sill
software validation. Yet it is precisely because of thIese samne fact or, t hat the int irration of these iscaponus i h Tire attack
aircraft s rieni must be validated it) thle highest degree possible. I In the coiurse ot the s ahlat non it musnt ble p~roveni tt ti
Whole systemj performt to tile funrctional Phtecil'ication"t andi that. Inst as inlpirrtanlt lx, thle ott Isire ses niot a use undesired
behavior Under normal or abnormnal conditions. A tie tliidology for %alidiation . with emphriasis on tire arrcralt \, iemr %olt ti re.
is doescnbchd for areas critical to assuringe that (the Icm dtit oes mteet it, requniremrentis

1. IN I ROICTIOtN

File poissiblie adierse ellfect of anoitmalies in msonrics software call ble sigitIl1cails Ltreat tiani that III rilerotwi I or
esatriple. it is ciuriervafle that a wecapoln Cilldilbe in~auierfeIls ldtiihed. or Elie aircealt catfast roph Ircailk out Coliter cLJIliri
%:onrseIftic it Iloss 1o1 lifte I itiot tra StI. a ir vrriir iii business ior 'inaircial diiJIJ1t I ricesin11 tr I seenr IjI atasrpr I I i 111 1 oI a . I 11ail1

onkv an irritation it 1ncirilverrietice to tire Users iof that siillware

Ibfi, paper add resses critical title cis insileil III tire salidlatioi Iut a ,Iikii1i1C, sollIsare f dec 1Iof t I Ii ite uraIe rnIsre 11 C II I 1.111
aircraft slseris IThe it tuat ionr being :croed lietre i% wslhere the miissile arid thre aircraft frothIlia\s c l cm ler -om floior " ,IsrIuI
and that tire\ fiaseer d to their :urr-ent state it setparate and totalk ly iellien ioleslifierri effort'. I0,~i d, tle\ -l
anld thre fll inii ritissle siitwut in irure I I .- Asu. tnt narrow liie scople of tis paper, lire "cctillia esINIerrec or sunneld

,\NICIlr .0rid somare reiquiremienlts is titiderstoird. lIe N~smni aind oilltAarc ritlirerileIrts Iilts alsu ire, I,, ir,,rS i.

prmde tlre basis for design as well as siibseuent ierilicatioti andl s udatin

FIG U RI. I . I A-fi- Witfh Ilarpu.... MIissile

(A (1NIRAI. INFORMAIION

2. Sottware Va~lidlationt

rhe goals (if silt ware validation are toi determine whether all soft"wire andi sx stett performance Iipecif t h~ lrough inirt ntil
interface. anti test requuiremrentis) are hering saiftactorily fiulfilleid. aird thfat fiesoftware dones not cajuse inespe5 ted bei~otas
tinder tinforeset circuimstatnces To achieve lthis, soft ware's conrtribiutioti to perfurrinanc:e muist be es aluiuted iii a realisti
operatitng ersirnierut %helre hirrfiare . ensurontiental. andi personiniel effects are In [tte loorp wfhen required IRLI [I R. -1 1i
N-8)X. It muilt alsor he understoodf t it validat iiin is ntrl testing (it requiremntst, bitt ratfier testinig against requiremirents

Siit tware ideveliipment actually result s in parallel sof'tware dlevelopnments as shown in Figure I After the requiremlents deli
tioti tor thre systemn anti its soft ware. aird before the syster srrftware talufatuun testing can coittetie. paralfel Oi, lls o

nulify buithI test facilities andu sioftware tools for data recording andi analysis are reqiitcf

33-2

DISCIALINSVRFE SSEEELPETO

REQUIEMENT AND SOT ARlElIsloirnstdigtoVldio

REUIEMNT TACbTdCAL Compuer stem

ESTABLISSESTEST

NPTS C:DTU

DISCISYSTEM

OUTPUTSD FAIIT AD VAIATO

FIGR2 2.2ede compibedde systetmsSstrn

Ai ev e eitin a:1 r impose o tile tid computer s vsei h t enis is~ln aircrltor msied i st large sect to weigh .nN
funwer. istsiro m ut n cesb ifration. Thesmleca e estion as, along ith thgue ner ti handsi rea in l s estal at

sthed ina e ve cesn rprin o systems nndal.o hnte hae bent ingasged to sftwe ruI g n greater and more completo

Alth everonhi incraing emandces fo exadng h mded software. aeurmndts, along with theh seeiirent t sh rtae f

notrall reserant in o der o heraltm software systems.L,,.180

TOA

3SPI-(llI(K TOPKI-S

life tripi- diiscused here have been separated into fis M rajor areas thait comprse validation1 requiremnent s. design. test ens run-
melt. test d ist iplines. and test planning.

; I Ss stem Suit wire Requrirrements

This paper %ill not at tempt to elaborate oin tie topic tif reqiremnts other than stating t hat thes' must exist in .r %eritied
,tate ilowes er, their iinpot~ince is too great itot to be menioined here. The lack oit senfied requiremenlts ir ins sotiss re
prnrject definiteIN prohibits the acieiement oft thorough s~alidation testing for coimpleteness and correctness of hat soltlsare.

The ofpetnssn the: performance specification also determines the extent to which testing will prirs le aSSuIrnC Against
unexpected esents. In addition to testing thc stated requirements as shown in Figure 3.1

ASSURANCE

FIG~URE 3.1 Magnitude oif Oserlap D~eternmined b Completeness
of Performance Specificatirin.

3.2 Softsare D~esigrr

Siift ware design for the aircraft coiirpiuter tin air aircraft missile integratroi, Project uisual[) i irolses a relat is el siall amirtiii
Ill) tur 2';l of ness design requirements andi a lesser aitount of niodifi.:atirins otl the baseline i RAN(. E. R . . It)(). I %ell
this aimount howeser is sirftficrent tir prohiibit rigoronus priiof ot all possible operations oit tire mordi fied software. and tflit,

testing is in andritiion tin that required iti salidite tile haselinte sonftsware. rius tire re(Iturerierr f0r thonirougth sfl dIat 0ini 111ih-
c"tes that the snift ware dlesign shldrn include ornsiderat ions for testing iii he able to get assurance itrat tire s alidiat run is rea-
suitably cnirmpreherrsrve. and thrat tire iSsietit s"Ill tnot do undesiredi t lu1gs under unftoreseent c rc~rnsta rices.

.3 test I-nrrironatnrt

3.3.1I Fa~ hit res

to deterinie tire rerquirremrents fur a facility. one must first realize tile purpose for tire ltiluts Ii flti case it is "ln prid ie
a tool iii test (Iperat ronal [:light Programri i O1:Pi irl .r mnirner suich that tire OF-I will nperatc Ili all rspen is. as it it %sas
heirig roperated fin tire aircraft si stern." It should ire rioted that tire tacri it u, prnbablI errmiried to be used thirOrighlirurt ic
OFP software deselopirnt process fory reqirirerirents airal~ si. design. coding, dlebuggirng. In tegratiron. and s alrddtI unle
facility is man a flight f ramier, hut a tool for testing Oil's

Toi allow this testing to be ttteanttrgfUl. file design tif tire facilit% tmust hrave the following chiaracteristics.

waI trhe simtulatiron trust contain aud tmoidels of all s~stertrs that irterface wit' ili. tiFr. with integrated irrsf frit
Irese, rmodels. While snic rmodels needl uit iii repuresenrt tire reactirirs of tire systers toi sintrirlatirins frornt tire drisers. orthers
trust oiperate Ili a closed looip fasiin with bothi the drrser .ni tire OFP

hi) Access to dlata (both 0111' and nisllsi for recordinig throughout tile oiperationOi iitre tao itt is essential Ill testing
tile jccrirac anti correc tness of 0F-1' oiperatrin.

c) the abiit% to repeat rnt fi the tacriri is relUired for coimtparisorn oii tests iif ditfferernt 01:P,. as well as ii obhtarin
repealahle piletirnienin.

Ili onder to provide tile ahility lor validating bunlt-in tests. id degradedi operatioti. tire sitmulatrion soft ware tin add it ion to
providing an accurate represenrtatronr tif tire SYSInIT andi its etrornient I should provide tire capability lt introiducing ssteni

fauilt. anomaly, and riff-nionrital conrdit inns.

Validation facilities should include a lull comiplenrent of tire nri puiter suibsistentt equipment. including tire oiperatr irterface
(keyboards. switch panels etc. i. Lverything else should ire simritel. hutl with provs ions made iii allow srrbstr t ion11 ii an tral
interfacing comutpatibility. this reqjuires that (tit? systemt aird ens ironiert simurrlation irperate in a cimiputer exsternal tin tihe
oiperational sytent cirmpuiters enabling tire onperatiornal sorftwsare iio retain Its initvgrity i OSBORN L . I')--

the hub owing characteristics are ionly ncessary htor sirrme frirnis oif testing.

tat Actual systemt hardware I evenf tire arrcra ft critit iself) is requredh inily toir hiardware suit tware inerCt alt testing
anti fur troiubleshii inrg run sonnic problenrs

33-4

Ihl Operation or [, I l"e sstin a tell> iitll\itiall, sense is not deirabie lr \alidatiin testing, but A prso iri

tile ioop is requirte'l or ie'eliipien ot troubleshooting tests., wher the pers.Tl-Ii-liiop Iodet of 'pet"ation preslides greatly

increased Ileilbll.

to Real-time operatiion if the lacjt)I))\ beonie, lie ."earN l'! use ot il hardware, And iear real-tine opelatloll

is all that is required for persoli-ni-ioop ise!

Itaa Retord ig anti Anal>,sis

Ihc critical areas requiring concentrated elort tor dlta recirditg And anal> sis arc I I I to process all data a5 alable. Iii t,

itoiate as itiuch of the data processing iork a, possib'le. l3 i ha te [lhe data analksis progranims ptodtc output in a 7orn
suitable 'ir inclisiin ili reports. rather than spes, ng rorth reallirs i paper this pro, ess is diagrammed in Figure 3 3

AIRCRAF T

RECORDER

EMBEDDED RESULTS

DATACOMPUTER - \DAAE

DATA .BASE

T AT US

COMPARISON - t REPORTIS

VALIDATION

RLEPORTS]PROESSL PROEM

Ft(;URI' 3 3.2 Process of A.nal> sis of rest Data.

-tIi ciimpletel, saltist', the requirements Fi r the tirst area requires the. availability, of sonic kind oit 11 11t data I stichi as 7rn
the simultlation ot range taillt) I this siitulat on or range data needs to be compared wilth the flight reciirder d ala t'' deter-
mine the accuiracy' of the OIFP formutlations. The simutlation data should also he conipared against the Ilight pro'tile plain Ii

detertine if thle colrrect profile was flown.

; [lie tinmitatioits o~n tihe accessibility of data friin thle embeddetd cotripters plac:e a burden oin the OFP sol tw are designer ti'

ntake as mnuch data as ailable ais possible, anti t' nilniie redundancy in the data available. The burdeti ''n the dciecliiper ot
Sthe tirocessuig aitd aitat> sis tioils. is ti! iiiliee all data asailable and to he able to test all spec. ltl ftind ins

Thle sec:ond area itnnoneid is critical it we are coilng to make validatuons both thorouigh and eff'icient Manuial scanning it

data cannot possibly be as etficieitt and thiiriugh as autitunated ot computerized methoids. Given both truth thata] st iitator
or range I andi fligt recorider data. thc ilfe.rences t.an be compared with predetermined t constant or variable) Itiieraiices ti'

check tot problems. Where tiilerances are not ntet. validatiiin probleni reports could be issued. Where the conmparisons come
within f'ailing a predetermined percentage of the tolerance, a notice could be issuled to have an anal~st che.ck the data tor
possible problems . For some fiictiiins truth idata will nut be available from the simuilator ot range fat lis Firr tiese.
witItware iitoudcls if thle algiirithnts couild be. driven by flight recirder udata to generate the truith data tuir comparison. A\

weapon deluserey siirittg priigram is s aliiablc in that it not only can deterntine accuracy, for cacti wearen dehusers, . ut alsi'
ntaintain a data file iif the accuracy achieved with respec.t to the ruins and modes se.lec.ted. this data file 5.an then be uised
tii ciimpute statistical dlata reports stuch as circlar error priibabihities ftir various modes and or weap'ins thhighiuut thle

> contupuiterlhung the data cluecks. f'unciiinal gzroutps can be se't uip. e.g,. to check N avigation a where all posiqtion and sth(icit>
daita w, iidhi. be hecked). tim c.he~k ot rattar fiinct ions 4w, here the radar ranging s atiables a re checked '~ut., et I ihe test

procehures, coiiltd then have a check list lii select the processing progzrams that need t'i he run to check~ ioit the 7hintl ins tl

inte.rest itr that run.

TRT

I he third area to be worked oi for data processilng is to nnine output OI the programs arid to present the results in itr
nats desigTied t o case writing of

+
the intermediate and final reports The oIpi utO these processiig prograuilS aoLd 'anr III

tormat depending oi tile data being checked. It could be m the form tot plots, tables of diffterence,. or a list Lo proiblemirs
and notices. This aotl improve the visiblity an to statirs ot a vahdation and keep the reporting aspect ot sahiaition iork

tsr a trinimuin of effort.

3 4 Test l)isciplines

Throughout the course of the validation. there are several disctplnes used that should be similar to ' .'se used for other

validations The more important disciplines to be applied include test documentation (plans, proceduret,. and reportsi: con-
figuration management: quality assurance: and error processing Each of these Jisciplines should be firmly established in orga-
nizational poli,:y before test planning occurs.

3 4.1 Validation l)ocumentation

A complete set of validation documentation would include a plan, a set of procedures. and the reports on test results A
standarized validation plan that provides the details on the baseline functions of the OFP is a desirable starting point for the
modifications to produce a validation for the integration project.

A complete set of test procedures can be written only if an adequate performance specification is asailable Also the prircess
of writing the procedures should attempt to be a direct translation from the requirements and test information in tile per-

formance specification ro case this process, software tooLs could be desveloped that a.ould allow the manual ettort to coisist
ot a menu selection style of extra-cling the test information from the performance specif~ications and designing priicedures tir

test the specified requirements. This would greatly speed-up the process of writing procedures and would elinttate mal% errors
commonly found in test procedures. The program to decode the procedure menu selection sheets could also produce softwarC
tiles that drive the simulation facility through preconceived maneuver proit-les.

In addition, a data file could be set up that would contain a list of functions tested bN each run iprocedurel. This Ihen

used b. an appropriate data management programi would allow computerized recording of the iunctions tested and thise

that have had problem reports written. This data management capability would allow summaries of progress to he obtained
at any time in formats that show what has been tested, and what has yet to be done.

rhe menu selection forrnms for tire procedures could also specify tile types of data processing that should ie conducted alter

the run. More on what is, meant by "t'.pes of data processing" is given in paragraph 33.2.

The procedures produced for use in the simulation laboratory should he adaptable fit not iniediaely usable) for use In
flight tests. Perhaps a short form could be produced for each complete procedure that would basically be a trais.tion o tile
irienui selection style of fornms without the details required for facility operators who may not has e tire fatdiarilty with tie

aircraft sten anti its operation. The short form could also produce the kneeboard cards necessary for notes and ertrties
during the fligh this would proide the means tr integrating the tests in the simulation laboratory with tire tests ini tie

aircralt

34 2 (Coniguration Management

An aiitornated software conliguration management capability . asvailable on a central operational software deselopment lacllht
with interactise terniriraIs, has become necessary due to tie increase in size and complexty insol.ed in ivionics s uift are. This

would include a tolnputer priigrain library for a cenitral repositor and control agencx.

3 - 3Quahl Assurance

A good reporting schenie is critical to the iranageitent of a software development project. A good way ti accornpush this is

ti irairtain ir independent quality assurance function that will proide visibility as to atidation status to the prole~t Ilan-
agers, Thins would inclide information on how many tests were attenpted, how many were ctmpleted. how trans were sut-
cessful. partially Successful or failed.

3.4 4 -ror Processing

-ffetl e proceduires iriust be in place to handle tie processing oif errors detected during aitldation testing These prowtidtrc,
must over classification of the error is to itrpact. cause, effor reqtired for correction, and retesting required In essence.
tie pricedure tells "what to do" when the validation testing is perturbed by discovery of error,.

3.5 lest Planning

Ihe success o validation testing is determined at the outset of the development project tinly by alloting tire salidaton
effort its fair share of resources and time will it be possible to assure that the tieeloped soltware achieves its o aidation
goals

,
However, by letting a salidation program evolve subject to the vagaries of development problems and slips in ,t hedIlV

gises very little confidence that the valtdation will be successful. The test objectives must be set and agreed uprn by prolct
management, the development group. the test group. and the user customer Test requirements should then be deselope.l
based on the objectives. goals, and the planned development approach. An effort to have in place, and acquire as neoessar%.

appropriate tools, based On the requirements and the plans is required. An arsenal of tiols and test methodology should be
selected that will achiese tle goals tf validation. A validation plan that provides appropriate interfaces throughout the testing
s.hould be prepared that represents a well-thought-out test approach to enable comprehensive testing tHARTWI K. R I)
lu)77|.

33-6

4. CONCLUSIONS

The conclusions to be drawsn here are primarily separated into the samne areas as discussed tinder Speoll, I tpi-s

4.1 System Software Reqtirements

Though this paper did not cocer the topic of requirements, other than stating that tle> ii muist iS is in i trentd satie, lie
importance can not ble emphasi/ed enough. The lack itf verilied reqtiircnienis fo alir o solwidr proic i dcl tl pr llmbits the
achievement of thorough validation testing for completeness and orreclles oI that soltaire. Also. an Irlntlon stled toi be
a requirement must he amenable to being tested. If it cannot he tested as defirned. either it is not a requttlenett. ITr it i
defined improperly. The use of available requiements esaluation tools will greatl ait in achiesing the orret and thorough
requirements specification.

4.2 Software Design

The limlatiotn oil accessihlity to data and the limited debtug capabilities in embedded coirptei e can he 'arttil> ise'tire
be requiritg the sottware design to utilize the access capabilities 4such as flight recorders or laboratr> breakotut hoes
for providing the maximum data possible with a ininir'i of redundanci. Also. the data outPut should be selected to
attempt ti enhance autonation of the data anall ss programts that would greatl increase the etfliencs, tl reie sie test
data anti allow more thorough testing with less effirt.

4.3 Test Fnvironment

The requirement that at least part of a validation be performned in a realistic operating environment deitands tile asailailt.
of a real-time simulation of the aircraft and missile environment aid other system elements outside the otperatioinal t ipttling
subsystems. The more a curately the system environment and, in particular. the computing sI-sten interlaces silth otiher
system elements can be represented, the more confidence can b placed in the develh ped solIsare

4.4 Test Disciplines

The complexity of the system and software to be tested requires a formal and disciplined approach to salidaton I ah o
these disciplines should establish organizational policy before test planiting begins so that each project dries not "reimnt the
,.+,teel".

4.5 Test Planning

As much effort should be devoted to tle preparation of good test plans and procedures as was devoted to tile generatitn itl
the performance and design requiretments for the software. These plans and procedures are essential not only ior thorough
testing, but for troubleshooting problems that are detected diring validation -o as to determine the state ot tile sotware
when the problem occurs and ishen it does not.

-_l
a li 41

34-1

IMPLEMENTING HIGH QUALITY SOFTWARE

E J Dowling

Ferranti Computer Systems Ltd
Ty Coch Way, Cwtbran

Gwent, UK

SUIMARY

High quality software is essential in applications such as avionics. Each stage of development 'speciti-
cation, design, etc.) must be validated, but this paper concentrates on the implementation pr,,cess.
Various factors affecting implementation are discussed and some solutions are considered, in particular
the range of tools that is available, and the way they can be applied. A set of tools that has been
developed within FCSL, and the method they are designed to support are described. The trauitional
debug program is shown to be only one part of the whole tool set. Finally, the advantaces and problems
of Ada and its environment (APSE) are discussed.

INTRODUCT ION

Ferranti Computer 5-stems Ltd is part of the Ferranti group of companies, which has a broad range of
interests including avionics hardware and software. FCSL is a major British Ministry of Defence
contractor and part of the work described has been supported by the Procurement Executive of the MoD.
This paper discusses the problems involved in implementing high quality software for applications
such as avionics, and some of the methods and tools developed within FCSL to help overcome these

problems. No claim of originality is made for much of the contents, although the use of some of the
tools seems to be far from universal. Rather, the aim is to consider the problems and some obvious k?)
solutions.

To some extent, the definition of "high quality" software depends on the application to which it is
to he put and possibly subjective judgement. However, the attributes of high quality software will
normally include:

(a) meeting requirements on functionality and performance

(b) cheap t-' produce and maintain

(c) modular

(d) portable

(e) well structured

Many of these qualities depend on stages earlier than implementation, but the implementation proces
can have a dramatic effect on most of them.

The paper is concerned only with the final stages of producing a system - ie. its implementation.
Of course, the earlier stages are just as important if the end result is to be a system that does what
was originally intended. Numerous tools and methods have been developed to help ensure that the
original requirements for the system are understood and fully specified in an unambiguous way. (Dol LIa).

Once such a specification has been produced, similar tools and methods cover the design stage, aiming
for a design that is complete, consistent and conforming to the (. reed specification. A goal for the
future is to have automatic code generation based on formal specifications and designs, but the demands
of real-time systems such as in avionics would seem to make such an approach very questionable.
Htowever, a hybrid scheme based on hand-tuning the automatically generated code could be acceptable.

In g;eneral, these more rigorous methods for the earlier stages of software production appear to offer
promise, but their use in complex,real-time systems, by "average" staff seems to be a thing of the
future. In contrast, this paper is concerned with more practical, or heuristic, methods and tools
for the implementation stage, assuming the design has already been produced and is consistent,
complete, etc. The validity of such assumptions is not questioned here!

THE PROBLEMS

This section of the paper describes the problems associated with producing software for systems
such as those in avionics. The overall aim of course is to ensure that the software meets its
specification (which here is assumed to he correct, well-defined, etc). However, several more specific
aims can be identified.

For the purposes of this discussion, the system will be assumed to consist of concurrent "activities"
which interact dynamically, that is they are tasks/scheduable items/processes, etc. The activities are
made up of "modules" which only interact "statically" (the definition of a module is left deliberately

vague). The overall aim can then be thought of as ensuring that:

(a) each module meets its specification

(b) all modules in an activity fit together properly so that the activity meets its specification

34-2

c) the activities fit together properly to form a system which meets its specification

The above steps represent a natural set of stages in the testing of a system. At each stage, there
will typically be functional requirements for the software to meet, but also performance requirements
such as speed, response time, size etc. Finding whether these requirements are met may be complicated
by several things, for example:

(a) the software runs on a small machine with no "normal" peripherals (backing store, terminal, etc).

(b) the system includes peripherals that are not available yet (or at least not at the site where
it is best for the majority of testing to take place).

(c) the processor itself, or some peripheral, is unreliable (because it itself is still under
development), so that the hardware is being tested as much as the software is, and it is not
always obvious where the fault lies. This sort of problem is clearly most comn within
hardware manufacturing organisations.

(d) the hardware configuration includes multi-processors.

These difficulties may be compounded by factors over which more control should be possible. Such
factors include:

(a) the number of errors introduced during coding

(b) how easy the code is to understand (for debugging)

(c) how well the testing at each stage is carried out, ie. how much confidence there can be at any
level that a new error discovered is at this level and not from a previous level (but did not
get found when testing that level).

The source of these problems can be seen by considering the following example. Given an overall design,
assumed to be "perfect", the software might be implemented in the following way:

(a) detailed designs are produced using flowcharts

(b) the flowcharts are coded into a low level language (assembler), in an unstructured way and
without comments

(c) some module testing is done to make sure each is "roughly right", using a "peek and poke" low level
debugger.

(d real testing is left until the "roughly right" modules are combined i ito much larger units;
again, a low level debugger is used.

Of course, at stage (d) all sorts of static (intra-activity) and dynamic (inter-activity) errors come
to light and have to be isolated, using the low level tools available. Any problems due to lack of
peripherals, faulty hardware, etc. mentioned above only add to the difficulties. In practice, this
hypothetical worst case may well be improved by procedures such as:

(a) code reviews take place to ensure project standards on structure, comments, identifiers, etc.
are observed

(b) each module is tested as fully as possible, perhaps "completely"

(c) each activity is test I statically before any dynamic interaction of activities is investigated

Such procedures raise the worst case to a level at which, no doubt, some systems are produced, but there
are still a lot of problems due (to varying degrees) to:

(a) the use of flowcharts

(b) the use of a low level language

(c) human fallibility in the review processes, and the cost of such effort

(d) the lack of suitable tools for testing

he) the lack of any indication of how well each module has in fact been tested

Again, all these problems are on top of those due to lack of peripherals, etc.

Thus two classes of problems can be identified : those such as lack of peripherals. etc. ("system
problems") and those such as ding errors ("implementa'ion problems"). Even if there are no system
problems at all, the implementation problems may make the software expensive, vet unreliable. Similarly,
system problems will give difficulty no matter how the implementation problems are solved. On the
other hand, the two classes of problems are closely related; for example, if the memory size available
is very restrictive, a low level language for implementation may be unavoidable, no matter how
undesirable this may be.

The following section expands further on these implementation and system problems, and discusses some
possiole solutions to them. A wide range of solutions is covered, but the next section includes details
of a practical subset used within FCSL.

I~ maa.

'4-3

SOME SOLUTIONS

Design Languages

Traditionally, flowcharts have been used for software documentation for both the design and maintenance
phases. There is a strong body of feeling that because of their pictorial nature, they are the best
way of representing the information they are intended to convey. However, recent experiments
(Schneiderman 1982) have shown that of several alternatives available for maintenance documentation.
flowcharts were the least successful for use in understanding existing code. (Having detailed
descriptions of the data areas invoived and the data transformations performed turned out best).

For use as design documentation, produced before the code and on which the code is based, flowcharts
have some serious drawbacks. The basic problem is that it is generally o. at all easy to tell it
the flowchart is well structured; especially since by their nature they tend to spread over several
pages. All too often, the choice can be between coding from the flowchart and unavoidably using a
GOTO, or producing structured code that differs from the flowchart, thereby invalidating perhaps some
of the quality assurance procedures (if the flowchart has been inspected and approved).

Documentation is only of real use if it is up to date and this will be achieved most easily and reliably
if it can be done automatically. Here again flowcharts present difficulties since they are not in a
directly machine-readable form and making modifications and additions requires some quite sophisticated
graphics capabilities.

An alternative to flowcharts is a design language, which may take many forms. Its general purpose is to
represent the logic of the software at a level higher than that of the code itself. The information
conveyed by the design language (DL) my be purely concerned with control flow (ie. the sequence oif

operations to be carried out) or it may include data flow (ie. how specific data is modified by the
software).

Programming languages such as Ada may be used as a DL and such a use allows information on data
encapsulation etc. to be included, as well as automatic checks for consistency etc. to he made. On the
other hand, if only control flow is considvred,a much less formal DL is needed, only requiring the usual
structures such as loops, case statements, conditional statements, etc. The more formal approach allows
automatic checking to take place and possibly direct derivation of source code from the DL (by macro
expansion, for example); a less formal approach makes the DL more flexible, allowing the designer greater
power o expression without the need to worry about rigorous syntax rules if the text i% to be understood
(as opposed to processed) only by a human, not a machine.

Whatever exact form it takes, a good DL has the following advantages, corresponding to the weaknesses
identified in flowcharts;

(a) it is machine readable

(b) it is compact

(c) its form makes it immediately obvious whether the design is well-structured or not (indeed, the
DL need not contain a COTO)

Of course, an unstructured DL design is worse than a structured flowchart and both can be used well or
badly, but the gap between a flowchart and the final code is usually greater than that between the
equivalent DL design and the code. It is this code that is the end-product of the whole activity, and an
approved design in DL has a better chance of resulting in correct, well structured code than does a
flowchart.

Programming Languages

The advantages of high level languages (HLLs) over low level ones (ease of writing, maintaining and
understanding) are well known and need not be expanded upon here. Their disadvantages (resulting in
relatively slow and large programs)are potentially serious in applications such as avionics. However,
the degree of handicap involved depends greatly not only on the efficiency of the compiler, but also on
the quality of the high level language code. Just as most low level languages have associated "tricks"
to obtain optimum efficiency, so there are usually particular ways of using even a standard high level
language to improve performance. Of course, the value of these techniques must be judged against any
loss of clarity they involve (although this might be negligiLle, depending on the methods used; the
"best" way of expressing some logic in an HLL is often the most efficient).

Where even the most efficient HLL-derived code is not fast/small enough, it will be necessary as a last
resort to use low level (assembler) coding. However, even so, the HLL can be considered as the main
implementation language with small parts produced in assembler. Where the HLL permits, the assembler
may be embedded in the HLL source, but it can be segregated or hidden (in dedicated procedures/
subroutines, by macros, etc) so that the reader is presented with uninterrupted high level source. The
parts of the code which would benefit most from use of assembler may be identified by use of a tuning
tool as described below.

More recent HLLs (eg. PASCAL and Ada - more fully discusqed below) offer even greater advantages over
low level languages. Not only do they provide the usual control flow facilities (to allow structured
programming, etc), they also contain strong data typing. Used properly, these facilities should result
in many more errors being found at compile-time rather than during testing (or even later!).
Undoubtedly, getting programs to compile will take longer, but the results are well worthwhile.

34--I

Cde Auditors

11e review process described above can be automated to some extent by the use of code auditors to scan the
source and check adherance to project standards for naming conventions, presence and tor7 of comments, etc.
Of course, the helpfulness and correctness of such comments can only be assessed manuallc. Similarly, there
may well be proiect standards that proscribe certain valid, but undesirable keg. tOTOs) -,r dangerous kin
some way), constructs in the programming language and a code auditor can be used to check for these.
Standards for source layout may best be enforced by using a formatting program (pretty printer) to process
the source (although there are arguments for and against such a tool).

If a sufficiently formal design language is used, similar tools can be used for both design and
implementation sourcc, but in both cases the value of these tools is necessarily limited reg. to checking
if a comment is present, but not whether the comment is useful). Nevertheless, they -an make a significant
contribution to the efficiency and effectiveness of the processes involved.

Static Test Methods And Tools

A variety of methods and tools exist (in various stages of development) for use in the static testing of
programs; all are static in that the software is not executed, but rather the source is analysed in one
way or another. This feature makes static methods largely machine-independent.

Complexity measures, etc. Obtaining a complexity measure for the code is closely related to code auditing,
but since the risk of errors is directly proportional to the complexity of the code, the process is also
useful as part of the testing process, if only to identify the most complex (and therefore most error-prone)
parts of 'he software.

Various techniques have been developed, ranging in sophistication. Simple measures may be based on a count
of the number of particular la .guage features (loops, conditional statements, etc). Alternatively, the
number of "knots" may be counted (ie. the number of times control paths through the code cross). A program
adhering to the usual structured programing rules will contain few knots. If the source is analysed to
obtain its representation as a directed graph (with "blocks" of code as nodes and control flow is arcs),
various node reduction techniques can also be applied.

Formal Proof of Correctness. Given a specification of a program's intended behaviour in a suitable form it
can be possible to prove mathematically that the code meets this specificatnon. Such a proof is obviously
very valuable to have. However, there is still the problem of whether the program when it runs will do what
its source suggests (hardware or software (eg. compiler) errors and limitations may prevent this).
Although some tools have been developed to help, obtaining the formal proof in the first place may well
be more difficult (and so error-prone) than writing the program.

Data Flow Analysis. A relatively common error is anomalous data flow (usually reading from a variable
before it has had a value assigned to it), although this is perhaps more likely to happen by accident in
languages allowing implicit variable declarations (eg. FORTRAN). Data flow analysis aims to identifv
such errors, although it is usually better done by the compiler than a separate tool (a remark that
applies to several other techniques).

A conmmon problem with static methods is that of aliasing and variable equality. For example, consider
the code

PROCEDURE (1,J);
A[I]:= O;
K := A[J];

If within PROCEDURE, J is set equal to I, Afil is defined and there is no error. However (in the absence
of any similar code elsewhere), if J is not set up within PROCEDURE, the assignment to F is invalid.
A data flow analyser must make some decision about whether to flag this code as erroneous (although in
this case it could be argued that the code deserves to be questioned because of its obscurity). The form
of procedure call in some languages (eg. Ada) helps in this area.

Symbolic Execution. Symbolic execution involves obtaining values of variables in terms of symbolic
rather than numeric, input values. So after symbolic execution, each variable has a value that is an
algebraic expression, usually involving predicates. As mentioned above,aliasing and variable equality
can cause difficulties, and together with conditional statements, loops, etc., can result in very complex
symbolic values being obtained, even with quite sophisticated tools. Such values are clearly difficult
to check.

Symbolic execution can also be useful in the generation of test data (for dynamic testing). By calculating
what conditions have to be met for various parts of the code to be reached, the space of input values
can be partitioned into domains, each corresponding to a path through the code. Taking one set of values
from each domain thus ensures all paths are followed. Infeasible paths are identified by the corresponding
domain being null. Again, in practice serious problems may be caused by complex conditions, loops,
aliasing, etc.

Path Counting. Counting the nuaber of paths through a program gives a complexity measure as described
above, but identifying the paths has another purpose : used in conjunction with data on which paths have
been tested, the information can be used to obtain a test coverage measure (see below).

In its true sense, the path is not a very practical unit. For example, consider the code

27 loop while <condition 1,
28 <code'
29 if <condition 2> then
30 :consequence,

t

34-5

31 end if
32 <code'
33 end loop

There are two paths between lines 28 and 32, but suppose the logic is such that the loop body may be

executed any number of times from I to 100 inclusive. The number of paths from line 27 to line 33 is
then

100
2
i

(1103°)
i=l

This sort of combinatorial explosion of paths makes them impractical for most uses and various more

pragmatic approaches have been developed, relying on slightly different concepts. For example, instead
of a path, an LCS' (linear code sequence and jump) may be used (Woodward 1980). Each LCSAJ is a triple

(start point, end point, destination)

such that all code between the start and end points is contiguous and is executed exactly once if the LCSAJ

is executed. At the end point, a jump to the destination takes place. Thus, for example, the LCSAJs in
the code above are

(27, 27, 34) -- 'condition 1> false
(27, 29, 32) -- 'condition I> true,<condition 21 false
(27, 33, 27) -- <condition I> and'condition 21 true
(32, 33, 27) -- 'condition I> true,<condition 2, false

- ie. 4 LCSAJs, but 1030 paths. Note that the paths can be generated by c~ncatenating LCSAJs, or "pseudo-

paths" of length N can be obtained by concatenating N LCSAJs.

Dynamic Test Methods And Tools

Dynamic test methods are characterised by the software under test being actually run (either on the machine
for which it is aimed or on some host - see below). They are thus the most well-known and "natural" of

methods, but are largely machine-dependent.

Debugger. A debugger is part of virtually every set of testing tools. Indeed, traditionally the debugger

is the tool set, blurring the quite clear-cut distinction between testing and debugging discussed below.
-owever, even in a "good" tool set, a debugger is a very valuable asset, to provide facilities such as:

(a) breakpoints

(b) "peek and poke"

(c) traces of variable values and flow of control

The user interface should be at a high level - ie. using source lanuage variables, etc.

Test Harness. Typically, a test harness provides a controlled environment to "slot in" the software being

tested. It may provide such facilities as setting up initial variable values and comparing final values
with expected results, error handling, I/O etc. The associated action of stub generation may be carried
out by the test harness or a different tool, but together the facilities allow an incomplete (in some
sense) piece of software to be tested in a well-controlled way.

Test Data Generator. Test data can be automatically generated in scveral ways. For example, if the user
specifies the possible ranges of each variable's values, the tool may make a random selection from each
range (although this will not of course test the programs behaviour with invalid inputs). This data is

therefore primarily derived from the program's specification. Alternatively, the source of the program
may be analysed (as discussed above) to automatically generate data to cause each "path" in the code to
be tested. Generally, even if the input data is produced automatically, the user must still work out
the corresponding expected output.

Assertions. At various points in the code, assertions about the expected value of a particular variable
are possi-ble and knowing whether the assertion is true or false can give useful information. As

originally defined, assertions were a language feature of Ada, but they may also be implemented by, for
example, inserting them as special comments, acted upon by a pre-processor to convert them to the

necessary code.

Testing Measures. Of vital importance in a well-planned testing strategy is information on exactly what

has been achieved at each stage of testing. Knowing that all tests have worked is of little value

without knowing if this means 100% of the code has been tested, or only 10%. Several different measures
have been proposed, but for each the basic process is:

(a) the software is analysed to identify paths etc. within it (see above)

(b) as the tests are run, execution histories are generated, giving information on the paths etc.
followed. These are then processed in conjunction with the static analysis data.

34-i'

Mutation. An alternative approach involves making mi or changes to the code beg. rspa, iv, . -

to dl iherately produce incorrect Mutar.t s of the tpr.surmably correct original. The sxisting, t.s:, or,
then run oil the mutant and should of course tail. If thev do not, then either tire mutant is qi,'a:, t
to tile original, or the test set needs ellhancement. Mutants of the mutants can also be used, .t - i -,us
problems due to the number of files to be handled can easily arise. 'roducing mutants in this wa, is a
methodical forr - the more general "bebugging" technique of deliberate, i ntroducing errors.

A Software Validation Stratt._.

Ine two sub-sections above hive a brief outlinn of some of the tools and methods available. fi I
are by no means exhaustive and variations and hybrid forms are possible, but the position of the debugger
as just one, albeit important, tool in the complete set is emphasised. However, a comprehensive tool set
is only part of the answer; a dis, iplined method for using the tools is also needed.

So far in this paper, the term "testing" has been used rather loosely, as indeed it and "debugging" tend
to be. However, the general pro,ess of software validation (making sure it does what it is supposed to)
can be considered to consist 'I four dist inct act ivit ies:

(a) testing - finding if the sofiwarc is functionally correct tie. does it do what is should, or are
there errors?)

r.;) dehuggiug - orce an error has seen discovered by testing, finding exactly what and where the error is

kc) coverage analysis - ensuring the testing that has been done is thorough enough. The decision on
what is "thororgh enough" will depend on the application. For example, it might be considered

unnecessarilv xpensive to test all paths in a simple utility, but ssential to do this for ain
auto-loader.

(d) tuning - deciding if any performance criteria on size, speed etc. are met and making any necessary
chairges to meet these.

The tools and methods described above broadly correspond to one of these activities, although some can be
considered as being useful in several stages. Examples are:

testing - test harness, symb,,lic execution

debugging - debugger, data flow analysis

coverage analysis- testing measures, mutation

No tuning tools are explicitly included in the lists, hut obtai .ing the size of a piece of sottware is
clearly very straightforward. Predicting its execution time (as opposed to measuring it) is fairly
difficult if a real-time supervisor of some kind is involved, or the hardware includes cache memory, pipe-
lining, etc. However, a broad indication can be obtained by analysing the corresponding machine code.
In practice, tuning is probably best left until the later stages of development, when the execution
histories used for testing measurement, or data from the supervisor, etc. can be used to identify the
"hot spots" that would benefit most from re-coding, the example.

Using the tools discussed, a valuable strategy is described below. The essence eo it is that the validation
takes place in stages (in the traditional bottom-up or top-doan way), with each stage being fully validated
before the next is started. Thus the system is gradually built up from "building blocks", each of which
has been thoroughly tested and so can be trusted. The source of 'v problem at a particular stage should
thn be obvious. Without such al approach, a failure at the end of the integration process -ould be
caused by an undetected error internal to the very first unit tested,. In practice, if it is infeasible
to test all paths in all units, it is at least very valuable to have information on whi h parts of each
are untested).

To suimarise, the strategy involves using full validated units at each stage, so that any error occurring
is almnost certain to be in the latest unit added or be an interface problem, but not something i.,teral
to previous units. For each unit, the strategy is

(a) Obtain an initial set of test data (manually or automatically)

(b) run the tests

(c) if necessary, perform debugging, modify source and re-run tests

id) when all tests succeed, perform covetage analysis

(e) if necessary, extend test set, using information on untested paths, etc

(f) run new tests, correct any new errors found, perform coverage analysis again and rep.at until
coverage is sufficient

Note that an abs lutely essential part of the whole strategy is the coverage analysis, allowing the user to
know when each stage is complete.. The strategy outlined extends equally well to the problem of mut li-

activity real-time systems. Each activity can be validated in isolation in the way described, resulting
in a set of "trusted" units. These can then be incorporated into the final system' including the supervisor,
one at a time (if possible). Any problems are then almost certainly confined to activity interaction,

4 rather than being some previously undiscovered internal error and should be relatively easy to isolate.

This strategy is an obvious one, but its success in practice almost certainly depends on having tools for
coverage analysis. Without these, it is a laborious process for the programmer to check whrih paths his

tests hase executed, and the temptation to go on to tile next stage ! ro soon is great. Furtherrmre, there

34-7

is unlikely to be any evidence available for his supervisor to examine to decide if procedures are being
following correctly.

The approach outlined above, if followed rigorously, should result in the great majority of errors in the
software being found as soon as possible. However, no scheme based on tests derived from code can be
fully effective since of course it cannot test what is not there. Thus if a whole area of code (eg. to
cater for some particular circumstance) has been omitted, it will be possible for all paths in the existing
code to be tested fully and perfectly, but for the software to be virtutally useless. Zimilarly, it may be
perfect for all valid inputs, but contain no code for out-of-range values. Path coverage techniques will
not detect this. In addition, there is a wide spectrum of programs between the "perfect" and the

"completely wrong" (Scowen 1982).

One solution to this is to use specification-driven rather than code-driven test data. To do this
automatically requires a more formal specification than may usually be available, but in practice the
test data the user thinks of himself will be specification-based, while that prompted by information on
untested paths will be code-based. A set of tests initially derived by the user in the "traditional"
way (ie. by trying to think of all the cases that need to be tested), and then augmented by those
suggested by coverage analysis tools is likely to be the most successful.

As long as these deficiencies are recognised and having the required proportion of paths tested does not
give a false sense of security, the strategy described should prove succesaful - certainly more so than
relying on less firmly-based schemes. Testing all paths means the software may have been fully tested;
not testing them means it certainly has not. Thus it is a necessary, if not sufficient, activity.

Host/Target Development

For avionic and other embedded systems, the target machine rarely has the program generation facilities
needed and a host/target approach is required. The target may be completely independent of the host,
or there may be a physical link between the two, enabling them to communicate. The host and target may
have compatible machine codes, or more likely, be completely different machines.

Whatever host/target arrangement is used, the bulk of software validation can be carried out on the host
(if, of course, it has suitable facilities). Errors in the software can be classified as machine-
dependent or independent. The vast majority will usually be machine-independent (errors in logic, mis-
matching interfaces, etc.); only a minority will be machine-dependent (usually connected with problems
in other target software, etc). Thus perhaps 90% or more of errors can be found on the host, but final
testing must always take place on the target. If software that has been fully (as possible) validated
on the host fails when it is run on the target, this points to a machine-dependent problem such as
differing word lengths, etc.

Using just the host, machine-independent errors can be found by running the software on the host and
validating it there (this requires a compiler capable of generating code for both machines).
Alternatively, an emulator can be used. This usually imposes considerable time overheads, but can help
detect some target-dependent errors (overflow, compiler errors, etc). Clearly, problems caused by
dynamic interaction of tasks, etc are unlikely to be satisfacorily solved by using just the host.

If a linked target is used, validation can take place on the target, but under the control of the host.
Typically, all pre- and post- processing takes place on the host, with testing and debugging tools
running on the host, but communicating with the software under test running on the target.

If a linked target is not ceailable, the difficulties increase significantly. Facilities may then be
limited to obtaining a binary post mortem, or using hardware logic analysers. Some help may be given by
host tools to analyse the post mortem dump (giving hifh level output) or provide lists to equate machine-
level addresses with high level source variables, but doing as much as possible to validate the software
on the host becomes even more important.

Solving "System Problems"

By definition, design languages, high level programing languages, a comprehensive tool set including
coverage analysis facilities and a well-defined rigorous method of using them solve most of the
"implementation problems" identified in the first section. They can also give signifitant help with
"system problems", as indicated below:

(a) small target without peripherals- the only real answer here is to use a sufficiently powerful

host liv.ed to the target and then adopt a strategy as described above.

(b) "exotic" peripherals - a simulator for these must be used in their absence. Producing such a
simulator may itself be a complex task, but the tools and techniques can be applied to the
simulator just as to the "real" system. Alternatively, the test harness/stub generator may provide
facilities that make the work required minimal. Once a simulator is available, it can be used to
help fully test the rest of the system. When the real peripheral is finally included, any errors

should be confined to those caused by discrepancies between the real and simulated actions, and
should thus be relatively easy to track down, given the confidence in the rest of the software
that a rigorous approach should have provided. Dynamic behaviour of the peripheral may be a
s,urce of difficulty, but again the user is in the strongest position if he has full tested the
software with the simulator and has confidence in it, at least "statically".

(c) Unreliable hardware - without software in which the user has (well-foinded, documented) confidence,
the question of whether the hardware or the software is to blame is a difficult one. As well as
the necessary tools, etc some reliable hardware is needed for software testing, possibly a host
computer with a target emulator so that use of the target computer is delayed as much as possible.
The problem of faulty periphcrals and the initial use of a peripheral simulator is closely related

= - -- - -. = - ,, nm m,,, m u nn~u ~ m unmla~nl l l- el~

14-k

to that discussed above, although the cost-effectiveness of simulating an ova,iab[1, .rp ri":
be judg ed in thI light of the expected problems from it.

Id) multi-processor configurations - the first stage for such systems must toe to fully test t*,, .,ie
for each processor, perhaps treating others as peripherals and simulating them. If 'ssinl. tle
code fr each processor can then be tested on the actual Larget hardware (if a hlost has een ued
for the first stage). Final testing of the complete system should then be primarilv cuctrnc
with isolating dynamic, interaction problems. The system may be such that e.cn processor ;ia, its
own supervisor, or there may be one for the whole configuration. The wnsoitoring facilities.'
the supervisor(s) - if any - can be used at this stage.

one of the difficulties comdn to a lot of "system problems" is that of dynamic interacticu ,i p.riPheral,
processors, activities, etc). Testing on anything but the final system is unlikely to sol, a lot o
these problems (so using a host, with or without a target emulator, or a peripheral simulator is onil a
partial solution). The approach must still be to carry out as much "static" testing as possible so t.it

only problems of interaction are likely to remain. When these problems appear, the requirement is i,,r a
tool whose use does not significantly affect the dynamic behaviour of the code kfor obvious reasons).
In addition, it is likely to he the final system that is being investigated, so the presence of a host-
target link canit he relied upon.

With the final system, the testing activity is essentially "using" the system (although not ncessarily
flying it!) so the need is not solmuch for testing aids as for debugging ones. Target hardware -etc incilud
the facility to trap a write (or read) access to a particular data word and this may be of use in detect -ug
when, for example, unexpected values appear in variables. A hardware logic anal yser may he of use in h,
same way. Alternatively, a simply t'ol for setting breakpoints and "peeking and poking" might be used
(but probably with a low-level interface because of the nature of the final system). Dependin on toi,
system, the supervisor may provide rmoitoring facilities which give adequate information tagain, prohably
at a low level).

In the final system, the facilities available will almost certainly be significantly worse than at tarly
stages leg. when a host is available) and new problems are introduced eg. at a breakp,int. what happenis
to other processors/activities - fustcan they continue?). Thus it is highly undesirable to hare to 01, back
to find and correct an error totally "internal" to an activity, etc. because this was overlooked earlier.
Once again, the value of a rigorous strategy is obvious.

Summary

This section has described some of the ,ays the problems (system and implementati,) id ntitiid is the-
previous section can bto tackled, without claiming it b, in aly was exhaustiv,. Matn- diiter,nt appra.hes
and methods are possible, but suIccessful ines are likeiy to lollow the same broad lints:

(a) the number of errors introdiced in the first place is reduced by using a high losel language whtere-
every possible.

hb) a well-defined validation strategy is employed, involving full testing of each stage bef,rv eoisc
on t,, the next, and supported by a comprehensive set of tools. In particular. coverage analvsis
tools are available.

(t) where possible/necessary a host/tarc:et approach is adopted, with the power of fi h,,st fulls exploit'd,

Tie use of code auditors and a design language may also be included to help reduce th, number of errors
present .

fhe importance of a good tool set for testing etc. seems to be generally recognised today (although tle
Stoneman specification tD,tD lP0hb i. a step backwariu in this area - see below), but coverage analysis is
pterhaps less widely accepted. Ctrtais)s, smv pra, tical alternative to "true" paths i neded .s eel! as

in'vestmentt both in pr'dtucig the tsP' .mnd in their tsc, since fite eflrt trlittey) spett in the earls stages
o)f test ing (atid possibly overall' is likely o he :tigher than in a ''traditional'' approach. Howeser , gisctt

the recognised importance of testing as a proportion of the overall life-cycle activity, and the fact that
the later an error is detected, the mr'e expensive it is to correct, the value of being able to adopt a
rigorous approach is obvious.

TOOLS AND METItODS WITIIIN FERRANTI

This section lescribes some of the tools and methods that hove been developed within FCSL for use with
embedded systems. They are not the only tools used, but do form a set conforming to the ideas outlined
ahove. Two quite different Ferranti machines are used as targets in host/target configurations, the FI"Ot
124-bit mini) and the ARGUS M7OO (lb-bit mini). For the FIbOO, a DEC VAX 11 780 is used as host, and tor
the MYOO, a code-compatible machine from the ARGUS 700 range. Future developments will probably include
tools for a VAX/M/TX system and ossibly a VAX/F1OO (lb-bit micro) system. All targets are linked t,
their respective host.

All these targets are similar in that the primary programming language is CORAL (the ALGOL 60 - like
standard British ,MoD high level language)(BSI 1980)with real-time systems using the MASCOT methodology
and supervisor iMSA 1 480). The following paragraphs describe the VAX/FIbO0 tool set and the ARGUS 7uO M7tl
approach Is broadly similar.

FCSL is not primarily a research organisation nor a software house, and the tools produced had to be of
industrial standard (robust, etc), with documentation (user and technical) meeting exacting standards.
In line with FCSL's status as an approved contractor under British MoD Defence Standard O5-2i. rigorous
uality assurance procedures were applied during all development stages and these also tended to increase

;4-9

the effort needed. Within these and financial constraints, the aim was to produce a set ,tools directed
mainly at the "static" testing of MASCOT activities, relying on the MASCOT monitoring fa- ties to hei
with any interaction problems (enhancements of these to include tuning aids etc are planned), Thus the
tools form a basic set which it is intended to extend in the future.

The tools produced are:

(a) Database Generator

(b) Unit Driver

(c) Debug Extension to Unit Driver

(d) FIXPAC Extension to Unit Driver

(e) CORAL Instrumenter

(f) Path Analyser

The relationship of these tools to each other and to other s'.;tem software is shown in Figure I

Database Generator

This tool takes data from the CORAL compiler and the linker and produces from them the database needed
by the Unit Driver (see below). More than one compiler output and more than one linker output can he
combined, so that the software under test (SUT) can be compiled in several units, and partial linking
is also catered for.

The information from the compiler typically gives each variable's CORAl. identifier, data such as its
numbertype, dimensions (for arrays), etc., and its address (in intermediate form). The linker intormation
is used to convert the intermediate form addresses to machine addresses (relocatable). (For the ARG;US
version, the compiler-generated information is not available so the tool extracts this itself irom the
CORAL source of the SUT).

Unit Driver

he I'nit Driver acts as a driver/ltest harness. It is kept entirely itidept.<dent of the SiT fie. not linked
in with it) and allows the user to specify the entry point to the SUT, set up initial values and compare
final values with expected ones (to an optional tolerance).

All reading/writing of values is done using CORAL. identifiers and the tool makes validi'y checks on scoping,
numbertypes, subscript ranges, etc. To help with integration testing, etc., the user man insert a
breakpoint at the start and/or end of a procedure (and then examine values passed, set Lip values to be
to be returned, etc).

Debug Extension To Unit Driver

The Debug Extension to the Unit Driver is an "optional extra" providing debugging facilities such as
breakpoints (specified by CORAL source line number), examining and setting variable values, tracing
successive values of a specified variable, "protecting" a variable (so that if its value ever changes
the effect is as if a breakpoint had been hit), and tracing flow of control (in terms of source line
numbers). Again, all variable references use CORAL identifiers, with validity checks made by the tool.

To maximise commonality and portability between the two distinct systems (%AXF16OO and ARGUS 700/M700),
and because of problems caused by trying to "graft on" these tools on top of well-established other
software (compilers etc) at minimum cost, an implementation that relies on a modified version of the source
for debugging has been adopted. However, in contrast, no modification at all is needed to run just
the Driver. The required changes are made automatically by the Instrumenter (see below).

FIXPAC Extension To Unit Driver

FIXPAC is the FlbOO assembler language and only the VAX/FI6OO version of the Driver has this option.
It is intended to provide a common user interface (coxmmand format, layout of results, etc) for testing
at high and low levels. Thus ,f a system is primarily CORAL, but has sections of FIXPAC for efficiency
reasons, only one tool need be used for all of it, rather than two distinct ones. The facilities
offered are broadly the same as at the CORAL level, except that breakpoints may be inserted anywhere
(this is the only debugging facility at the FIXPAC level since the Debug Extension is purely CORAL-based).

CORAL Instrumenter

As mentioned above, the Debug Extension relies on modifications to the SUT source (essentially, insertion
of calls to the Debug Extension). The Path Analyser, described below, needs similar, but different,
modifications and the Instrumenter has different modes to perform either or both of these actions. In
both cases, the extra calls are added in such a way as to leave the functionality of the SUT unchanged
(if necessary, introducing extra BEGINs and ENts, etc). Of course, the dynamic behaviour of the SIT
is changed by the extra calls, but given the intended use of instrumented code, this does not present
a problem.

The instrumenter produces listings of the source it processes (without modifications), giving line numbers
and other information which form part of the user interface for the Debug Extension and Path Analyser.
As an additional operation, in path analysis mode only, the Instrumenter analyses the source to identify
"paths" etc and generate a static analysis data file for use by the Path Analyser.

34-10

Path Analyser

The Path Analyser takes as input the static analysis data from the Instrumenter and execution histories
generated (by the calls inserted by the Instrumenter) by the SIT as it runs. It uses those to give
information on:

(a) the code tested and untested

(b) the "sub-paths" tested and untested

(c) the proportion of "sub-paths" tested

(d) the comparisons made and the results of these comparisons

The basic path analysis unit used is the "sub-path module" (SPM) which is the well-kaown "basic block"
(ie. code with 'one entry and one eixt point and no internal branches, loops etc.). A contiguous set of
SPMs forms a "sub-path", which is essentially an LCSAJ without the inforiuation on the destina-ion ,f the
jump at the end of the linear code sequence. This concept has been chosen as in interim measure, based
on cost and speed of implementation, etc., but it is hoped to extend the tools to use LCSAJs eventually.

The following example illustrates the way SPMs are used and their relationship with LCS.li.

SPM No line no

I start

1 2

3 if then
2 4

5 else
3 6

7 end if

4 8

9 if then
5 10

II if then

6 12
13 end if

7 14

15 else

8 lb

17 end if

9 18

19 finish

LCSAJ Sub-path

(1 3 5) 1
(1 4 7) 1 2

(5 9 15) 3 4

(5 11 13) 3 4 5

(5 14 17) 3 4 5 6 7

(7 9 15) 4

(7 11 13) 4 5

(7 14 17) 4 5 6 7
(13 14 17) 7

(15 19 -) 8 9

(17 19 - 1 9

Sub-paths and LCSAJs represent a practical alternative to true paths for use in coverage measurement

since they do not suffer from the combinatorial explosion associated with loops etc. On the other hand,

they are "weaker" in that all sub-paths being tested may mean only a small proportion of the paths are.
LCSAJs are better than sub-paths in that, if required, they can be concatenated to derive some, or all,

paths (perhaps by means of a connectivity matrix indicating how LCSAJs are inter-connected).

The information given by the Path Analyser is at different levels, since clearly all code can be tested

without all sub-paths being, and all sub-paths can be tested without all comparisons being fully tested.

For example, in the code

if C1 or C2 then end if

suppose C2 had erroneously been coded to always fail (eg. "RANCE'O"), All sub-paths could be tested by

having C1 first succeed and then fail, without ever detecting the error in C2. However, having all

comparisons tested in both states does not ensure all sub-paths are tested, since clearly for code such as

if Cl then end if

if C2 then end if

a test giving both Cl and C2 true, and a second giving them both false, fully test the comparisons,

but only half the sub-paths. The aim must therefore be to have all sub-paths and all comparisons

fully tested.

. .. L.... I.

34-11

Use of Tools

The toolF are designed to support a strategy similar to the one outlined above, ie. based on fully
testing e-sch unit before going on to the next. They are also designed to allow activities for MASCOT
systems to be fully tested "statically" before incorporating them into the real-time system. At that
stage, the monitoring facilities of the MASCOT Kernel (supervisor) come into play. However, some
of the debugging facilities, for example, may be used as well as, or instead of (in a non-AASCOT system),
the Kernel monitoring.

The distinction between testing and debugging is reflected in the tools. Testing tells the user if the
software works and quality assurance procedures require evidence of this. It may also be felt that
testing software then re-compiling it is not acceptable.Thus testing is a "permanent" activity to be
carried out on "production" code. The Unit Driver supports this approach.

In contrast, debugging is a transitory activity, of no interest at all to anyone other than the
programmer responsible for it; all anyone else wants to know is whether the code now works, ie. they
are concerned with testing. Once a bug has been found and fixed, as demonstrated by testing, there need
be no record of the debugging activity (except perhaps for statistics gathering, etc), Since the
tools are aimed primarily at detecting static, logical errors rather than dynamic ones, the fact that
code is instrumented for debugging is irrelevant (the method of use described below takes -are of errors
introduced by instrumentation, if any, and of those removed by it, eg. by introducing new compiler
optimisation boundaries).

The general outline of the method is given below, although several variations are possible

(a) the software under test (SUT) is coded in CORAL, based on designs produced using a semi-formal
design language (with associated tools planned to generate flowcharts from the design language
where contractual obligations make this necessary)

(b) an initial set of tests (in the form of Unit Driver commands to set up and compare values) is
derived

(Q) the SUT source is instrumented for debugging in asticipation that this will he nee,.ed

(d) the tests are run and debugging takes place

(e) the SUT is instrumented for path analysis (this could have been done at (c);

(f) the tests are re-run on this version of the SUT

(g) the Path Analyser is used to obtain information on the sub-paths etc tested/not testcd

(h) if the required coverage level has not been attained, the information on parts untested is
used to augment the test set

(i) the new tests are run, on the version allowing debugging if necessary

(j) when all the new tests work, the execution history associated with them is used together
with that from the original tests (which need not be re-run if no significant changes to thy
SUT have been made) as input for a re-run of the Path Analyser

k) the process of augmenting the test set continues until the required level of testing is achieved

Mi) the full test set is run on the uninstrumented version of the SUT. If errors appear how the cause
is almost certainly a system software problem.

When each unit has been tested like this it can assume a "trusted" position and be integrated in a top-
down or bottom-up way. If full testing is not practical, or possible, at least the Path Analyser

output is available to identify the parts untested and thus indicate the most likely source of any error.
Of course, the cost of this level of testing in the early production phases is relatively high;
the saving can be expected towards the end of production and during maintenance.

Host/Target Development

As stated, development is based on host/target linked systems. Currently, the split between machines
for the VAX/Fl600 system is:

Compiler host
Linker host
Database Generator host
Unit Driver (plus extensions) target
Instrusenter host
Path Analyser host

That is, all activities except testing and debugging take place on the host. The SUT executible image
is loaded via the link; the river is available from target backing store but accepts commands from
a host terminal or a command file loaded onto target backing store from the host. Similarly, Driver
output may be direct to a host terminal, or to a target file, later transferred. Execution historic-
are built up in target files then transferred. (Arrangements for the ARGUS 700/M700 system need to be
different since with the ystem used the target has no backing store),

34-12

Ada AND AN APSE

this final section discusses briefly the likely impact of Ada (DoD llSOa) and its cnviron'ment, Ada
l'rograsmming Support Environment APSE). The title of the section reflects the fact that thinking
of the APSE is wrong; not even the minimal APSE (MAPSE) is a single entity since at least four different
ones are under development (CSC 1981, Dol 1981b, Intermetrics 1981, Olivetti 1982, Softech 1951,
Texas, 1981). By definition, every APSE is infinitely extensible. so any of the tools described above
could be included. Unfortunately, the Stoneman document specifies only a debugger for the MAPSE
(although with an Ada-level user interface of course), which tends to perpetuate the rather woolly thinking
on testing/debugging, especially since most MAPSE designs seem to clo-sely follow Stoneman in this area.

The introduction of new compilers etc. provides god opportunities for planning ahead for testing tools.
For example, the instrumentation, static analysis and extraction of variable information done by
separate Ferranti tools as described above would in fact be much better done inside the compiler.
Indeed, the complexity of Ada compared to CORAl., for example, may well mean this is the only practical
way. Similarly, the trend towards a standard compiler front-end with a back-end for each target "bolted on"
removes the need for instrumentation to be at the source level to achieve portability. Unfortunately,
while no published designs seems to preclude such developments, there is little evidence that the
potential has been exploited (no doubt for very good reasons of time and money at this stage). However,
at least all compilers and linkers in an APSE should provide the necessary data for the MAPSE debugger
and this may be of use for other tools.

Although Stoneman and the corresponding published .MAPSE designs provide very limited tools as they stand
(eg. only one (CSC L1) even considers a coverage measurement tool which is the keystone of the
strategies outlined above), there can be hope that the opportunities have not been completely lost.
However, it will be up to APSE tool suppliers to fill the gaps left by Stoneman. More positively from
the point of view of implementing high quality software, the Ada language itself and the parts of the
MAPSE concerned with consistency checking do provide some help.

The strong typing of the language, if used properly, should result in there being a lot fewer errors
for tools to deal with. Similarly, the data encapsulation facilities should help reduce problems caused
by erroneous accessing of data (if it :s encapsulated and made invisibly, the compiler will fail illegal
accesses). Thus data structuring should be made easier. The separate compilation features leg, being
able to use a package when its specification, but not its body, is available) support a step-by-step
development strategy. Exceptions provide a well-defined error handling mechanism (although the presence
and position of the exception handler is a factor that may affect the quality of the software(.
The MAPSE will ensure that if one compilation makes re-compilation of another unit necessary, this
takes place (possibly automatically), and that inconsistent units cannot be linked to produce an
erroneous executable image.

Unfortunately, most of these features depend on positive action by the progranmier/designer to use them.
Code auditors may be a possibility to ensure some adherance to project standards on such matters, but
it is by no means obvious that this can be done effectively. A general problem will be that of
educating users about not just the syntax and semantics of Ada but more importantly the ideas behind
its structures - ie. not just how, but why. Many of the ideas may be unfamiliar to many programmers
and so many i.nitial programs will contain errors. The compiler will trap illegal programs, but problems
arise with leeal programs that do not do what the user expects. Similarly, more ,r less by trial and
error, users llsy hit upon a small subset of Ada that they can get to work (or at least, most of the
time it does), but which does not exploit the power that is there or thea to use.

Many of the features of Ada are not in fact very new, even if they may be to many users. One that is,
is tasking and special tools for this area may be needed. For example, a tool to provide information
on the dynamic interaction of tasks at run-time, along the lines of MASCOT monitoring leg. a record of
each task's status, indicating when it was suspended, the rendezvous taking place, the entry points
called, etc). Obviously, such a tool would be intimately connected with the run time system. (of course,
a real-time system written in Ada need not use tasking; the supervisor and activities could 'e produced
in Ada just as they currently are in some other language).

The basic requirements for tools for the APSE are no different to those for current languages (except
for some Ada-specific facilities to deal with unhandled exceptions etc. during testing), but its
undoubted complexity makes it important that a full set of tools should be available (certainly more

than the MAPSE's debugger). The same methods of building systems with proven units apply and the almost
inevitable use of a host/target approach with a powerful host should remove most constraints of size etc.
on the tools. On the other hand, the host/target scheme does suffer from the problems outlined above
(since final testing must take place on the target) and there must b tools in the APSE to help in this
area; they must not be confined to those designed for use on the host only.

To summarise. Ada on its own will not intrinsically lead to higher quality software since it may be
misused). However, if its potential is fully exploited, great advances may be possible. Of at least
equal importance will be an APSE with an adequate set of tools for software validation. Given those
facilities, and a suitable method for using them, a major step forward should be achieved,

CONCLUS ION

As discussed above, the two classes of problems that occur during the production of avionics (and other)
software - "system" and "implementation" - can both be alleviated by the methodical use of a
,omprehensive tool set, ideally together with design languages and high level programming languages.

A large variety of such tools, static and dynamic, are possible and those described that are used within
Verranti form one workable subset. A key feature is the information, available to the programmer and his
supervisor, on what has or has not been tested.I

34-13

The host/target approach is also an important one, especially for avionics software, and its relevanc,
can only increase with the introduction of Ada and an APSE. These will not in themselves be a
"philosopher's stone" to solve all problems, but if the APSE contains the right tools and the

facilties of Ada are fully exploited they should together allow significant advances in the drive or

high quality software.

REFERENCES

General

Most computing journals regularly carry papers on various aspects of software validation. A publication
devoted to the subject is

"Testing Techniques Newsletter". Software Research Associates, San Francisco, USA.

Other periodicals occasionally have issues with a collection of papers on the topic, eg.

"IEEE Transactions On Software Engineering", Vol. SE-6, No.3, May 1980.

A wide range of techniques is discussed (and a comprehensive set of references given) in

"Infotech State Of The Art Report : Software Testing". 1979.

Infotech International Ltd. Maindenhead, UK

Myers. 1979. "The Art Of Software Testing". Wiley. New York.

Individual

BSI. 1980 "Computer Programming Language CORAL 66". BS5905. British Standards Institution, London.

CSC. 1981. Documents produced under Contract F3OO2-80-C-0292 for the USAF Ada Integrated Environment.
Computer Sciences Corporation et al.

DoD. 198Ua. "Reference Manual For The Ada Programming Language". US Dept. of Defense.

DoD. 1980b. "Requirements For Ada Programming Support Environments - Stoneman". US Dept. of D fense.

Dol. 1981a. "Ada-Based System Development Methodology. Study Report". UK Dept. of Industry.

Dol. 1981b. "United Kingdom Ada Study. Final Technical Report" UK Dept. of Industry.

Intermetrics. 1981. Documents produced under Contract F30602-80-C-0291 for the USAF Ada Integrated
Environment. Intermetrics Inc. et al.

MSA. 1980. "The Official Handbook Of MASCOT". Mascot Suppliers Association.
At UK Ministry of Defence, Malvern.

Olivetti. 1982. "Portable Ada Programming System. Global Design Report". Olivetti, Pisa, Italy.

Schneiderman, B. 1982. "Control Flow And Data Structure Documentation : Two Experiments".
Comm. ACM, Vol. 25, No. I (January 1982).

Scowen, RS et al. 1982. "Seven Sorts Of Program" SIGPLAN Notices, Vol. 17, No. 3 (March, 1982).

SofTech. 1981. Documents produced uader Contract DAAK80-80-C-0507
for the US Army Ada Language System, Softech Inc.

Texas 1981. Documents produced under Contract F30302-80-C-0293
for the USAF Ada Integrated Environment. Texas Instruments Inc.

Woodward, MR et al. 1980. "Experience With Path Analysis And Testing Of Programs".
IEEE Transaction On Software Engineering, Vol. SE-h, No.3 (May 1980).

.1

J4- 14

CORAL
Source

IIta i

Anal sisFIgst ure Ie

Da

LA QLALITE DES LOGICIELS AVIGNIQUES: SPECIFICATION ET EVALUATION

G. GERMAIN M. GALINIER
M. DELACROIX

INSTITUT DE GENIE LOGICIEL

46, rue de Provence

75009 PARIS

FRANCE

1. INTRODUCTION.

Dans la plupart des domaines industriels, 1i6valuation syst~matique de ia qualit6

est maintenant une tradition, des normes existent, des organismes de contr6le qualit6

interviennent. L'industrie du logiciel exhibe g~n~ralement dans ce domaine un retard

certain, retard 10 essentiellersent aux facteurs suivants

- is discipline eat loin d'avoir atteint sa maturit6

- la nt~cessit(d'une Evaluation de la qualit6 est r~cente

- le logiciel est un produit complexe

- le logiciel eat un produit qui Wa pas d'apparence physique et l'6quivalent du

pied A coulisse ou de l'oscilloscope ne sont pas plus faciles A concevoir que leg carac-

t6ristiques a contr~ler.

Lea premidres notions de qualitd sont donc Ii~es au comportement du programme A

1'ex~cution :performances et consosunation de ressources machine, fiabilit6, sympt6mes

visibles et mesurables oO le logiciel eat consid6rC corume une boite noire ;ayant 6t6

intensivement 6tudi~es elles ne seront pas 6voqu~es dans cette communication. Ces 6va-

luations ne sont que des conatatationa faites a posteriori sur un produit fini oQ toute

intervention va cofiter tr~s cher (BOE82).

Le contr8ie de la qualit6 non seulement du produit mais aussi du processus de

d6veloppement via lea documents engendr~s eat devenu une n~cessit6. Lea inspections

(FAG76) sont une illustration de cette approche globale.

Dana ce cas la qualitd eat Ii~e au norsbre, A la qualit6 et I la gravit6 des fautes

d~tect~es ;on voit apparattre une 6bauche de classification des criteres de qualit6 dans

lea phases easentiellea du d6veloppement :conception, codage, test, ainsi qu'une mdtri-

que empirique permettant d'hiatoriser 1lexp~rience acquise sur un projet.

La notion de mcsure au sens physique du terme n'eat plus tr~s loin (BAS80).

Le param~tre qualit6 isol6 eat d~fini par un mod~le (ahstraction du monde r~el)

qui doit @tre validd. A ce mod~ie eat associ6 une m~trique c'est-A-dire une (.valuat ion

quantitative du degr6 avec lequel le logiciel poss~de cette propri~t6, ce gui d~finit 0: e

6chelle de mesure et la mesure elle-m~me associe un nombre A une unit6 de mesure. Aucun

mod~le d~finissant un param~tre de la qualit6 du logiciel n'a 6t totalement valid6

(comme la notion de temperature ou de resistance 6lectrique par exemple) :les mesures

acquises devront @tre interpr~t6es, elles seront une aide mais jamais une indication

absolue.

35-1

Dans ce cadre le logiciel avionique a un comportelnent tr6- sersblable A colui d'un

autre logiciel temps r~el mais avec des exigences de qaait6 sup~rieures surtout lorsquill

S'3qjt de commande totalement num~rique. Ce logiciel est g~n~ralesent sounds A des tests

deevalidation et de certification ba s~s sur deststandards d'assurance qualit(,. C'est 1,A

que les mesures de qualit6 r~alisdes seront par iculi~rement utiles (EUR82).

2. DEFINITION DE LA QUALITE LOGICIELLE

Celle qui suit, issue du glossaire IEEE (1EE82) la d~finit par 1lensemble des carac-

t~ristiques d'un produit logiciel relativeA son aptitude A satisfaire des besoins donn&s

(tels cqu'tablis dans des sp~cifications 6crites).

Cette d~finition lie la qualit6 A l'utilisateur par les bosomns exprim~s, mais no

precise pas les caract~ristiques de cette qualit6, caractlristiques qii doivent BItre

surlpscarct~istque dela ualt6du logicielsous contrat du National Bureau of

Standards.

2.1. Caract~ristiques de la qualit6

Cette 6tude de TRW d6finit pour la preiire fois une approche globale do la qualit6.

unearborescence de paranietres est d~finie sur trois niveaux et inontre les relations logiques

entre ces param~tres (Fig. 1)

-- -PORTABLE INDEPENDANT DU MIATERIEL

AUTO SUFFISANT

SUR -P RECIS /EXACT

UTILIABLEEN LETATCOMPLET
UTIISBL ENLEAT EFFICACE - ROBUSTE/ INTEGRE

COHERENT

COMMODE REPETITIF / CREDIBLE

ECONOME EN MOYENS

UTILISABI E ACCESSIBLE

ERGONOMIE

TESTAB3LE %AUTO DESCRIPTIF

ST RU CT1URE

MAINTENABLE -- COMPREHENSIBLE CONCIS

LISIBLE

MODIFIABLE -EXTENSIBL.E

~INVEU1NI VEAU_2] L U 3

Fig. I Graphe de d~corsposition des param~tres de la qualit6.

Chaque terme a requ une definition precise , les floches repr~sentent une impli-

cation logique :un programme est maintenable slil est aussi testable, comprehensible et

modifiable ;au deuxifme niveau le concept de compr~hensibilit6, par exemple, implique

des programmes structures, concis et lisibles. Pour chaque param~tre des m~triques tr~s

pragmatiques sont d~finies ;ces mfstriques se traduisent d'ailleurs lie plus souvent par

des listes de contr~le, du m~me type que celles utilis~es dana les inspections de Fagan

(FAG76). (Fig. 2)

MAINTENABILITE

SL3cifications des besoins at conceEtion.

19 616ments contr8lables, dont par exemple

La tracqabilit6 entre les specifications des besoins, la conception, le code et les

cas de test est-elle d~finie ?

Un langage 6volu6 eat-il sp~cifi6 pour la r~alisation?

Les s tructures de donn~es sont-elles faciles A modifier ?

12 616ments contr~lables dont par exemple

Tous lea segments de codes sont-ils inf~rieurs Ai '00 instructions sources ?

Les noms de donn~es et de proc~dures sont-ils significatifs ?

Les formats des messages d'erreur ou de diagnostic sont-ils standardis~s ?

Produ its_(CodeL documentation).

14 616ments contr8lables dont par exemple

La documentation et les commentaires ant-uls un bon indice de lisibilit6 ?

Existe-t-il un dictionnaire des noms des variables et des r~f~rences crois~es pour

les modules ?

Fig. 2 EXer le i~e liste de contr8le
I-_____________________________ ____ ___________________________

Le point de vue adoptO est tr~s orient6 vers l'acquisition de logiciel, cette

approche peut donc largement atre utilis~e dans un processus de qualification ou de

certification.

L'6tude fait dA apparattre les interactions positives et negatives des param~tres

I'am~lioration de la robustesse, par exemple. a un impact positif sur la fiabilit6 et

Iergonomie, rnais diminue 1lefficacit6. Elle nexplique pas le processus de corr~lation

entre les pararn~tres de la qualit@ et les m~triques, et ne fournit pas une caract~risation

pr~cise des trois niveaux.

Elle eat representative de l'dtat op~rationnel actuel de l'industrie du logiciel,I et malgr6 sea lacunes, elle peut 6tre appliqu~e avec profit dans tout processus de quali-
fication ou de certification.

2.2. Points de vue

L'6tude de Boehms avait implicitement tendance A d~finir de manit're absolue les para-

mtres de la q ualit6. En fait, la r~alit6 des applications am ne A relativiser ces d6fini-

tions par lea deux caracttrisationa suivantos:

qualit6 exig~s par 116volution du produit sont diffdrents de ceux exigds par son exploi-

. d'autre part, Ie point de vue de la qualit6 qu' a par exemple le maltre d'oeuvre qui

fait lacquisition d'un logiciel (sous-trait6) est diff~rent de celui dui chef de projet

qui en fait la r~alisation et pouriant ces deux points de vue sont ndcessairement his.

Les deux caract~risations pr~c~dentes sont prises en compte par les travaux de

Mac Call (MACiS) sur lesquels nous nous sommes bas~s. Les principes en sont lea suivants

(Fig. 3)

Param~tres externes vus par
lea responsables (acquisi-

FIABLITEti:m dui logiciel)

Paramitres internes vus par
TOLERAUNCE le chef de projet loqiciel

AUX COHERENCE Fi7, 7cLI(I7E (d6veloppement)

E'.REUMR

- Me.~ures quantitatives

TECHDNIQUES
ECHNIQUES FLOT DE CONTROLE\

des paramtres
DE DE ET DE DONNES

/ CO:NCEPTIO\ CDAGE

Fig. 3 Niveaux d'abstraction des param~tres de la qualit6

2.2.1. Les param~tres de la qualit6 sont d~finis par trois niveaux d'abstraction.

* paramdtres externes ou facteurs qui caract~risent la qualit6 du logiciel

vue par celui qui en fait l'acquisition ou qui l'utilise :fiabilit6,

facilit6 d'utilisation, maintenabilit6, . .. Ces facteurs ne sont pas a

priori sp~cifiques du logiciel. Ils permettent de caract~riser le compor-

tement externe de tout produit industriel.

. param~tres internes, ou crit~res, qui caractfrisent la qualit6 du logiciel

vue par celui qui r~alise c'est-A-dire par les propri~t~s des documents et

du code ;cohdrence, compl~tude, modularitt, simplicit6, ... Facteurs

(externes) et critires (internes) aunt lies par des relations du type

"est r~alis6 par". Par exemple, la fiabilit6, paramttre externe, eat r~5alis6e

par les parametres internes suivants :tol~rance aux erreurs, coherence,

pr~cision, simplicit6. Ces m~mes parals~trea internes peuvent d'ailleurs

intervenir aur d'autres param~tres externes.

*m~triques. Elles permettent de fournir une mesure des crit~res. Cette

mesure est rdalisde sur lea diff~rents textes produits, pendant le dove-

loppement du logiciel. Mac Call limite lea mesures A deux types :binaires

(presence ou absence d'un 6l1taent), norisalis~es (rapport nombre reel

d'occurrences/nombre d'instructiona) . L'16valuation de la simplicit6, par

exemple, eat bas~e aur la meaure de 25 616sents prlev.a dana lea documents

de conception et dana le code :nombre (normalis6) de modules avec une

entree et une sortie, nombre de parcours logiques ind~pendants. Bien

6videmment la saisie de ces informations doit 8tre aussi automatique que

possible.

L'approche eat globale et pr~dictive c'est-&-dire qu'eile ne se limite pas simple-

ment A conatater la qualit6 d'un code puisque lea 6valuations slappliquent sur lea prin-

cipaux documents engendr~s lora du d~veloppement: sp6cification, conception.... (Fig.6)

2.2.2. Lea param~tres de ls qualit6 aunt lies:

- au type de I'application :lea param~tres qualit6 exig6s pour un logiciel

avion sont diff6renta de ceux exig~a pour un central t~l6phonique ou

syst~me de simulation.

-au type d'activit6 exerc~e

.exploitation du produit (fiabilit6, conformit6, efficacit6 pour un

logiciel avionique par exemple)

r~vision ou maintenance du produit (maintenabilit6, flexibilit6,

transfert du produit dana un autre environnement (portabilit6,

2.3. Lea supports de 116valuation

Pour mesurer il faut d'abord d~finir l1objet de la mesure. Trop souvent le seul

objet meaurable eat le code ;les 6valuations gui en r~sultent sent n~cessairement limi-

tees et arrivent trop tard dana le cycle de vie puisque la qualit6 du produit eat en

grande partie d~termin~e lora des dtapes pr~c~dentes. Insistons donc sur la n~cessit6

d'appliquer assi lea meaures A la spteification des bosomns et 6 la conception pour

avoir des indications pr~dictives utilisables au cours du d~veloppement. (Fig. 6)

Signalons, aussi, quo le contenu informationel de la mesure est fortement hi6 au

degrf. do formalisme adopt6, formalisme caract~ristique des m~thodes employ('es.

Tous les produits interm~diaires engendr~s lors du d~veloppement peuvent 8tre

consid~r~s, scion le point de vue adopt6, soit comme de simples textes, soit commue docs

entit~s logiques, soit comme des descriptions de syst~mes. Cela d~finira 1e type do

mesuro associ6

texte :si le texte est simplement narratif on pourra mesurer son indice do lisi-

bilitC6 * (IL) ;sur des textes A mots clifs on pourra mesurer la complexit6 A la

Halstead (ALF82) (DRE82) . Ces m~mes textes constitueront par ailleurs. la base

de mesures du type :nombre de gotro ou taux de commentaires par exertple (FAG73)

(MAC78)

entit6 logigue :le texte a maintenant une structure logique qui d6crit son campor-

tement A 1'exdcutien :le nombro do parcours logiques ind~pendants (..1CA76), (AC')

ou la complexit6 du grapho logique (SZE82), par exemple, sont mesurables.

systfte :le texte d6crit un syst~me d~compos6 en sous systdmes 6changeant de

l'information. L'entropie (MOH79) permet de mesurer l-ordre" du syst~me donc la

qualit6 relative do sa conception (IGL82).

2.4. Remargues

Trop souvent la -qualit6 du logiciel avionique n'a 6t vue qu'A travers le parametre

fiabilit6. Ce point do vue est beaucoup trop rostrictif. La commande num6rique des avions

impose maintenant une apprdhension globale.

Si, par exemple, los essais en vol demandent la modification d'un gain, colic-ci

ne doit pas demander un mois pour atre r~percut~e dans le logicie'. ce qm'i pout C'trc le

cas si los constantos du programme ne sont ni dfclar~es ni localis~es.

L'utilisateur ou le client ne comprendrait pas qu'une modification aussi mineuro

ontralne des romaniements importants du logiciol et aboutisse A un coOt dfmesur6.

Cola suppose que le facteur externo do flexibilit6 (ou adaptabilit6 ou maintena-

bilit6 perfective) soit pris en compte au moment du oivcloppement. L'6valuation (A 1'a;I

des mftriques) des crit~res internes lis A cc factour (modularit6, q~n~ralit6, oxtensi-

bilit6, ...) pout pormcttro d'6viter cc type de d~sagr~ment.

IL = 0.4(L+P) avec L nombre moyen do mots par phrase et P nombre moycn de mots do plus

3 syllabes par 100 mots. tLWB77)

3. CARACTERISTIQUES DU) LOC3ICIE. AVIONIQUE

3.1. Probl~mes pos~s (OER79)

Nous nous restreindrons aux logiciels centraux 00 logiciels syst~me qui r6alisent

les fonctions globales et qui sont implant~s dans le calculateur principal de l'avion 00

de lengin.I Ces logiciels centraux a~roport6s s'apparentent aux logiciets de contrale de
proceasss en temps r~el :integration dans un environnement sp~cifique, fonctionnement

en boucle ferm~e oO3 le traitement d~pend d'6v~nements ext~rieurs et dait A1tre effectud

dans on tempa tr6s court.

Ces logiciels pr6sentent en outre les caract~ristiques particuli~res suivantesz
-Forte complexit6

Bien que ces logiciels soient en g6n6ral de taille moyenne (par rapport A d'autres

domaines oQ le million dinstructions eat courant) leur complexit6 est tr~s 6lev~e.

Cela tient A la complexit6 intrins~que des fonctions qu'ils r~alisent, A la diversitAs

et A Ilinterd6pendance de ces fonctions.

Cela tient 6galement A de fortes contraintes temps rdel :certaines boucles d'asservis-

sement n~cessitent dea tempa de r~ponse de quelques miliaecondes (guidage et pilotage

d'un engin par exemple).

Les prob1lines de synchronisation entre lea traitementa internes au calculateur d' Jne part,

et entre ces traitements et les 6Changes avec le ayst~me d'autre part, ajoutent 6galement

A la complexit's.

Enfin, on contr8le permanent d'un grand nombre de param6trea relatifa A dea organes

essentiels eat indispensable au Coors mgine do vol

- Sflret6 de fonctionnement

Rappelons poor m~moire que lea cons~quences des erreors dans on lo'jiciel a~roport6

reuvent 4tre tr~s graves.

- Evolutivitd

Lea sp~cifications fonctionnelles do logiciel dvoluent pendant tout le dfveloppement et

jusqu'A la validation do syst~me complet. De plus, plusieurs versions do logiciel d'un

maine avion peovent 8tre d~velopp~es en parall 6le 00 roccessivement pour r~pondre A des

m issions diff~rentes.

3.2. Param~tres de qualit6 associC-sI Lea probl~mes A r~soudre sont les suivants

1. Sp~cification et pond~ration des facteors qualit6 poor appr~hender globalement

Ia qualit6 des logiciels d~crits en 3.1.

2. Impact de ces facteurs, acquis lora du d~veloppement (sp~cification, concep-

tion, codage) sur le comportement ultdrieur du syst~me en qualification, exploi-

tation, tranafert.

La sp~cification de la qoalit6 (Fig. 4) exige donc

didentifier lea caract~ristiqoes esaentiellea do systbme

d'appr~hender lea conascjuences de la non-sp~cification dun paramLtre de qoalit6

d'appr~hender lea relations entre lea param~tres externes de Ia qualit6.

Dana lea logiciela avioniques tels que d~crita en 3.1. lea facteurs de qualit6

essentiels aont :(Fig. 5 - Fig. 6)

en exploitation fiabilitC,

conformi t6

efficacit6

en maintenance-rfvision maintenabil~t6

testabilitt

en transfert ictuellersent le cas se pose peu, on ertet,

le transfert du logiciel d'un avion Sur on aotre n'est pas encore an

processos courant.

La d~finition de ces param~tres externes estrvrIort.', on annexe.

lateurs 96n~rent un code qu'un programmeur aura do mal A optimiser, le suppl6rscnt do

-la testal-ilit6 puisque la simplicit& et la mo~ularit6 exig~es, sent er. conflit

avoc les techniqoes traditionnellos do Iefficacit6.

F JERTIt>. VTIX,'

.bY P it I TA .-1

PEC IFICATIONS iIX11'AIND

DES BESO9INS I-ylPTC, ET) C ~ I T E

j ~ ~~~~~ D~ Esescocprr

PRECISION CONUITI NS j..

5F'ECIFIEE ET DER"?I L: F- :

B5700ETISEE DI[XINN,!

I.... .e

exploitation maintenance

Parami~tres 4 -

..
t rn4..u C4 0

internes w. Xi-4 E

j Tragabiliti

Compl~tudeA

Coherence A

Pri~cision A1

Tolerance aux erreurs A

Simpliciti A

Modularit6A A A

G~ne ral1 t6 7e

Extensibiliti f A

Instrumentation

Auto-description f

FEfficacit6 memoirei A

Eiticacit6 d' executionA

ConcisionA

LEGENDE

A Le param~tre externe fiabilit6 implique les parambtres internes

coherence, precision, tolfrance aux erreurs, simplicit6.

T1 Le paraln~tre interne modularit6 a un effet n~gatif sur

F'ig. 5 Param~tres qualit6 d'un logiciel avionique

0w s es Q 0
0 C

0 M
0 0.

aj ext es m3 t
Paraetre ext CS U U ~ .M

a. C C V . -

Ua C .0

Fiabilite

Conformit6 7. -, 7 A-

Efficacite' A

?ainteflabilit6

FleXibilite

Testabilite

LEGENDE

oa3 le parani~tre est meSur6

A oil les consdquences apparaissent

Fig. 6 Mesure des paramn6tres eXternes dans le cycle de vie

dun logiciel avionique

4. ?IESURE -)E LA QUALITE IANS LE DEVELOPPEMENT DUN LOGICIEL AVIONIQUE

Pour concr~tiser 116valuation globale de la qualit6 une procildure doit 8tre mise

en place, procldure comportant 1es actions suivantes

'. Ana~ ~trfe
1.1. Identification et pond~ration des pararrl~tres externes

1.2. Analyse du rapport coOt de la qualit6 / coat du cycle de vie associl et dtfi-

nition d'un compromis

1.3. D~finition du compromis sur les pararC~tres externes

1.4. Definition des param~tres internes (fact~urs)

1.5. Description d~tai11~e des pararn~tres externes li~s A I'application

2. SE,3cification des ~aran~t2Es internes

2.1. Identification des pa:-amdtres internes critiques exig~s

2.2. Definition duvn p1 .n qualit6 pour obtenir ces param~6tres

3. SL:ctification des estimations et des m~tri(3222

3.1. Sp~cii--ation d'une estimation pour chaque parametre externe

3.2. Identification des m6triques sp~cifiques A appliquer

Cette proc~dure conduit A d~finir par exemple les tableaux suivants.

Param~tre cxterne L Estimation d~sir~e par phase

Sp~cificationj Conception Code !Qualification

Fiabilit6 0,8 0,8 0,9 0,99

Conforrsit6 0,8 0,8 0,9 0,99

Efficacitd 0,7 j 0,7 0,7 0,8

jParam~trf in-terne M~trique

(tracabilits r~f~rences crois~es

corspl~tude listes de contr~1e

cohesrence coh~rence proc~durale

coherence des donn~es

listes de contr~ie

tolerance aux erreurs listes de contr6le des to1~rances aux

erreurs

listes de contr~le sur les donn~es en

efltr~e

recouvrement des pannes logicielles

recouvrement des pannes mat~rielles

condi'-ions d'6tats sur les p~riph~riques

simplicit6 mesure de la structure de conception

proqramfmatiofl structur~e
complexit6 du flot do contr~le et du flot

des donn~es

complexit6 du code

L'application des m~triques pendant le d~veloppement permettra d'analyser les mesu-

res faibles, d'6valuer la variance des mesures, d'6valuer les mesures par rapport aux

estimations et de determiner lea actions correctives A prendre.

La Fig. 7 eat un exesiple partiel des m~triques que ilon peut appliquer lors du

d~veloppernent du logiciel. 11 y a plusieurs manitres de saisir ces m~triques solon le

degr6 d'automatisation du proceasus do d6veloppement du logiciel, selon le niveau de

contr~le qualit6 op~rationnel dans l'organiarne,selon le niveau rs~t' iologique. S'il

n *exiate ni m~thodes, ni outi! automatique, ni contr~le oualitO, les mesures seront peu

nombreuses et peu significatives. Le nombre de mesures possibles augmente avec le niveau

m~thodologique puisque toute m~thode engendre une structure concrdtis~e dans le vocabu-

laire du texte r~sultant :m~thode de sp~cification, m~thode de conception,...

Manuellement, les revues de projet ou les inspections permettent de saisir 1. tota-

1it6 des m~triques n~cessaires ;leur traitement ult~rieur normalisation, pond~ration

permet d'obtenir une mesure quantitative, globale et objective de la qualit6 Th~C Si cette

mesure doit (1tre ensuite interpr~t6e.

Cette siisie manuelle est fastidjeuse, chore et se heurte souvent A des barri~'res

psychologiques.

L'automatisation des m~triques passe 6videmment par l'utilisation de processeurs

la plupart existent d~jA et il suffit le plus souvent de les instrumenter. Pienons

queiques exemples

Spiecification des besoins. Leur 6criture avec un syst~me de traitement de texte 6volu6

permet de fournir :structu re, r~f~rences crois~es, glossaire. Les syst~mes d'aide A la

specification tels que OLAO (BCD82) po'lrront prendre en charge toutes les mesures je

Conception. Les langages de conception structur~ertels -ue Pseudocode)REIS2) sont main-

tenant tr(s r~pandus et les processeurs associf~s fournissent en sortie :table des mati~res,

r~ffrences croisfes des variables et des modules, flot de contr~le,..

11 est relativement facile d'instrumenter ces processeurs pour obtenir les m~triques. Le

systL~me de programmation SSP (IGL8O) prend automatiquement en coripte ces mesures et de

p~us las associe au code engendr6.

Codage et test. 11 existe tout un arsenal de processeurs pour mesurer ta qualit6 du code

s'il est 6crit en langage 6volu6 (FORTRAN, COBOL, PASCAL). La plupart des outils d'aide

au test :anuilyseurs statiques, analyseurs dynamiques, g~n~rateurs de tests, instrumen-

tours fournissent las donn6es associ~es aux 's~triques pr~c~demment d6finies (exemple

GRC8 1).

Les analyseurs de qualit6 multilangages comma, par example, le QL1ALIMETRE-C (QUA82,

SZE82) fournissent toutes las mesures de complexit6 textuelles (HAL77) et structurelles

(MAC76, M0H79) possibles.

Cette saisie automalique des m~triques

- assure l'objectivit6 et la fiabilit6 de la mesure

- fvite Ies r~ticei.2-es psychologiques

- rdduit las coOts de l'6valuation de la qualit6

-syst~matise la mesure.

Nous avons 1A les premiers 616ments de l'outillage. Les futurs environnements de

programmation (AIG82) supporteront les plars d'assurance qualiL4 par les outils de ddve-

loppement et par les outils de mesures qu'ils intbgrent.

5. CONCLUSION

Maxwell disait "masurer c'est connaltre". La m~trologie de la qualit~s du logiciel

en est A sins debuts mais elle contribuera A faire 6voluer le ddveloppement du loqiciel

d'une activit6 artisanale ve,-s une activit6 r~ellement indostrielle. Nous avons souligncf

le fa it que le s modLles actuels ne sont pas suffisamment valid~s pour que l'on puisse

leur accorder une confiance absolue ; us sont ce-3crdant des indicateurs suffisamment

fjd~les, mame si l'interprftation humaine doit rester en 6veil. In tauX dc

complexit6 sup,%rieur a la norma nest peut-6tre pas repr6sertatif d'un module mal piro-

gramme mais indique peut-8tre que ce module g~re un flat de contr~le important et qu'ilf doit ratenir l'attention.

Le logiciel avionique, avec sos exigences de sOret6 le fonctionnennent, sesos -- 6

le certification est une ciolo privil6gi&O pour l'&.raluation quantitative de la qualit(

La mesure de la qualit6

- conforte le plan qualit6 gui g6re le d~veloppement du logiciel et permet d'enrichir

i'historique des projets de donndes objectives

- fournit les 6I6ments du coi.ir6le qualitd lors de l'acquisition d'un logiciel

- contrib ue A fournir les arguments dc recette pour les organisrses de qualification ou le

certification.

METRIQUE SPECIF. CONCEP- CD
METRIQUE BESOINS TION CD

PRECISION - EXACTITUDE

1. Analyse des erreurs sp~cifi6es fonction par

fonction au moment de la sp~cification des DTAO

2. Specification des pr6cisions requisos sur chaque DI.AO
entr~e-sortie, traitement ou constante

3. Ad~quation de la bibliothbque math~matique du
systq~me

4. Ad~quation des tech;.iques num~riques utilis~es H H

5. Sorties dans l'intervalle do toifrance A A

1 exfcut ion

-OLERA-NCE AUX ERREURS

16 6l6ments ',contr~ler

SIMPLICITE (COMPLEXITE)

Si CONCEPTION

1. -cuncaption hifrarchis, e, Jescondante SSP

2. Pas le fonctions redondantes H H

-. Autonomic des modules SSP

4 . -x~cution d'un module ind~pendan'e~es H ;A
pr~c~dentes ex~cutions

5. Chaque description do module inclut los SSP
entr~es, los sorties, le traitomont, etc ...

6. Chaque -nodule a une seule entr~c, une seule SSP
sortie

7. 11 n'existo pas de donn~es globales ISSP
S2 CODE STRUCTURE - PREPROCESSEUR SSP/H

S3 COMPLEXITE textuelle et structurelle, des SSP AQ

programmes et des modules

S4 SIMPLICITE DES TECHNIQUES DE CODAGE (MODULES)

1. Flot de contr8le "do haut vore le bas" SSP AQ

L' GENDE DLAO automatisablo sur le systbme d'aide A la sp6cification DLAO

SSP sur lenvironnement de programmation SSP

AQ automatisable avec le Qualim~tre

:1 manuel

Fig. 7 Exemple do m~triques et outils associfs

3~-I4

3i-14

BIBLIOGRAPHIE

(AFC80) AFCIQ, F. DE NAZELLE (SNIAS), Pr6sident du groupe Assurance Qualitt Logi:iel,

Pour un logiciel de qualit6, Bulletin AFCIQ, Vol 15 No3 Septombre 1980

(AIG82) AIGLE, Atelier int~gr6 de Gnie Logiciel Experimental,

Rapport Final, Contrat Agence de l'Informatique Juin 1982

(ALF82) J-L ALBIN, R. FERREOL, Collecte et Analyse de Mesures de Logiciel

AFCET ler Colloque de G6nie Logiciel Juin 1982

(BAS80) V.R. BASILI, Tutorial on Models and Metrics for Software Management

and Engineering, IEEE Catalog N' EHO167-7 Octobre 1980

(BCD82) P. BARDIER, S. CHENUT-MARTIN, F. DCLADILLE, D~finition et Conception de

Logiciel Assist6 par Orlinateur, AFCET, ler Colloque de Genie Logiciel,

luin 1982

(BOE82) B.W. BOEHM, Les facteurs du co~t du logiciel

T.S.I., Vol 1 N'l, 1982

(BOE78) B.W. BOEHM and others, Characteristics of Software Quality,

North Holland 1978

fDRE82) F. DEVRON, Une application de la mesure de complexit6 des programmes,

AFCET, ler Colloque de G6nie Logiciel Juin 1982

(Et2R82) Eurocae, Etude et Homologation du logiciel des syst6mes et 6quipements de

bord, RTCA DO-178/Eurocae ED-12, Mai 1982

(FAG76) M.E. FAGAN, Design and Code Inspections, IBM Systems Journal

Vol 15, 1'43, 1976

(GAL80) M. GALINIER and al, SSP Syst~me Support de Programmation, Journdcs SIGRE

Environnements, Supports et Syst6mes de Programmation, Rennes, Juin 1980

(GER79) G. GERMAIN, Quelques probl~mes lis au d~voloppement des logiciels

a~roports, Journ~es G~nie Logiciel, IRIA, 1979

(HAL77) M. HALSTEAD, Elements of Software Science, North Holland 1977

(IEE82) IEEE, A glossary of Software Engineering Terminology, IEEE Project 729

July 1982

(IGL82) IGL, Assurance Qualit6 et Conception des Produits Logiciels,

Rapport interne n
°

27-QUA, IGL, Juin 1982

(LPW77) M. LIPOW, B.B. WHITE, B.W. BOEHM, Software Quality Assurance : An

Acquisition Guide-Book TRW-55-77-17, November 1977

(MAC78) J.A. McCALL, An Introduction to Software Quality Metrics, Software

Quality Management, Petrocelli Book, 1979

(MCA76) T.J. McCABE, A Complexity Measure, IEEE Software Engineering

Vol. 2 N14, 19
7
t,

(M0H79) S.N. MOHANTY, Models and Measurements for Quality Assurance of Software,

ACM Computing Surveys Vol 11, N0 3, September 197')

(SZE82) J. SZENTES, Somika - An automated system for measuring software quality.

AFCET ler Colloque de G~nie Logiciel, Juin 1982

ANNEXE

Definitions des parambtres externes (facteurs)

)Conformit6 Attribut g~n~ral du logiciel, lequel duit, au fur et A mesure de sa

production, demeurer conforme aux documents issus des 6tapes pr~c6-

dentes. Une fois achevA, le logiciel doit notamment stre conforme aux

sp~cifications, ca2st A dire corresponlre aux besoins exprim~s, et sa

_____________ fabrication doit 8tre conforme aux exigences de qualit6.

Efficacit6 Aptitude d'un logiciel A se limiter A l'utilisation des ressources

(m~moire, unit6 centrale, dur~e des ex~cutions) strictement n~ces-

saires A l'accomplissement de sa function.

Fiabilit6 Aptitude d'un logiciel A assurer une fonction impos6e clans des

conditinns donn~es, pendant une dur~e donn6e.

Flexibilit6 Attribut d'un toqiciel qui d6signe sa capacit6 A prendre en compte

des situations non rigoureusement identiques A celles pr~vues et

pr~cis~es dans l'exigence des besoins.

Maintenabilit6 Facilit6 avec laquelle un logiciel peut 6tre modifi6 dans le but

soit dlen corriger des d~fauts, soit d'en 6tendre les possibilites.

Ceci implique que le code soit compr~hensible, modifiable et testaole.

A cette caract~ristique se rattachent celles d'adaptabilit6, de

complexit6, de compr~hensibilit6, de concision, d'extensibilit6,

de lisibilit6, de reparabilit6, de testabilit6.

Testabilit6 Facilit6 d'61aboration de jeux de donn~es de test et dc v~rification

du bon fonctionnement du programme lors de Ilexdcution de ces

derniers. Cette caract~ristique a trait A la fois aux aides au

test et au diagnostic et 8 1leffort n~cessaire au test.

DISSIMILAR SOFTWARE IN HIGH

INTEGRITY APPLICATIONS

IN FLIGHT CONTROLS

by

David J.Martin

Flight Controls Division

Marconi Avionics Ltd,

Rochester, England.

SUMMARY

Digital computing techniques and, in particular, microprocessors are now being used
increasingly in secondary flight control systems such as spoilers and airbrakes,
automatic trim, and slats and flaps control.

These systems, though relatively undemanding in computing power, nevertheless have high
integrity requirements, particularly in fly-by-wire applications.

The requirements of high integrity systems are defined and examples of failure
surviving systems given.

Having discussed the impact of digital processors on system design, various solutions
are reviewed.

Multiplex similar redundant systems have been used widely in flight controls and some
of their strengths and weaknesses are detailed. Software techniques applied to similar
redundant systems are then briefly described.

A dissimilar redundant solution, using two different microprocessors, is discussed and
the impact of this architecture on software procedures is then reported.

The paper, concludes with a review of the strengths and weaknesses of the dissimilar
architecture approach as seen to date.

1. INTRODUCTION

High integrity in the context of flight control systems means safety critical. With the
advent of digital equipment providing various primary and secondary flight control
functions via the software, it has been necessary to develop techniques for producing
safe software. In general the methods used fall into two categories: those aimed at
producing error free software (fault avoidance) and those aimed at providing software
which can continue to operate after errors (fault tolerance). The fault avoidance
approach has been successfully used by Marconi Avionics for the Panavia Tornado, Boeing
YC-14 and British Aerospace Jaguar Fly-by-Wire automatic flight control systems.
Currently being developed is a slat and flap control system for the Airbus Industrie
A310 for which Marconi Avionics supplies the control computers. This computer uses a
form of fault tolerant software in which two dissimilar programs are executed by
dissimilar processors.

Fault tolerance can also be divided into two methods; recovery blocks and
dissimilarity. In general, flight control systems do not lend themselves to the method
of recovery blocks where parts of the program are re-run using alternate blocks of code
after an error has been found. This requires time for the extra processing which is not
usually available as the normal processing needs to be continuous. Recently however, a
method for concurrently evaluating the alternate blocks has been suggested (Shepherd,
J., 1982).

The dissimilar approach is used for the A310 slat and flap control computers and the
reasons for this choice of method are described in this paper.

Initially the requirements of high integrity systems and a brief history of typi a
implementations are described. This is followed by an overview of the particular
requirements of the slat and flap control system which led to the decision to produce
dissimilar software. In this application dissimilarity means the generation of two
different computer programs from a common specification, by separate programming teams
using different programming languages, separate translators and host development
facilities, with different target processors.

2. REQUIREMENTS OF HIGH INTEGRITY SYSTEMS

Modern aircraft encompass a large variety of sub-systems each having different
integrity constraints. The passenger entertainment system will obviously have a lower
integrity required of it than the flight control system. It does not perform a safety
criticaL function and hence its Loss can be tolerated. Similarly any one of the
navigation equipments on board an aircraft could cease to function without giving rise
to a hazard. This is due to the various dissimilar types of navigation systems
available to the pilot, eg inertial navigation, ADF, VOR/DME, Omega, Decca, secondary
radar (it is unlikely that all will be available in one aircraft) and the last-ditch
techniques of astro-navigation, dead reckoning.

In contrast, flight control systems and stores management systems have a higher level
of safety required of them. Flight controls are obviously safety critical and the loss
of, say, the elevator controls during final approach wijL almost certainly give rise to
a catastrophe. This has led to the development of stringent design techniques based
upon earlier proven sound practices in order to achieve the integrity requirements.
These requirements are typically defined in probabilistic terms. For instance the CAA
has suggested that, for automatic landings, the overall flight control system must be
so safe that it will not cause a fatal accident risk in the landing phase greater th'n
I a 10

- 7
per landing. This risk is the sum of the constituent elements of the system

including mechanics, hydraulics and eLectronics. A typical risk figure apportioned to
the electronics (sensors/computing/actuation) is 1 x 1 0 -

9
per landing.

If the mean time between failures (MTBF) of the automatic flight control system is
known or can be inferred from previous experience or from lengthy test flying of a
developed system, then the probability of failure of the equipment during the critical
landing stage can be calculated from the formula:

Probability of failure = Critical time
mTBF

The critical time is the time between an irrevocable decision to perform an automatic
landing and the completion of the landing. Because the decision would only be taker if
all the necessary equipment were functioning, only subsequent faults need be
considered. For an automatic landing this decision need not be made until the aircraft
passes the minimum break-off height, typically about 6Oft, so that the critical time is
about 15 seconds.

Therefore an TBF of 15 1 = 41500 hours

I x 10
- 7

3600

minimum is required of the automatic landing system if all failures are assumed to be
significant. Such a figure is clearly impossible to achieve with any single system of
automatic equipment so that at lcast one alternative means of control and guidance must
be available if a landing is to be comLleted following a failure of the primary system.

Hence, the automatic flight control system must have some level of in-built redundancy.
There are two pieces of data required in -der for the flight controls to remain
functional after a failure. These are firstly, the knowledge that there is a
disagreement between redundant elements and second, the element that has failed. This
allows the faulty channel to be isolated. Consequently a triplex, triplicated, duplex
monitored or duplicate monitored configuration is necessary. Any such system will
survive a single fauct and continue operating. At least two independent faults must

occur during the 15 second landing period before the system ceases to function. If the
probability of a failure in a single lane in the system is p then the probability of
two lanes failing is 3p

2
for a triplex scheme. Hence 3p

2
= 10-7 gives an acceptable

MTBF of

15 1 = 22.75 hours

1.83 . 10
- 4

3600

This is easily achievable and the safety requirement is not the determining criteria. A
system with 22.75 hours MTBF is not acceptable to an airline operator and a much higher
MTBF is required.

The automatic flight control during autoland represents a system requiring fail-
operative capability. A slat and flap system in contrast requires fail-safe capability.
hat is, it is only necessary to identify that there has been a failure in order to

shut-down the system operation and lock the surfaces. However, the requirement that the
probability of inadvertent deployment of slats or flaps shojld be less than 1 x 10

- 9

per hour means that the reliability requirements are similar to the autoland case and
the same exacting design disciplines need to be applied.

I

3. IMPACT OF DIGITAL COMPUTERS ON SYSTEM DESIGN

High integrity systems, such as are required for automatic operation of primary and
secondary flight controls, have existed for at least two decades and a wealth of
experience has been accrued about them by the aircraft industry. Proven techniques for
achieving safe operation of flight control equipment have been developed. These
techniques allow the systems to be more easily analysed by making their structure
highly visible. With the advent of digital computers the race towards ever increasing
functional capability has intensified, but in addition the problems that need to be
solved have changed.

Many of the design practices that have evolved for use with analogue implementations
are readily transferred to digital systems. However, two areas stand out as requiring
new techniques:

a) The general purpose nature of a digital computer necessitates a far deeper
understanding of the hardware failure modes and effects. For instance,
failure of the central processor can affect all functions that the computer
is intended to perform. In contrast an analogue system is readily analysed as
there is dedicated circuitry for each function.

b) Software is a new entity. Embodied in it are the function&l requirements of
the system. Executed by a general purpose processor it has potential access
to any part of the flight control equipment. However, with no decades of
experience to fall back on, there are only now the beginnings of a unified
approach to the design, construction, analysis and testing of software.

To be truly fail-operational or fail-safe, a system must be free from common mode
failures and dormant failures must not affect system performance during or after first
failure.

While many of the inherent analogue problems related to nuisance disconnect/failure
transient/dormant failure trade-offs are minimised in a digital mechanisation, the
extent to which the above aims can be achieved is still the essence of good system
design.

Common mode failure stems from four main causes:

i) External environment of the system

ii) Inter-channel inter'erence

iii) Common design or manufacturing errors in the hardware

iv) Common design or programming errors in the software
(specific to digital systems)

In the next section the methods used for avoiding common mode errors in both the
hardware and the software are detailed.

4. SOLUTIONS TO REDUNDANCY FOR DIGITAL FLIGHT CONTROLS

4.1 Multiplex Similar Redundancy

An early digital autopilot/flight director system (AFDS) having fail operational
capability is that of the Panavia Tornado. Two digital processors operate
asynchronously with respect to each other and they also operate on data from different
sensors (which are closely matched, however). Therefore with the fairly high control
law gains adopted, including the use of integral control, it is necessary to provide
some sort of inter-channel syichronisation of the digitally computed signals in order
to avoid divergence of the computer outputs which would result in disconnects. This
inter-channel synchronisation takes the form of a mixture of intermediate signal
consolidation (achieved by analogue cross-feeds between the computers) and low
authority synchronisation of integrator states. These are shown schematically in Figure
4.1.

Single failure operational capability was also exhibited by the electronic flight
control system (EFIS) for the Boeing YC-14 short take-off and landing (STOL) transport
aircraft (Corney J, 1980). This aircraft featured upper surface blown (USB) flaps which
used the Coanda effect to increase lift by blowing the jet engine efflux over the upper
surface of the wing. This configuration results in a high degree of coupling between
aircraft axes and since the USe flaps are fully fly-by-wire, ie there are no mechanical
input linkages, the EFCS had to be failure operational in order to meet the system
reliability requirements during STOL operation.

A triplex configuration was chosen (Figure 4.2) to satisfy the failure operational
requirements.

. . ..

AFUC 11) r-OSS

[i~iW CONR~l.CO14PAIS0N

LAWS IA) J7 j L24I UPT

F-IIE- I

I , I

_.CONTRO ER-

Figujre 4.1 AFDS Inter-Lane ConsoLidation and Synchronisation

NAIG ATAO

OPINTEARAL

SYSTEM T N{COUP I =LIt gOLI

F~OPTICAL

INAV MOTIONI I 3TI ISK

NAVI~lICION T LS III

ENO SI" TRIM FLAP I
II I SEUVOL&US8Il

FE KIEEY.ORS .I

SE NSOSS __ __

I ODE

CONLTCOOL
,swl (ClES LRJ ,5PtRI

CONTROL DI'PLAY PANEL
NoFA IkU.E EL ECTJ2ONICS

OTERSIGNAL
SOURCES -- • TIPLEX

1 0SIMPLEX

Figure 4.2 YC-14 EFCS Configuration

Each computing lane contained a central processor, program and data stores and irp t

and output interface cards. The EFCS makes use of sets of triplex input sensors wnose

outputs are consoLidated as in Figure 4.3.

COMPUTING I

ANAOCOPTICAL LICA E tllA O COTRO)L -L z RANSM 11 YEN RCIESLA 40

COMPUTING 2 /h

COMPUTING 3 %i,

Figure 4.3 Triplex Input Sensor Data Consolidation

Each tensor output it tr ansm itted i n s er ia L d ig ita L form along optical fibres to each
o f t he other two chann els. Thus each computer has available input data not only on its

own sensor s but also on the sensors associated with each of the other two channels.'
Identical algor ithms in each computer consolidate the input sensor data; this
c onso Li da t ion enablIe s the sensor inputs to each schanne L to be equaLised and it a Lso
enables fautt sensor inputs to b e detected and islated. The software in each channel

is identi cal and the Program cycles of the three computers are synchronised with each

other in order to remove apparent sensor errors due to sampl ing time di fferences, and

to ensure t h at the computers are aL L working on identical input data. On the E F CS
(unlike the Tornado AFDS) it is therefore unnecessary to provide rimans of cross feeding

integrator states in odrto prevent divergence of computer outputs.

Optical data transmission was adopted for inter-channel communication to maintain the

highes t possible integrity by removing the possibility of many types of e Le ct r ica L

ma lfunction in one channel being transmitted to one or both of the other channels which
Could cause Loss of the system. Th is form o f transmission i s a Ls o not subj e ct to
electro-magnetic i nterference and eliminates any chance of electrical earth Loops.

Building on experience gained during the Tornado AFDS and YC-14 EFCS developments, the

Br it ish Aerospace Jaguar fly-by-wire integrated f Li gh t control system features a

qu~adruples architecture. This i s required i n order to achieve tofa i Lurea survival
w hich i s n ecessary be ca.use there i s no me chanical revear s ion twor b ack-up t o the
elIe ct r ica L flight controls. In add it ion the aircraft w iL L eventually f Ly w it ha
negative static stability margin.

The four processor s are a ref ined ver s ion of t he pu rpose bu i Lt proc e ssor s used on t he
YC-14. They are synchronised to each other and the software in each is identical.

Input sensor data for each channel is transmitted via optically isolated serial digital

Links to the other computers where it is consolidated using a quadruples version of the

arrangement shovn in Figure 4.3.

4.2 Software Development for Similar Redundancy

Whereas hardware is subject to both design errors and to component failajres, software
cannot fail and is subject only to design errors. Thus the software is only dependent
on the particular states of its input data over a period of time. Design errors in
hardware are reduced to acceptable levels by bench, rig and flight testing. In general
procedures for hardware design are well established and hence well understood by both
designers anu certification authorities. The same cannot be said about software.

In a high integrity system it is clear that the hardware and software need to be
produced to the same safe standards.

Gradually, with the consecutive programmes of Tornado, YC-14 and Jaguar FBW, a method
for the development of safe software has been refined (Figure 4.4). Experience has been
built upon as the safe operation requirements have become more stringent with each new
aircraft.

This proven approach to high integrity flight software design, production and testing
is directed towards reducing the risk of occurrence of common design errors in flight
software to acceptable proportions from the point of view of flight safety.

Procedur.s have been developed for implementing flight resident software, as specified
by a software requirements document, which provide close configuration control and good
visibility of the design, implementation and test stages.

A modular top-down structure for the software has been developed, which gives good
visibility throughout the development phases. Each design and test function is well
documented and described by means of control documents for each aspect of the software
development. Design reviews are used at various stages in the software implementation
process in order to maintain a continuous and close check on the integrity of the
software design. Following design approval at the preliminary design review by the
specialist groups associated with the project, a configuration control system is
enforced to permit only authorised changes by means of a formal change request
procedure.

Strict rules for methods of structuring, designing, scaling, coding, assembling and
testing the flight resident software modules have also been developed. Equally strict
configuration control rules ensure that these 'production' rules are implemented.
Adherence to these rules throughout the software development process is an essential
prerequisite for safe software in which the probability of design errors is rendered
extremely remote.

These design and control procedures together with the modular structure, simple coding
rules, use of a macro expand facility, and the visibility provided by the control
document structure all aid the task of analysing the software design for errors. All
aspects of the software structure and execution in the computer are analysed and tested
for possible errors. This verification of the software is a continuous process covering
software requirements, module design and coding.

4.2.1 Design Methodology

Following the production of a software requirements document which details the
functions to be performed by the computer program, these functions will be split into
modules. Module interfacing documentation is defined at this stage such as hierarchy
diagrams (Figure 4.5), input and output variable definitions and scaling information.

The modules which may be called once or many times during a programme iteration are
grouped into frames to meet the need for different functions to be executed at
different iteration rates to meet the combined requirements of system performance and
computing time limitations.

On completion of the software tasks in each frame, the processors enter a 'dynamic
stop' or 'pre-master reset' (PMR) mode. Every frame period, a master reset (MR) signal
is generated which returns control to the executive module which then calls the next
frame. This process is repeated indefinitely; the frames being called cyclically while

the processors are running.

This technique enables the program required for a system to be broken down into easily
managed sections, each section defining a function or a process. Additionally, a
programming change to any one module will not cause changes in other modules, provided
the rules of communication between modules are not contravened. Also, the addition or
deletion of modules can be achieved without greatly affecting the system program.

4.2.2 Software Testing

Flight software is Progressively tested at a number of levels in order to confirm its
compliance with the system requirements. During most of its development, the software
is tested on a software simulation of the flight computer running on a host computer.

- -- Iim

Figure 4.4 Software Development

ii's

ty _

---- ---

F ig ure 4. 5 Software Structur e

Module Level testing is concerned w itsh demonstrating compliance w it h the apor,pr ia te
mod u Le des ig n specificacion. ALL combinations of maximum, minimum and setected
intermediate values are tested as weL L as ce rt a in combinations o f Lo g ic inputs. The
te s ts ensure a ct iv a tion of a LL dec ision pa t hs i n the module as weLlt as checking fo r
overf ow cond it ions s ubr out ine ca L Ls, parameter passing and the co rr ec tn e ss and
continuity of the arithmetic.

Tne programmer who des igns and codes a module i s precluded from produc. g the t es5t
specifications and performing the tests on that module.

Frame Level cesting is concerned with demonstrating compliance with the system
requirements and specifications. For example, a complete control L aw a x is maY be
processed by one frame. Tests are made for intermoduLe compacibiLi ty , data/program
module compatibility, control flow, data flow, end-to-end resolution, dynamic tests 0 f
flters, monitors and Limiters.

The testing procedure w iL L be the same as that for the modules and will use the same
general purpose test harness. Test ing at t h is stage w iL l be concerned it h the
detection of program errors and system Performance.

Testing of the fully assembled program will be concerned with ensuring that the program
functions c or re c t Ly, as a system. A test specification i s produced w h ich checks th e
software package against the customer's requirements.

Following completion of the total program tests, the flight software is integrated into
separately ver i fied f Li ght hardware, although ce rt a in c r it ic a Lrardware-related
software modules are integrated ahead of this time.

Initial integration tests are made involving And-to-end static tests, the repetition of
the to ta L program tests, st a rt up tes;ts and mode sequence tests, T h is i s followed by
closed loop testing with a hybrid computer containing an aerodynamic simulation. The
complete system is subjected to automated test sequences for all modes of operation and
flight conditions prior to any flight testing.

4.3 Multiplex Dissimilar Redundancy

In order to satisfy the computing throughput requirements for previous digital, flight
control systems, a Purpose built processor has been developed. This cu rr en t Ly uses a
b it -sLi ce implementation so give typically 800,000 instructions per second based on a

typical control system instruction mix.

I,

For secondary flight control systems such as spoilers/airbrakes, automatic trim, slats
and flaps, and even some primary functions such as yaw damping, the throughput

requirements are much Less onerous. Computer units for these applications are capable

of being implemented using any of a number of 8 and 16 bit microprocessors.

These systems, though relatively undemanding in computing power, nevertheless have high
integrity requirements.

An example, currently at the flight trials stage, is the slat anI flap control system
for the Airbus Industrie A310 commercial aircraft.

Failure survival constraints are imposed upon the electronic control s/stem since there

are no mechanical links from the pilot's controls to the surfaces, ie it is a fLy-by-
wire system. The safety constraints are defined by probabilities for various

occurrences, including:

1) Inadvertent deployment of the sLats or flaps must have a probability of Less
than 10

- 9
per flight hour.

2) Slats or flaps no longer operating and no warning given to the pilot, must
have a probability of less than I0

- 9
per flight hour.

3) SLats not operable must nave a probability less than 10
- 5

per flight hour.

These constraints reLite to the entire slat and flap operating systems and include the
electronic, mechanical and hydraulic components. Hence the requirement for safe
operation of the SFCC has to be better than the above figures.

In considering candidate system architectures to achieve the stated requirements, one

of the major considerations was the comparative simplicity of the task in relation to

other flight control tasks. Operation of the slats and flaps as performed by the

software, is mainly a sequence of logical expressions rather than arithmetic
expressions and complex filters as would be found in tyoical autopiLots and
autostabilisers. This results in throughput and instruction set requirements that can

be readily achieved by commercially available microprocessors. The use of micro-
processors allows a significant cost saving when compared to such a system using a

purpose built processor. However, the disadvantage of microprocessors in high integrity
applications is that their internal workings are not visible. Thus the failure

mechanisms of such processors cannot be predicted.

Another major factor in the choice of an architecture is the views of the certification
authorities. Lack of experience in the industry and the difficulty in assessing the
integrity of software has led to recommendations from the authorities that

consideration be given to

a) the use of monitoring, limiting or other provisions which are independent of

the digital computation, to reduce the effect of failure within it.

b) the use of dissimilar elements in critical portions of the equipments,

particularly where analysis may be difficult or inconclusive (e.g. the
processor).

The third major factor is the failure survival requirements. In a control system such

as on the Jaguar fly-by-wire aircraft, it is not enough just to identify that there has
been a failure. It is also necessary to continue to work correctly after the failure.
Hence the necessity to identify where the failure is and to isolate or absorb it.

However for the A310 slats and flap system it is sufficient to know that there har been
a failure. On recognition of the failure, there are brakes in the wings which are

operated to freeze the surfaces in their current position. Although this may mean a
slatless or flapless landing or, indeed, an immediate return to the airport from which
the aircraft has just been taking off, it does not prevent the continued safe flight

and landing of the aircraft. This necessity for fail-safe capability is reflected in

he safety requirements as outlined above, item 3 (slats not operable: probability <10-

per hour) being more an availability than a safety constraint.

It was concluded, therefore, that two different microprocessors should be used in
parallel to perform the slat and flan operating task. This makes the probability of a

-on internal failure or design error within the microprocessors extremely unlikely.

It also ensures dissimilarity of the software at the code level.

Although this was felt to increase the level of confidence that a common coding error

would be minimal, it does not resolve the problem of common software structure or
algorithmic design errors. Hence it was decided to perform two complete software
development tasks, one 'or each microprocessor, with only the system requirements as

produced by the customer oeing common to the two.

| |I

4.3.1 System Description

A schematic diagram of the computer architecture is shown in Figure 4.6. Two computers

are required in order to meet the avaiLabiLity requirements.

*V 44kk M,4A VOp H-ifl

* % I C UANNII 2

Figure 4.6 Computer Architecture Schematic

Internally each of the computers contains two different microprocessors. A computer
will only drive its hydraulic motor if both microprocessors agree, otherwise the motor

output is Locked leaving the other computer to drive the system.

If a computer fails, this will be detected by the different outputs from
microprocessors 1 and 2 and the computer will then isolate itself.

If there is an uncommanded movement of the output e.g. a torque shaft breaks, then both
computers will detect the incorrect deployment and will operate the wing brakes, this
freezes the flaps/slats in their current position.

4.4 Software Development for Dissimilar Redundancy

A separate software requirements document (SRD) is produced for each lane. Having
produced the SRD, the software development procedure then follows the normal path, in
each lane, of top-down analysis to produce a modular structure, and to design and
generate the code for each module.

At this stage, instead of embarking on module testing, the approach that has been taken
i; to assemble the software for each lane and then to perform hardware/software
integration testing. It is felt that, since the lanes must agree to proviCe the
computing function, they each provide for the other the most stringent test
environment. This test philosophy is amplified in section 4.4.2.

To avoid the possibility of design errors being introduced by a common assembly fault,
two different host computer facilities are used to assemble code for the two
processors.

The choice of microprocessors from two different suppliers further reduces the risk of
the associated assembler packages having common errors.

Each microprocessor memory is loaded from the associated development system in a
dedicated format. These formats, which are different, are read by the PROM programmer
which is independently checked for correct function.

1h mmmnm

The two software development activities are kept completely separate, the two programs
eventually being proved by integration with the hardware.

A brief summary of the software development process is shown in Figure 4.7.

1o 51TWARE SOF TWARE
Rff [uRI MINT',00(IMINI RtuO1MtNIS(MX)JMEN 1

I I'M()(: IH PROCt SSOR 2

T APE tA,

WPAW ROM OMPAHI

Figure 4.7 Dissimilar Software DeveLopment

4.4.1 Design Methodology

One disadvantage of trying to verify software by testing is that it is extremeLy
difficult to prove that the software is free from design errors. In a similar redundant
system the probability of an undetected software design error adversely affecting the
system safety must be ompatible with the integrity objective.

For the Airbus Industrie A310 SFCC, the software has been prepared twice, using two
different software development facilities. The flight resident software suites thus
produced are executed by different, asynchronously operated microprocessors. The
outputs of the two microprocessors are continuously compared and any difference greater
than a defined threshold causes the system to disconnect after a preset time delay,
with all output drives being removed.

A design error in one of the two dissimilar lanes can never produce a hazardous output
from the system.

Design errors in both dissimilar lanes could only produce a hazardous Output if their
resultant effect was identical and occurred within the pre-set time delay of the cross-
lane comparison.

The benefits of dissimilarity are clear. The precautions that have been taken to ensure
that dissimilarity is maintained are listed below.

Software for each of the two professors is prepared by two different groups.

The processors are different for the two lanes, are made by different
manufacturers and have different instruction sets.

The two suites of software are prepared and assembled, using two different
software facilities - also made by different manufacturers.

The processors obey instructions which have different object code and are located
in differently mapped program stores.

I:I

The data used by the processors are Located in data str.res which are also
differently mapped.

The processors have separate clocks and operate asynchronously so that there is no
requirement for frame synchronisation to Link them together.

The program store for each processor is loaded using a PROM tape, the format of
which is different for the two lanes, since each is generated by a different
Support system.

Discrete words exchanged cross-lane for monitoring have. their bit pattern
deliberately shifted. This avoids the possibility of a common error when comparing
the two lane outputs in each lane.

With these precautions it is unlikely that the same software design error can occur in
both lanes to produce the same hazardous and undetected output simultaneously from both
lanes.

4.4.2 Software Verification

In a similar redundant system, where software is common to all lanes, a single software
error could cause loss of the total system. A software verification procedure has,
therefore, been developed which reduces the software risk to acceptable proportions.

Several of the techniques thus developed incur no significant cost penalty and can be
applied directly to the dissimilar approach.

With other techniques, such as module testing, the extent to which they are applied
depends on the complexity of the module function and the consequences of not detecting
errors. These techniques have to be critically reviewed and applied as necessary to
achieve the required level of integrity.

Testing

The duplication of software is considered to provide sufficient integrity to meet the
safety requirements of a system in which availability is not a predominant requirement.

Nevertheless, it was felt that, to provide the required availability, certain module
tests needed to be performed. rhe modules are divided into three categories:

a) critical modules which wilt be subjected to full testing e.g. those that
drive system outputs or monitor for asymmetrical deployment or runaways.

b) modules that will require supplementary testing because the software/hardware
integration tests do not accurately check certain thresholds.

c) modules requiring no testing other than that performed during

hardware/software integration.

5. CONCLUSIONS

A major task in any flight control system development is the proving that the design
achieves the required integrity level. The conventional approach has been to duplicate
the hardware and software. This paper has described an alternative approach of using
dissimilar design and implementation. In the following paragraphs these two approaches
are compared and contrasted in order to isolate the essential parameters required to
decide which approach to adopt for a particular application.

The production of high integrity software involves four distinct phases:-

a) Accurate, unambiguous definition of requirements.

b) Structuring and preparation in a clearly visible manner to reduce the
probability of design Prrors during implementation to an acceptable level and
to assist in the identification and elimination of those errors that occur.

c) Testing to prove that the functions def'ned in the specification are realised
and that no unforeseen and unwanted functions exist.

d) Configuration control to prevent the introduction of design errors into
proven software when making changes.

In preparing software for the A310 SFCC described in this paper, proven procedures for
items (a), (b) and (d) that have evolved over a period of more than a decade have been
used.

With regard to testing, item (c) above, it is difficult to write more than a few words
of software and guarantee that it is entirely free of errors. It is equally difficult
to apply any measure of integrity to the software so produced. At best, one can only

test extensively and state that the software is correct 'beyond all reasonable doubt'.

For a secondary flight control system, availability may be a Less stringent requirement
than safety. In this case the need for extensive testing can be avoided by adopting a
dissimilar software and hardware approach in which the outputs of two dissimilar micro-
processors are compared. Commands which agree are executed, commands which disagree for
more than a predetermined time cause the complete channel to disconnect. Asynchronus
operation and dissimilar hardware means that the probability of any fault condition,
whether due to failure or design, causing the same erroneous output, simultaneously in
both microprocessors, is negligible.

Provided that the software is tested sufficiently to ensure that availability is
acceptable it is believed that this approach inherently gives higher confidence that
faults will be detected than the more conventional extensive testing at module level
which is essential for a similar redundant configuration.

However, for an application where a fail operative system is necessary, three
dissimilar software suites may be required. This would incur a large software
development cost overhead in comparison to an extensively tested single program for a
similar redundant system. In addition there would be three sets of comparisons to make
on dissimilar results in order to detect the presence of an error and isolate its
source. This could lead to a different threshold for each comparison in order to reduce
the occurrence of nuisance disconnects.

In short, the integrity of a system is dependent on the error probability and the
availability is dependent on the nuisarce disconnect probability. A dissimilar system
will inherently have a lower probability of failing to perform correctly due to a
single design error than a similar redundant system. Conversely, the similar redundant
system which uses consolidated sensor data and synchronised processing, will inherently
be less prone to nuisance disconnects than a dissimilar system in which the processing
is asynchronous and sensor data is not necessarily consolidated.

In a similar redundant system, time is spent reducing the probability of there being
residual design errors when the software is in service, by performing extensive
testing. For the A310 dissimilar SFCC it has been found during hardware/software
integration that most errors are due to there being more than one interpretation of the
system requirements and to the dif'erence in computed outputs from each lane causing
nuisance disconnects. Hence more time has to be spent in reducing the occurrence of
such disconnects than in a similar redundant system.

Therefore, the choice of a similar or dissimilar approach needs to be weighed in the
light of the relative integrity and availability requirements. A system having high
integrity but low availability requirements is better served by dissimilar software,
the inherent integrity being at the expense of the higher rate of nuisance disconnects.
Conversely, a system having high integrity and high availability requirements may be
better served by a similar software architecture since the probability of a nuisance
disconnect must be reduced to the same level as the probability of a design error.

REFERENCES

Corney, J., 1980, "The Development of Multiple Redundant Flight Control Systems for
High Integrity Applications", The Aeronautical Journal, Royal Aeronautical Society,
October.

Shepherd, J., 1982 "A Method of Designing Fault Tolerant Software". Certification of
Avionic Systems Symposium, Royal Aeronautical Society, 27 April.

s--I

TIfE COST PF SOFTWARE FAULT TOLERANCL

Gerard F. Migneault
NASA Langley Research Center

Hampton. Virginia

SUMMARY

This paper proposes the use of software fault tolerance techniques as a means of controlling the
cost of software in avionics as well as as a leans of address"ng the issue of systemi unreliabiIity due to
faults in software.

Ob vations are first made about the prohlem of escalating budgets for software and about the
nature of some of the causes of the increased costs, the nature of possible actions and methods
proposed--and not proposed--for addressing the problem. An experiment in the measurement of software
"reliability" is briefly mentioned in order to support the construction of a simple model relating the

cost of a software module to the effect upon the reliability of systems containing the module.

Attention is then paid to schemes for 'jsinq dissimilar redundancy in software to obtain a degree of

tolerance to software faults in systems which must achieve high levels of reliability. Another simple
model is developed--expressing the relationship of a "fault tolerance" schemp to system reliability. The
model serves to discuss and question the customarily expected benefit, an increase in systen reliability,

to be obtained from fault tolerance schemes.

Finally, the simple models are combined to develop a system level view of the relationshijps among
cost, redundancy and reliability. The view suggests the strategy. unconventional in the software world,
of deliberately choosing to develop less reliable, dissimilarly redundant software modules in order to
lower total software costs and increase the credibility of the estimates)f Ireir "reliability."

INTRODUCTION

The assertion that the costs related to software have become significant, even dominant, factors in
budgets for the acquisition and use of digital systems is widely accepted. Consequently, more attention
is being devoted to understanding and developing methods for forecasting and controlling or reducing the
costs. No adequate complex of methods appears to have yet come into use, however, and the growth in
total cost continues--seemingly unconstrained when compared to the decreasing costs of associated
hardware.

In general, the techniques available or proposed for abating the costs of software have had two
common characteristics of particular interest. They have been conventional in the sense of being
variants of quite general notions which are commonly, perhaps uncritically, believed to have beneficial
effects upon costs. Additionally, they have been nonspecific. That is, with the exception of the
customary prerogative of management to control the level and duration of utilization of resources, the
techniques have provided no means by which arbitrary, but mnecific, amounts of costs could he exchanged
for equally specific amounts of alternative consequences. F,,- example, the concept of a "chief
programmer team" is a particular application of the notion that the structure of an organization affects
the quality of its product, an extrapolation of the aphorism that the structure of a system is a
determinant of its behavior. Consequently, the utility of the technique is not questioned in principle
and a priori, although the relation between marginal benefits and costs is nebulous and fractional
application of the technique is clearly not an option.

Software related costs have grown for a number of reasons. The most readily obvious factor is
undoubtedly inflation in the general economy. Ahile an increase in costs due to inflation does not
represent a real increase in the use of resources, it does indicate that the mix of resources utilized
has become less optimal. This suggests that in order to counter the effect of inflation a successful
cost reduction or control scheme should implicitly, if not explicitly, address the redistribution and
replacement of costlier resources with less costly. Thus schemes which are intended to prcvide greater
visibility and control of the existing development procedures are not likely to be very successful. The

concept of a "chief programmer team" appears to be in this category, as are schemes to increasingly
formalize documentation requirements and change configuration control procedures.

Perhaps a more significant cause of increased costs is the simple increase in the total amount of
software required ;'s digital systems with embedded software replace older technology. Not only do the
costs increase in proportion to the increased amount of software, but, as the discipline of economics
teaches, in the absence of equally rapid technological progress, more and thus less efficient resources
must be used. In the case of software, a people-intensive activity, this means a lowering of the average
level of capability of the personnel, technical and managerial, in both the de.elopment and Maintenance
phases of the software life cycle. This suggests that schemes which would be successful in countering
this cause of increases in cost must lessen the need for people in the software life cycle. This can lie
accomplished either by eliminating activities in the software life cycle or by increasing the
productivity of the people involved in the activities. If such schemes require an excessive investment
of capital or the introduction of costlier resources in other areas of the software activity, they may
not be successful as cost savers. The introduction of "programmer workbenches" and "higher order
languages" are such productivity improvement schemes. They require considerable investment of capital
and continued use of the more knowledgeable personnel. Moreover, they are selective schemes in that they
affect the implementation stages of program development more than testing and maintenance stages.
Considered as a cost control scheme "correctness proving" would appear to be in the category of schemes
which eliminate an activity. That is, if a program were absol itely correct, then there would he no need
for its maintenance. Presently, however, the technique requires more expensive resources, in terms of
personnel and computer time, than it releases. Also, there is currently no agreement that the technique
ever will generate the desired "perfect" software.

increased costs of software have a1 so heen casel hy "'re .Ie-andinq r.'rp,'en 's for di 'i+al systo''
performance, ,equi reoents which have heen achieved by -.Paus of eyer r),e so,h' ica'ed sOf-war-. -i y,,,
extent these costs are thr esult of the very success of i iital Sys~eis iii ;rovti ng ci) Otilnal
capahili ies which were not previously available. 'he increased c)t;ilvxity o' the so$tware req Jiros
either nore knowledgeable, and thus lore expensive, nersonnel in the *evPlo;-ent nd naintenance nhoses
or causes on increase in maintenance activity. 'his suqyes's 'hat to counter the effect of anamis ur
increased perfornance and sophistication, schemes shoul'1 be so.ight which reduce the coiiplexlty inherent
in software. This seems to he the goal of "stroctired vr)grailing.' However, it sees to require
additional rather than less training of personnel.

The notion advanced in this paper is that in 3n ivionics context, and possibly in otner contexts in

which there is an appropriately demanding repquremen" for reliability and maintainability, techniques of
s oft 4are fault tolerance utilizing redundant 'odules if software can be used to control costs. They do
the "good" things previously cited. The level of re.indancy, a parameter usually considered only for
design prposes, bereies available to management as Ja Iraoeter for controlling costs. But more
important, from the point of view of inhibiting acceptance, the notion is unconventional--in the world of
software. It is iuconventional becausi, software fault tolerance techniques have been developed to
enhance reliability and are considered to he more, not less, costly and therefore less, not more,
desirable. Indeed, the suggestion for this paper arose as a reaction to a statement which expressed a
consensus in a "working meeting" and was unchallenged in light of its apparent logic. The staterient was
that, for the purpose of defining requirements, the use of a quantitative measure of the "reliability" of
software should be shunned since it would necessitate the use of software fault tolerance and redundancy
techniques which would, in turn, increase costs. Hence because of the less conventional nature of the
technique proposed and th 'Ped for its justificition, this paper appears somewhat polemic.

MODELING COST

In order to express a relation betwecn the cost of generating software and its reliability
requirement, we borrow from a recent experineent;l study of software reliability (Nagel, 11)82). Data fron
the study support the assertion that

after k faults have been corrected in a program, the probability of error dvri~pn each
succeeding execution of the ,roqram can bo approximated by the constant e

-
t
a+

K) , where the
parameters a and b depend upon the program and the statistical distribution of the input data
and can be eistimated from data obtained durin a controlled process of uncovering the faults.

The terms "fault" and "error" used in the oreceding statement are not synonomous. A program is
understood to be simply an embodiment of an abstract relation between 'ariables which is usually defined
by a specification, implied by a requirement, etc. 'hus a program, the embodiment, has structure which
is not part of the abstract relation. The program can he created with a structure which, for some
inputs, generates outputs which are not those implied by the abstract relation. "Fault" refers to such a
flawed structure; it can be remedied, presumably when its presence is signaled by the occurrence of an
error. No statement is made here about the process by which faults are generated. "Error" refers to
output data which, while consistent with the structure of the software which generated them, differ from
the values implied by the original abstract relation. During operation, it is the error which propogates
through a system; it is the error which can be detected and can signal the presence of a fault. Whereas
faults have "always" existed, errors "occur" and thus correspond to events which have rates of

occurrence. An execution of a program refers to the generation of an output data set in response to an
input data set. The time period of an execution is assumed to he small compared with the use period, the
,any executions, of a program. While it might he possible in the future to estimate the parameters a and
b from descriptive inforation about the program at the completion of a standardized acceptance test, for
the present discussion it is sufficient that they can be estimated by a controlled process of repetitive
trials beginning after a standardized acceptance test.

One conclusion to be drawn from the referenced study is that a software module in a system can be
considered to be a component having a constant error rate during the time it is in operation (which is
assumed to be a fraction of the elapsed time of system operation). Thus, conventional notions of
reliability can be discussed if errors from software modules are considered to be causes of digital
system failures. Of course, not all software errors would likely result in digital system failure; what
will constitute a failure will depend upon the application. Therefore, equating one with the other is a
conservative assumption--which will be considered again below. With this assumption, computations of
mean time to system failure due to software module error have some meaning. Conversely, a reliability
budget for the various components of a digital system can assign a maximum allowable error (fail,;re) rate
to a software module.

Thus, assuming that a meaningful input data stream can he obtained or generated and assuming the
successful accomplishment of the process of uncovering and removing k faults from a software odule, and
the estimation of the parameters a and b in the process, the error (failure) rate of a module during its
subsequent operation can be expressed as

Xk = 3600 m e
- (a +b k)

where n is the number of executions per second required by the application. 'he expected amount of time
taken during the controlled process to discover and remove the k faults, that is, to "debug" a module to
a criterion _, can be expressed as

I

k-I
MiTTDX r =

i-O

=c 1T-eB) (-' - e"

'where I/c is the time per execution, r denotes a number of repetitions required during the "debugging"
process in order to gather the data from which a and h are estimated. Note that the term "debugging" is
here used for the controlled process of testing an "accepted" software module to a required I level.

Additionally, in the assertion above there is an implied ordering of faults in term of their
contribution to error rates of software modules. This means that each fault will require an increasingly
long time to be uncovered. If a module is not reliable at the end of "acceptance" testing, data for
estimating the parameters a and b will be relatively easily accumulated and a long "debug" phase will be
forecast. If a module is relatively reliable at the end of "acceptance" testing, then it wilt take a
correspondingly longer time to accumulate the data for estimating the parameters. In either case,
ensuring that the probability of subsequent errors appearing during operation of the software module will

he arbitrarily small will be lengthy activity.

On the assumption that a conventional development procedure consisting of a requirements development
phase, a program design phase, a program coding phase, and a standard functional and "acceptance" testing

phase can be selected, and that "debugging" to criterion \ proceeds from the point of "acceptance",
figure I depicts the cost profile for "developing" a software module to a L critierion.

Let Ao, represented by the area under the large hump in figure 1, be the cumulative cost of
developing the module through the standard "acceptance" testing point as discussed it, various software
cost models appearing in the literature, for example (Putnam, 1978). It might be well to note that
available software cost models do not appear to be very accurate forecasters and must be calibrated for
each software development environment (Thibodeau, 1981). Here, as will he seen later, it is sufficient
to note that two modules developed (to the point of acceptance testing) from the same functional
requirement would be expected to have similar total costs--as forecast by the available models.

Assuming the "debugging" activity to he a constant rate activity, let_ .. be the cost per unit time

of "debugging" the software module further to its specified criterion . S is assumed to include the
continuing cost of generating the input data sets (stream). The cost of "debugging" is simply
represented as

j x MTTD,

Recalling the expression for MTTD X above. we express the expected cost of a software module as a function

of its X criterion as

$0 + c m r e"

The values of $o and S will, of course, depend upon the complexity of the software module and the size of

the staffs required to develop and "debug" it, and upon the particular software development
environments. In figure 2 the ratio

is plotted versus A for various values of the parameter

Smr

A glance at the figure suffices to indicate that any significant reliability requirement implies a
considerable increase in development costs over software with unstated reliability. Consequently, in
light of the demanding reliability requirements associated with avionics, it is unrealistic not to expect

an increase in software costs if system reliability is to be achieved by extending the reliability of
conventional software modules. The task is to minimize the increase.

Of course, if the criterion truly reflected the reliability required of the software module and
if the criterion were achieved, then an occasional occurrence of a system failure due to a malfunction of
the software module after operational deployment of the system would not occasion any maintenance
activities. By definition the occasional failure would he acceptable. Indeed maintenance action would
be sus~ect unless it included a repetition of the "debugging" process described. In this case,

maintenance costs would be negligible, consisting principally of an accounting system to verify that the
occasional errors (failures) were no more occasional than forecast. In this sense, the extent to which
maintenance activities are in response to component failures is a gauge of the extent to which
reliability requirements are not truly being imposed on today's systems--either by oversight or by
deliberate decisions made to exchange the costs of obtaining the desired reliability for costs at a later
time, the maintenance costs. Such decisions should not, of course, be within the purview of the digital
system developers alone, and certainly not of the software developers, since they must (should) consider

the costs resulting from the unavailability of systems--a consideration to be left to the users of the
system.

'I | i

3--4

FAULT TOLERANCE

The concepts of fault tolerance and redundancy are hardly new in engineering. An at0ot Ile's s, are

tire is a mundane witness to *his fact. Nor is the idea of building nore reliable systems 're- less

reliable components by means of redundancy and passive fault tolerance new in electronics and computers

(Moore, 1956). The cost benefits in terms of reduced maintenance and outages of hardware sysens with

internal redundancy have also been addressed (Moreira de Souza 1981). What is novel is the notion that

fault tolerance schemes can be devised to prevent System failure (or Jnavailability) due to design flaws

(Anderson, 1981). Software faults are just such design flaws, and software fault tolerance schemes have

been proposed in the past decade. The Recovery Bloc scheme and N-version programming are perhaps the
two most widely known schemes.

Consider one "stage" of an N-version programming scheme variant as represented in figure 3. For

convenience, the stage consists of an odd number, N, of dissimilar versions, Pi, of a program module

which each receive input data from one of X dissimilar voter modules, Vi. Each voter module perforss a
majority vote on the set of inputs, Y_j, which it receives from each of the dissimilar 'odules o' a prior

stage. The outputs, _X, of the N program modules, Pi, in turn provide inputs to the voters of one or
more subsequent stages. Thus the majority value of the set of outputs, _! , defines the output, _L of the

stage. It will be correct if a majority of the Xi are correct, and erroneous otherwise. In a similarfashion, the majority value of theY~j defines the input, I. to the stage. In all likelihood, even if all

are correct the will differ in some small amount due to the dissimilarity of the modules generating
them. What this means is that the voters will contain some complex logic to account for such legitimate
variations. In effect the probability of errors in the execution of these modules cannot be dismissed as
insignificant.

Consistent with the previous discussion, with each program module and voter module there is
associated a probability that an execution of the module will produce an erroneous output, and the
probabilities can be determined, and indeed made equal, by means of the "debugging" process. Then the
probability of error, q, in an execution of a program-voter pair is simply

q - qp + qv - qpqv

where q and qv represent the program and voter execution error probabilities. In the context of its
application, a program-voter pair will appear to have an error (failure) rate (per hour)

1) A - 3600 m q

The question of the independence of execution errors in "independently" developed and tested

software modules is a troublesome oatter. On the one hand, the study of the "reliability" of software
has not progressed beyond primitive models of individual software modules. n the other tind, studies of
fault tolerance and redundancy have usually been focused upon the mechanisms of the schemes, reflecting
in part a less than unanimous and enthusiastic belief in the credibility of current software
"reliability" assessment ethodology in the computer science community. There are exceptions, of course
- for example, a study of the feasibility of the application of the recovery block scheme in an avionics
application (Hecht, 1978). We shall return to the question later, but here assume that errors in
module-voter pairs occur independently of errors in other module-voter pairs. With that assumption, the
probability of an erroneous stage execution output can be expressedl as

bx-()NN (N))

i N+1
i-i

and a relationship between the stage error (failure) rate
3) Xs - 3600 n Pbx

and the component program-voter error rate, _L, established. The relation is plotted in figure 4 for
various values of the parameters m and N. Because of the questionable assumption of independence of
errors the plotted curves represent bounds on what is achievable.

Two "fault-tolerant" computer systems, SIFT and FTMP, have been developed under NASA contract and
reported in the literature (Goldberg, 1981)(Hopkins, 1978). The design goal of the systems was to

achieve, at some reasonable cost, systems of very high reliability for avionics applications. Neither of

the systems utilized software fault tolerance schemes. However, as can be seen from figure 5, the
architecture of the SIFT computer lends itself admirably to the N-version scheme described above and can
be used to describe how the scheme would actually be implanted into hardware. Simply, each program-voter
module pair would reside in a separate processor. With more processors available than required by an
N-version stage, in the presence of a hardware failure, the hardware reconfiguration algorithm of the
SIFT computer can assign another processor to be in the stage, thus maintaining the stage redundancy at a
constant1i

CflST VFRSUS REDUNDANCY

The relations developed above may be combined to express the cost of software fault tolerance in

terms of its level of redundancy, the reliability which it is intended to provide (actually the error
(failure) rate which it is not to exceed) and the cost parameters. Recalling the expression for the
expected cost, li, of a software module as a function of its lambda criterion, we represent the cost of
an N-version stage as

2 N $X

m'asonig that the N prigramn modules will have the sane expected cost as a result of hav'nq 'een
"deeloped" to the same requirement. This is not inconsistent with the accuracy of the current software

cost estimation models, as was noted previously. The factor 2 is incluled to account, hopefully
conservatively, for the N versions of the voter modules which, as was noted will contain some amount of
coiplexity. This cost is compared to the cost of a single module having the error (failure) rate..z5s
the error (failure) rate desired of the stage, by forming the ratio

2 N

in which A and - are related by the eqtaitions 1), 2), 3). In the special case J=1, there are no voter
modules ami the ratio is unity. In figure 6 this ratio is plotted against -_s for various values of N,
and the conglomerate parameter

$mr b

$ 0C(I-e)

Note that each point along one curve, determined by a fixed set of the parameters above corresponds to a
different value of _ --satisfying the relations 1), 2), 3). Hence, given values for X s m and the
conglomerate parameter, corresponding to an application requirement and development environment, one can
determine the values of) and N which minimize the ratio.

Note also that in some cases the optimal policy is to use surprisingly unreliable program-voter
pairs. When such is the case, several changes in policy suggest the;mselves. First, it becomes feasible
to accumulate more error (failure) history data on modules than is customary, thereby providing ,reater
confidence in the estimates of their (un)reliability. Secondly, it becomes economically fesible to
subject the software !odules to real-use testing since observable results will occur quickly, thus
providing a better understanding of the relation of module errors to system failures and a rationale for
relaxing the conservative assumption equatin] errors to failures, if appropriate, and addressinq
criticisms about the incompleteness of testing based on solely simulated input data streams.

While the problem of independence of errors remains, it is tempered by the almost certain knowledge

that only a fraction of a module's errors will be correlated with those of other modules. low
significant or insignif'cant the fraction is is an appropriate suhiect for study and experiment in liqht
of the cost benefits available from software fault tolerance. It is further teiiipered by the additional,
aliost certain knowledge that only a fractioi of software execution errors will cause system failure.
Again, study and experimentation is warranted--especially in light of the propensity of humans to believe
that they know more than they do when dealing with subjective probabilities (Lichtenstein, 19I1).

CIINCLUSION

The thesis of this paper, simply put, is that decisions about the use of redundancy in software
fault tolerance should be made with the understanding that they provide a cost minimization as well as
reliability enhancement potential, and the rudiments of a technique have been presented.

REFERENCES

Anderson, Thomas , and Lee, Peter A., 1981, Fault Tolerance. Principles and Practices, Prentice-Hall
International, London.

Goldberq, Jack, 17-19 November 1981, "The SIFT Computer and its 'evelopment" in 4th AIAA/IEEE DiGital
Avionics Systems Conference: Collection of Technical Papers. AIAA, New York. p.285-289.

Hecht, Herbert, February 1978, Fault-Tolerant Software StudY, NASA Contractor Report #145298, The
Aerospace Corporation, Los Angeles, California.

Hopkins, A. L., Smith, T. B.. and Lala, J. H., October 1978, "FTMP - A Highly Reliable Fault Tolerant
Multiprocessor for Aircraft" in Proceedings of the IEEE, Vol. 66, No. 10, pp. 1221-1239.

Lichtenstien, Sarah Fischoff, Baruch, and Phillips. Lawrence 0., June 1981, Calibration of
Probabilities: The State of the Art to 1980, Contractor Report OTR-1092-81-6 prepared nor the Office

of Naval Research Contract #NO004-80-C-OI50, Decision Researct jivision of Perceptronics, Inc.,
Eugene, Oregon.

Moore, E. F., and Shannon, C. E., 19S6, "Reliable Circuits Using Less Reliable Relays" in Journal of the
Franklin Institute, Vol. 262, Part 1. pp. 191-208, Part I, pp. 281-297.

Moreira de Souza, ,1. and Landrault, C., April 1981, "Benefit Analysis of Concurrent Redundancy
Techniques" in IEEE Transaction on Reliability, Vol. R-30, No. 1, pp. 67-70.

Nagel, Phyllis 4., and Scrivan, James A., February 1982 Repetitive Run Experimentation and
Modeling, NASA Contractor Report #165836, Boeing Computer Services Company, Seattle,
Washington.

Putnam Lawrence H., July 1978, "A General Empirical Solution to the Macro Software Sizing and Estimating
Problem" in IEEE Transactions on Software Enoineering Vol. SE-4, No. 4, pp. 345-361.

Thibodeau, Robert, April 1981, An Evaluation of Software Cost Estimatinq Models Contractor Reportol-940
prepared for RADC Contract F3§6- '-C-244, General Research Corporation, Huntsville, Alabama.

PROGRAM OEVELOPMIENT

COST PROFILE

- -
RATE

-ACCEPTANCE"

S "DEBUGGING"

t

Figure I

$.4

too

-I;

/ /
S / /I
S / 7

//

t / -

/ I / ',

x //
/ /

1 0 I i o0 - 2 o - ' 1 04 1- 5 1- 6

Figure 2

N-VERSION PROGR~AMMING

1 pi . .L

STAGE VI N

P1 P2

xxi X2 x N

Figure 3

N Iso20 10 11.o0050 200

10-ni

1 1--

101

Figure 4

I /

SI N I

I\\ /\\ ,,
\ \I \/ I /

/-.\ \ ,' I

\\I / /--".,.'X'

6 PROCESSOR SIFT CONFIGURATION

(EXPANDABLE TO 8)

.001]
0

Fig.ure

Jo-,

.01-

//€

/ / ,

10-4 0-5 0-6 0-2 0- 0-

Figure 6,

i - •II i i

DI'SCUSSIIJ FOR ,A.IONICS PAi*EL FHLL " S2 MEETIlG 1'
SOFTWARE FOR kVIClCt4JI

Session 4 SOFTWARE YEPIFICATIi HN 'YLIE'ATIOt - :hmn R. 0. Mitchell US'

Paper tir. 27 - f EIGHT POINT TESTING STRHTEG FOR REAL-TIME SOPTs.RE
Presented y - P. E. Wls- on
.peal er - . . Dcwl ing

Coatment - rou have descr bed a comprehen s.ive strateg' +or test ing: car .:,u zaw something abou

any/ standard tools You have to support this strategy'

Response - In general no "standaro" tools have been found to mee t our resulremert, sbt f. ra..e
begun to develop some in house. Bureau "subsystem" testing er,,ironments are aire.dv a Ia ble
and in use. A general purpose "stimulation" software set to prcr.ide reai sti, input tc, test r it

in also available within the division.

Paper H r. 27 - 44 EIGHT POINT TESTING STRATEGY FOR REAL-TIME SOFTWARE

Presented by - R. E. Wilson

S.peaker - ". Cameron
4i-orrnt - Repeated stress. i - Iasd upon the need tor docJrnented resuil o ,, te--., wh ich "r,,,u !

be carried out by e ternal agencies" - e.g.: senior programmner who Is not on the pr, ect,

custcaier representative, etc. Please indicate who prepares the lists of tests to be carried out

and how sufficient;,, rigorous testing is assured"

Response - The s yste m designer begin? the preparatio r, of a testing plat, in parallel 'i tr hI-

initial design and these two items, design and test plan, are reviewed ir parallel. T,: assure
that the testing i; carried out a number of mechanisms are used including checn lists and sample

testing by quality control staff.

Paper Nr. 7 - AN EIGHT Pultid TESTING STRATEGY FOR RErL-TIME '-OFTWARE
Presented by - Dr. R. E. Wilson

Speaker - 0. J. OeVtker
Comment - Does it not mear a lot of work to test the higher level modules already at point I.

using. the full input and output tests' It seems more easy to postpone the testino o4 the hiqher

level modules to point 4.

Response - We do not spend very much time in coding the lower level stubs at point I testing. In

general you will not be happy with code whose tests have been postponed.

Paper Nr. 2A - TORNADO FLIGHT CONTROL SOFTWARE VALIPATION: METHODOLOGY AiD TOOLS
Presented by - Or. Ing. R. Pelissero

Speaker - Dr. W. J. Cullyer
Comment - In the simulation computer, did you use the non-linear equations predicted by theor,,
by the aerodynamics or did You use the data from the prototype aircraft'

Response - Both. At first we used theoretical data. As results were obtained on the prototype

aircraft we progressively modified these da:a

Paper Nr. 28 - TORNASDO FLIGHT CONTROL SOFTWARE VALIDATION: METHODOLOGY AND TOOLS
Presented by - Dr. Ing. R. Pelissero

Speaker - H. 0. Tjoa
Comment - Software verification and validation to what extent) When is it bug free' Is the
responsibility by the maker of software or the customer'

Response - Test procedure .s to be agreed upon and specified. When software complies with the
test procedure it is considered to be validatediverified. The responsibility is carried by both

software developer and 'customer".

Paper Hr. 23 - TORNADO FLIGHT CONTROL SOFTWARE VALIDATION: METHODOLOGY AND TOOLS

Presented by - Dr. Ing. R. Pelissero

Speaker - C. P. Jack

Comment - On the engine part of the 1160 package, what sort of bandwidth do you aim for'

Response - I am not able to answer that at the moment, we use data we have from our engine

department. We try to use recent data.

Paper Hr. 29 - APPLICATIONS OF NETWORK LOGIC MODELING AND ANALYSIS TO SYSTEM VALIDATION AND

VERIFICATION

presented by - G. Sundberg

No Questions

Paper Nr. 30 - LpIOAGE DE TEST OU LOGICIEL ET OUTILS ASSOCIEES (SOFTI ARF TEST LANGUAGE AND

RELATED TOOLS)

Presented by - Ing. P. Taillibert
Speaker - L/Cdr. J. F. Krmer

Comi ent - How much of the test data cses from software monitoring from within the tested

machine and how much is captured by test probes external to the tested machine'

Response - At' of the data is captured external to the running machine.

Paper tir. SI - _VFTiSSE YERIFICA ION OF A C l tL 4YICtiC AHR 3' TEP1

Presented by - Dr, t. kleinschmidt
Speak er - R. Malcolm
Comment - Ord you say 2500 programner hours for the whole prcv.ect'
For the static cde analysis, how many modules did you go through' I .. 'hrv , c

single one' About how long did you spend on each'

Response - IJo. it was 2500 operational hours since the verificatlon process,
Certainly, we went through ever, single module, about 13) cf these. I would 1-tirnte we Eper'
one to two days on each.

Paper ir. 3) - SOFTWARE VERIFICATION OF A CIVIL A'IONIC AHR SSTEM
Presented by - Dr. M. Kleinschmidt
Soeaker - J. 0. M. Orofnendljk
Comment - Is the approach stated coherent with the recommended RTC [0 178 "Jie' Se'

Response - The approach is based or, ard is coherent with RTCA 00-i7 reccnw'neuJKatiorr. Ho,,e. er,
for practiced implementation, these recommendations have been erpanded in se,,eral parts:

Application of a forria! control mechanism for the design and >,e*::alc phases as
described in the present paper using manual and automated tools.
- Establishing of formal procedures and autc ated tools for the injiidua. eritication
task to ensure completeness and uniformity of the tests done by indiridual mc-bera cf the
test groups.
- Application of even stricter rules in some 'erification tasks, e.g. in Hi 'i m ntegr'cr.
tests (code unchanged in PROMs, testing down to code level etc.' ,r ncdule qrcp tests
,tests are not performed on host system, but in real time on the actual c:cmputerl

Paper Nr. 31 - SOFTW-ARE VERIFICATION OF A CIVIL A''ICkIC AHR S'STEM
Presented by - Dr. M. Kleinschmidt
Speaker - D. Weiss
Comment - Which kinds of tests are effective at finding which Ilinds O errors' i .e. Do you ha.'e
distribution of error data showing types of errors according to the method used to fIr d the
error s

Response - The answer to this ques tIon Is in fact outlined in paragraph 4 rf the paper. As we
have established an efficient change control system, the complete histor, ot the erificaticn
process for all Individual tests and error types is availabIe.
In this paper only the major error classes are plotted in Figure 5.

Paper tr. 32 - PROGRESS IN VERIFICATIOlN OF MICROPROORAMS
Presented by - Pr. S. D. Crocker
Speaker - . Neitzu
Comment - We h3,- four- it to take 3-4 months of one person s time to write a PDF 11 4

.
mahine

description in ISP. This description wan sufficient for csDmpilations on n :3?, :c.epIler and
subsequent Interpretation bv a progr am that imulate- machine architecture.

Response - 0 though that is reaohablv consistert with our data, I d asi what Is te 'e ,t
detail and how accurate is your description. The POP-1l is better documented r.3 1 re .'vde

1
.

known than the machines we usually deal with, but I wouldn t be surpr szed ti- +i.j tha
t

it -o,'I
take some additional time to track down every detail.

Paper tir. 32 - PROGRESS IN VERIFICATION OF MICROPROGRe41S
Presented by - Dr. S. P. Crocker
Speaker - Dr. W. J3. 1:uI lyer
Comment - 1. In a state Delta, can the Envi ronment, E, change between time tI and t2. fcor
e'ample when encountering a declaration'
2. How often do you have to resort to the use of inductive proo+s when steering your theorem
pro er

Response - I. Yes, the places listed in the er.ironment list may change between time tl and t2,

but this situation is not usually related to declarations. Declarations would uzuall, be
translated as static relations among places and state deltas that contain onl,, a post c.--rdiloon.
e.g. a declaration that the range of X is 0 to 10 'inclusive could be represented as
approximately 0#X:10.
2. On the average, one would use one induction pro:' :mmsand for each loop and *or eac
recessively defined data structure, the user might choose to treat some loops and data
structures differently. For erample, the user can direct the crct sy-tem to step t arc., co
until it iu finished; this will be useful once in a while.

uaper Nr. 33 - 'ALI[ATION OF SOFTWARE FOe MISSILE TO aIRCRAFT INTEGRATION

.ented by - R. E. Westbrook

Spe, er - N. Haigh
Conmnent You mentioned that one function ot testing is to ensure that software doesn t cause
unexpected behavior under unusual circumstances. This can arise from numerical Instability in
the implementation of mathematical formulas, Would You c om.en t on the stage,
validation/verification, at which such numerical analysis can be effecItri.el, performed, and how
it may be done'

Response - Numerical algorithms and the implementation of those algorithms in the avionics
computer shoutd be tested during the analysis phase and also during the module deelo pment
phase. It is at these times that the basic accuracy and stability of algorithms is shown. MISO.

I

at these tilmes potential conditions leadinq to instability must be determined and reflected in
the validation test plans and test procedures. This probably means that te-t for occur-ence .

unusual conditions may be performed once the algorithm is integrated with the rest of the

software. Correction f a problem, if found, will depend or the circumstances.

Paper Nr. 34 - IMPLEMENTING HIGH QUALITY SOFTWI=RE

Presented bv - E. Dowling

No Questions

Paper Nr. 35 - LA OLALITE DES LOGICIELS AVIaJIQUES - SPECIFICATINI ET ElAALLATICiJ

Presented by - M. Delacroiu

No Questions

Paper fr. 36 - DISIlILHR CIFTVARE IN HIGH INTEGRITY HPPLICATIOS IN FLIGHT CONTROLS

Presented by - Dr. D. J. Martin

Speaker - K. A. Helps

Cctoment Although you hav e described several precautions which you Pate to reduce ccre'on modle

errors and failures, if such an error does occur does not this undermine the concept of usinq

dissimilar redundancy to replace om e normal .alidation procedures in s,'stems ,here elremely

high integrity is required' Surely the way to apply, dissimilar redundancy is to apply it in

addition to normal validation techniques or in systems where eKtremely high integrit,' is not

required, since the rilsk of coimon mode errors or failures are not quantifiable with confidence.

Response - I think the e-sence of the question could be rephrased A follows for a simi ar

redundant system:
Although several precautions are taKen to reduce common mode errors and failures, if such as

error does occur this undermines the concept of using similar redundanctv. The ris of comimon

mode errors remaining ir, an exteriel', tested suite of software cannot be quantlited with

,confidence.

Paper tlr . 3s - DIS'IMIILHR 5OFTIARE IN HIGH INTEGRITi oPPLICJTIOS IN FLIGHT CONTROLS
Presented by - Dr. D. J. Martin

Speaf:er - Cr. M. Kleinschmidt

Comment - (c imon mode errors cannot be excluded only by dissimilarity in scme cases. How do vcu

prevent the S.'W from those errors to achie.e the claimed error rate of 10 -s

Response - common mode errors cannot be excluded by e tensive testing of a single -uite of

software. They can only be reduced. At present we can t measure the reliabilitv of the eventual

software, we can -,nly increase our confidence in the software by the procedures and techniques

we apply. These are discussed and agreed with our customers and the certification authorities

until an agreed approach has beer, decided upon. We belleve, that with the dissimilar approach we

are starting from a position of itrength it. that the architecture pro,ides inherent integrity.

whereas with one suite of software you knot there are error nd tie teutin, I neCesarv it

reduce the probability of these common mode errors to less than 10

Paper Nr . 37 - THE COST OF SOFTWARE FAULT TOLE JC E

Presented by - G. E. itigneaul t

tio Questions

THE MANAGEMENT OF A LARGE REAL-TIME MILITARY AVIONICS PROJECT

by P.J. Carrington, R.M. Gisbey and K.F.J. Manning (Marconi Avionics, Rochester)

1. Introduction

The AQS 901 is an airborne submarine detection system installed in the Royal
Australian Air Force Orion and the RAF Nimrod Lonq-Ranqe Maritime Patrol
Aircraft. To counter the modern submarine threat, the development of sensor
and processing systems to detect and locate the enemy submarine has a hiqh
nriority. Expendable, sensitive underwater listenino devices, called
sonobuovs, pick up the faint but characteristic submarine sounds. These
sonobuoy signals are transmitted on an RF link to the aicraft where real-time
analysis Is performed by the ADS qnl Sonics Processor to extract the wanted
signal from the noise, to present the data to the operator in the most easily
assimilated form, and to provide a wide ranae of user options for display
manipulation and data combination.

The AQS 401 system consists of 22 units of special-puroose hardware and 1SnK
of CORAL software. The project started in 1973, the first flioht trials
took place in 1977, and the system went into service in 19R0. The software
is now in maintainance and has thus been throuoh all phases of the softwarelifecycle.

2. Project Background

In any major project, the circumstances - technical, financial and
administrative - play a major part in shaping the project, and any conclusions
drawn from the experience of the project must be interpreted in the light
of these circumstances. I will therefore first briefly summarise the main
factors that have influenced the way the AOS q9l project was tackled.

The customer wanted a major advance in his Anti Submarine Warfare (ASW)
capability. To this end a number of sonhisticated new sonobuoys were beinq
developed and a new processor, the AOS 901, was recuired to process them.
A range of advanced processing and display techniques were to be implemented
In the A0S 90l, particularly in the use of CRT displays. The development
was funded on a "cost-plus" basis and administered directly by the UK Ministry
of Defence. The principal system desion criterion was to maximise performance,
in order to effectively counter the submarine threat, with secondary criteria
to minimise unit production cost and the volume of the processor to meet the
constrained installation space on the aircraft. It is interesting to note
the relative costs of hardware vs software and development vs production.

Table I Relative Costs of AQS 901 Hardware and Software

HARDWARE SOFTWARE TOTAL

DEVELOPMENT 27 7 34

PRODUCTION 66 n 66

TOTAL 7 100%

Total Number of Production Systems is 107

Because of the impact on cost and weight of additional hardware and the
relatively low cost of adding software, there was a natural tendency to
solve problems by implementing solution In software rather than hardware.
Also, because of the extent of the development and production tasks and
the need for an early in-service date, development of hardware, orocessina
algorithms and software progressed in parallel, rather than serially.

In addition to these general project circumstances, there were a number
of specific factors which the software manaaement had to contend with.
The system, designed in 1974, has a centralised processor architecture
with 4 interrupt levels and 16 channels of asynchronous I/O and DMA.

,s

Figure I

ANALYSTS'

SYSTEM CONDITIONING STORE CONDTONING

COTANDALTTEROTHER SYSTE
TRANSMATTER------- PrrSSP TNTERFACES

- - =z-

MANTI ARDCOPIY Ca npF:RAT PO
TYP UIT DISPLAYS P ISl 'S NTROL .S

The wide range of tasks that the CPU has to carry out, from millisecond
response times for dedicated hardware control, to hundreds of milliseconds

for operator interaction and up to tens of seconds for complicated floating-
point arithmetic algorithms, made the design of efficient software difficult,
and compounded the software testing orohlems. Also, many of the dedicated
hardware units had to operate at very high loadings to achieve the necessary
system performance, significantly complicating the software scheduling task.
On examination of the system specification and user needs, in particular in
the operator interface area, the requirements evolved during project
development into a much more extensive and complex software design than
originally envisaged either by the contractor or the customer. In fact, due
to these and other factors, the software program, initially estimated at
16K, grew to a final size of 15K words of CORAL!

The testing of the software and its integration with the hardware was also
not without its challenges. The statistical nature of the data (signals
in random noise) and the operator inputs (selection of options at random
times) made tests time-consuminq to carry out and pass/fail criteria difficult
to define. The wide range of options made the testing of all processina
combinations impossible, and the real-time nature of the system, with its high
loadings, did not allow sophisticated debugging aids. In addition, the
Software Team had also to contend with a new languaoe - this was the first
major avionics project written in CORAL, a new CORAL Compiler for the GEC
q2n Computer, and a new host and operating system.

The majority of these factors became evident as the software develooment
progressed and it should be said that the techniaues employed to cone with
them "grew up" with the oroject and were not part of any predefined approach
to software development.

3. Software Statistics

Before describing those ingredients of the software management which most
contributed to the overall success of the AOS qOl oroject, it is worth
reporting some of the software development statistics. Table 2 summarises
the code oroduction rate.

Table 2 AQS gOl Coral Code Production Rate

PRODUCTTON ONLY PROTOTYPE AND
(DELIVERED TO CUSTOMER) PRODUCTION

TOTAL CODE 15n 26n
(K WORDS)

TOTAL MANPOWER
(MAN YEARS) 22n 22n

CODE PRODUCTION RATE
(WORDS PER HOUR) 0.4 n.7

The overall rate of n.4 words per hour includes all software design,
programmer and system testing effort and is comparable to that achieved
on other real-time projects. The lifecycle diagram shows the usual split
for this type of system into approximately 5n% design and code, Sn% test.

Figure 2 AQS 901 Software Effort

24

MANPOWER 2 T (

12 CO"r 3% 2J

4 .DESIN 4281k

1973 74 75 76 77 78 74 s R1 182

The loading of most of the special purpose hardware was very high,
exceeding on% for the FFT processor, and program, data and display stores.

4. Software Development : The Lessons Learned

4.1 Software Design

* Formalisina the design at the right time is important.

In the early stages of system design, creativitv in devising
the best solution to the customer's needs is aided by flexibility
and informality in system design documentation. However, at some
point, the decision must be made to chanoe to a formal design
statement under change control procedures. If this decision is
taken too late, additional reguirements and chanqes can too easily
be accepted without a proper evaluation of the impact on system
loadings, software complexity,cost and timescales. Estimation
and control of system loadings is essential. Simulation of
software to establish processor loadings was found to be
unproductive.

e Your system design specification is the bridge between the
customer's reguirements and the detailed design.

The most valuable system design statement proved to be the
System Design Specification (SDS) which is a high-level
contractor-generated document stating the overall system,
software and hardware design and responding to the customer's
Requirement Specification. The SfS acted as a focus for all
design groups within the project team, as well as bringing out
differences in interpretation of the Requirement Specification
between customer and contractor. It is arnazing how often the
same words can have different meanings for different people!
The SOS must be produced as early as possible and updated
regularlv.

0 The SDS is often hardware - or function - oriented you
also need a facility description document.

In a combined hardware-software system, it is natural to
base the architecture and modularisation of the software
on the hardware units, e.g. an FFT segment, a CRT displav
segment. Whilst this approach is beneficial in making
maximum use of common functions and in efficient scheduling,
it does not lend itself to the analvsis of user facilities
and it can be difficult for the customer to be satisfied
tnat the system does provide the facilities he needs
perationally. The oroduction of a facility-based document,
such as an Operator-Interface Specification, at the same
time as the System Design Specification, is essential if
misunderstandings of the system's technical capability are
to be avoided. Figure 3 demonstrates the two opposing
methods of breaking down the system design.

Figure 3 System Design Documentation

Functional Breakdown

(System Design Specification)

DATA FFT DISPLAY OPERATOR
AQUISITION PROCESSING TNPUT 0

/ P

SONOBUOY A R

WIDEBAND ANALYSIS A

Facilitv Analysis __.. .. T
SONOBUOY B R

(Operator) NARROWBAND ANALYSIS
(-Interface) I F
(Specitication) -A

TRACKIN, L
I
T
Y4 HARDWARE UNITS

4.2 Software Production

* Two-phase software production finds the problems early but avoids
compromising the software structure.

The production of AOS 9l1 software evolved into a two-phase
process, as in Figure 4, which proved most successful.

Figure 4

P HASE IA
"PROTOTYPE

PHASE 2
CONTENT "PRODUCTION"

n ISSUE I 2 3 1 2 1 T~mF

SYSTEM DESIGN

HARDWARE DESIGN

REVrEw OF PHASE I SOFTWARE

The first phase (or "prototype") software was written to the
Reouirement Specification and to be run on representative
hardware. However, it did not cover all facilities in full
deoth. And it was recoqnised that, because software desian
and production started early, there might he a need in the
second phase to redesign all or part of the software for
higher efficiency or performance when areater familiaritv
with the hardware and nrocessinq methods was acouired. The
advantages of this approach are that the early practical
experience of the hardware and aloorithms rapidly identifies
the major software problems, whilst ensuring a hioh deqree
of carry-over from the prototype to the production software
by aiming the prototype at the full specification and the
target hardware.

0 Multiple issues provide early performance feedback.
Depress customer exoectations of early issues.

Within each phase, a number of issues, or software packages
(say three), are provided for formal testino and flight
trials. The customer's expectations of the early packages
must be depressed - it is better to provide a few well-tested
facilities than a lot of incorrect ones.

4.3 Software Testino

0 The handover point between the Software and System Test teams,
and the software capability, should be well defined.

In the testina of the software and integration with the hardware,
it is essential that the noint of handover of software from
the Software Team to the System Test Team is well-defined.
Formal Test Desian and Reception Test meetings provide the
forum, in the AOS 401 Project, for the originator of the
software module to explain the design, Processing techniques

and depree of offline testina carried out, and for the
System Tester to assure himself that the software module is
adecuately designed and tested for integration on the hardware.
An intermediate test phase, where the Software Team check the
basic "load and run" capabilities of a new package on the
target hardware before handover, can save System Test Team
effort.

0 Early flight trials are valuable for feedback on performance
and ergonomics of facilities.

The AQS Qi system was subject to flight trials and Performance

and Integration Testing from the earliest issues. Whilst
these made the software develooment plans and schedules very
tight and difficult to adhere to, in hindsight they were
beneficial to the project in identifying operational and

performance problems at an early stage, before release of
software to the RAT; theme undoubtedly would have been overlooked
by lessformal testinn methods.

a Formal Tntegration Testing and Performance Demonstration
prior to issue ensure oualitv.

Before an issue is released to the PAF, eight days of
formal Performance and Tntearation Tests, witnessed bv
customer representatives, are carried out.

4.1 Software Maintenance

* Changes in cersonalities, authorities and procedures at
the handover to maintenance should be planned for.

The maintenance phase is generally characterised by a
'hanne in personalities involved in the project. To
avoid confusion and clashes, it is advisable to clarifv
and define authorities, procedures, lines Of comnunications
and the aims of the maintenance chase at as early a stage
as possible.

* A nroject-wide "Shopping List" for enhancements and fault
correction makes for easier control and nlannino.

The maintenance chase has benefited from the drawino up
of an Operational and Performance Problems List which is
a single project-wide document containino all known
software faults and reouired enhancements and which is
used by the customer to set priorities an6 draw un software
development plans. In fact, the majoritv of AQS ql1
maintenance involves the addition of new facilities.

* Patching, suitably controlled, is a good method of ranid
fault correction.

On a practical aspect of maintenance, the use of patching
(modification of the Program after compilation and linking)
has been found to be a better way of achieving a fast response
to software problems, particularlv during trials, than
recompilation.

4.9 Software Management

* Small Proarammino Teams (4-A), with a high level of desiTn
authority, work well.

The Software Team who carried out the design, production
and testing of the AOS QnI Software numbered at most thirty
at the peak of the development. The team structure is along
the lines of the "Chief Programmer Team" approach with units
of I-S programmers led by an experienced Software Designer/
Programmer. Each team has a (Treat deal of design authority
for the module or part of the orogram for which it is
responsible.

* Software Team members nenerallv - have a computer science decree
- start with little previous

experience
- are trained "On-the-Job"

Virtually all programmers are Universitv graduates in Computer
Science or a scientific subject. Most come to the Software
Team with little or no experience of real-time or CORAL
programming, and expertise is built up bv "on-the-job"
training.

0 The motivation of teams and individ, Is is essential.

One of the key factors in the success of the project has been
the degree of motivation and commitment to the croject of all
levels of staff. Recruitment is directed towards condidates
demonstrating initiative and enthusiasm, and this has paid off
in the development of a Software Team capable of, and motivated
to, tackling the difficult technical problems the AOS OnI project
has imposed, within the tight timescales reguired by the customer.

A good and eaual relationship between contractor, customer's
financial agency and customer's technical agency facilitates
the resolution of conflicts.

The mutual unaerstandinn develoned between the contractor,
customer's financial and technical authorities oroved
valuable in fhe resolution of conflicts of timescales,
cost and performance, and in the assessment of alternative
courses of action and the risks involved.

* Pert planning bv a committed and exoerienced Lanner '!ves
oood visibility of nroaress.

PERT olannina has been used successfullv. The most useful
nlans have 23 n-5nf activities, with a detailed breakdown
to 2-3 week tasks over the ensuino 12 months, and undated
every 4-6 weeks.

Conclusion

The AOS 9nl orolect has been a success. The system is now
well-nroven in operational service and well-reoarded bv its
users. The canacility and nerformance the AOS qnl nrovides
is sionificantly areater than that orioinallv envisaned bv
either customer or contractor. This is largelv due to the
ability to extend system nerformance throunh software. The
complexity of the software development task increases
dramatically with narallel software, system and hardware
desion, but, by careful and oractical manacement of dedicated
teams, the task is achievable.

t. Future Developments

The ADS qn0 project started in the early seventies : since
then hardware has become sionificantlv smaller and more
capable, and software development tools and technioues are
startina to apear. I will finish bv notinq some of the
areas which our experience on the AOS 001 project sugnests
are the most imoortant for the next aeneration of avionic
mission systems.

" Multinrocessor systems make software more modular.

Distributed orocessino, made nossible by micronrocessor
and dynamic store developments, is the key to software
modularisation, with eaoh processor canabilitv matched
to the task it has to perform.

" Smaller and faster processors and store can relieve the
need for hioh loadinqs - hut will this onoortunitv be
taken?

With the reductions in hardware si7e and cost, the need
for high loadinos on processors and store dimish, makIna
more structured and standardised, thouah less efficient,
software desions possible. However, as these advances
nive the onoortunity for the contractor to offer, and
the customer to demand, more capability in smaller aircraft,
the oroblems of software may not reduce as rapidlv as miqht
be envisanod.

* Setter and standardised software development tools will
improve software nuality and oroduction rates.

Better software development tools allow the software
ennineer to soend more time on desion and testino and
less on panerwork. Standard tools mean that he does not
have to learn to ccpe with new tools as the same time as
meetinn the demands of a new project. On the other hand,
these tools must not impose excessive penalties or constraints
on the target system, in execution time or code volume, as
these may well be unacceptable in a weight-constrained
avionics system.

* Desiin statement and validation techninues are essential
for the future eomolexitv of systems.

The automation of the desian statement and Validation
processes is essential if the scale of system and
software complexity now heina envisaaed is to be
achieved. There is, however, a lona way to no in
develonino tools with the necessary flexibility, and
it is unlikely that there is a single answer avplicahle
to all types of software develonment project.

Testinn of real-time systems may be aided hy automated
statistical samnlinq methods.

There can he no real-time system, of any siqnificant
size, for which every possible route throuqh the proqram
and every combination of parameters can be exercised and
checked. Exhaustive testino is impossible in practice.
Statistical samnlina techninues are applicable to software
and may he automated. These may provide the key to the
testability/qualit v problem, particularly for very complex
but not fliaht-critical software-hardware systems.

F/A-l8 SOFTWARE DEVELOPMENT - A CASE STUDY

T. V. McTigue
Branch Chief

Mcdonnell Aircraft Company
McDonnell Douglas Corporation

Post Office Box 516
St. Louis, Missouri U.S.A. 63166

ABSTRACT

This paper presents a description of the successful Avionics software development for the U.S.
Navy/McDonnell Douglas F/A-l8 Hornet Fighter/Attack Weapon System. The Avionics Computer Subsystem
consists of two central Mission Computers and a number of distributed processors embedded in various
sensor and display subsystems. This distributed processing system is interconnected by and communicates
over a MIL STANDARD 1553A serial I MHz coammand/response multiplex network. The avionics software
architecture is discussed and the rationale Is presented for the partitioning of the software tasks
between the central Mission Computers and the distributed processors embedded in the sensor subsystems.
The salient features of the software of the Mission Computers and the distributed processors are also
discussed. Finally, the design of the Operational Flight Program (OFP) for the central Mission
Computers Is oescribed, including a discussion of the development process and support facilities which
were used for the software integration and validation.

1. INTRODUCTION

The purpose of the F/A-18 Hornet Weapon System is to deliver air-to-air and air-to-ground weapons
on targets that must be detected, Identified, tracked, and destroyed by the pilot using sophisticated
sensors and weapons. In the course of an F/A-l8 Hornet mission, millions of split-second computations
and decisions must be made within the aircraft. The pilot, In addition to flying the aircraft, must
constantly monitor the instruments and interpret the readings to ensure that the weapon system can accom-
plish Its purpose. One-man operability was a prime goal in the design of the FIA-18 Hornet. Every
deL.ision and task that could be safely removed from the pilot was incorporated in a highly integrated
computational subsystem. The operations within the subsystem are still at the pilot's command, but he
is able to perform his primary tasks with confidence based on reliable, real-time operation of his com-
putational subsystem. This subsystem consists of two mission computers and a number of distributed
computers in various sensor and display equipments. The Operational Flight Program (OFP) for the
Mission Computer was developed by McDonnell Douglas Corporation, St. Louis, Missouri, and was flight-
tested and qualified by McDonnell Douglas and Navy pilots at the Naval Air Test Center, Patuxent River,
Maryland. The first U.S. Navy squadron was activated at the Naval Air Station In Lemoore, California,
in February 1981, and the first production aircraft was delivered in September 1981. The F/A-l8 has
also been selected by Canada and Australia and is under serious consideration by a number of other U.S.
Allies.

2. THE F/A-18 SOFTWARE DEVELOPMENT

A popular misconception is that the software development effort begins when it is time to do the
coding. On the F/A-18 the software effort began with the system design and mathematical analysis of the
system equations. The software engineers participated in the definition of the system design as well as
in the software implementation of that design. They had to consider not only the definition of the
system design but also the impact of that design on the limited airborne computer resources of memory
and execution time. In addition, the software engineers "rendered" the equations to a form suitable to
the architecture of the airborne computing system without changing their performance or accuracy.

The software design methodology used on the F/A-18 Included the following:

o Independent Organizational Structure

o Rigorous Software Control
o Sensor/Mission-Oriented Software Par'titioning
o Functional Software Module Partitioning
o Ton-Down Design
o Structured Software Design
o Proven Design Practices
o Thorough Software Testing

Each of these will be discussed in subsequent paragraphs.

2.1 ,ndependent Organizational Structure

The structure and partitioning of the software organization was considered as important as the
structure and partitioning of the software Itself. Figure (1) shows the organization of the Software
Engineering Group. This group was part of a Project Organization tasked with the day-to-day activities
of design, development, test, delivery, and support of the product. The Project was staffed with per-
sonnel from various Functional organizations. Thus each individual had two independent reporting lines,
Project and Functional. In addition, each Functional organization provided independent technical
reviews and recommendations to the Project. The personnel assigned to the Project were moved from their
Functional work area and relocated together In a Project work area. The Project/Functional organization
partitioning provided built-in "checks and balances" at all levels of the organization.

30-2

The Software Engineering Group consisted of four Project subgroups and one non-project group that
reported directly to a Functional organization. This structure provided organizational independence
even within the Software Engineering Group.

The Software Documentation and Control Group was responsible for the management and control of the
software documentation as well as for the configuration control of the software itself. This group was
responsible for establishing and maintaining the development library, maintaining backup copies of the
evolving program, compiling frozen module versions, generating updated versions of the OFP, and
assigning and maintaining records of module and program identification unique for each version. Records
maintained by this group provided the specific configuration identification of each version of the
program compiled for development testing.

The Support Software Group was responsible for the design, development, test, and documentation of
those programs used to support the MC OFP development. This support software included programs such as
the compiler/assembler, database catalog, avionics simulation models, and automatic flowcharting
programs.

Software design and development was the responsibility of the OFP Development Group. Even within
this design group there were built-in "checks and balances". A programming team was assigned to each
functional module. This team consisted of a Module Engineer and a Module Programmer. The Module
Engineer was tasked with the software design whereas the Module Programmer was tasked with the module
coding. To~ether they were responsible for all aspects of the software design, development, test and

documentation of their module from software inception to installation. The Module Engineer and the
Module Programmer were physically located next to each other to shorten the communications paths as much
as possible. This arrangement was based on the premise that the number of errors in a program is
directly proportional to the distance between the software designer and the software programmer.

A fourth group called the OFP Test and Integration Group provided independent verification and
validation of the complete OFP. This provided organizational separation between the software design
teams and the software test team. As an independent group, they were responsible for the final
verification and validation of the OFP. It was their responsibility to prepare the software test plan,
define the required test facilities, and prepare and run the test procedures for integration, test, and
acceptance of the software.

One final "check and balance" was provided by the independence of the Software Design Integrity
Group from the Software Engineering Group on the Project. This independence occurred due to the fact
that the Software Design Integrity Group reported to the Functional engineering organization and not to
the Project organization. The Software Design Integrity Group was responsible for the preparation of
the Avionics Software Guide and for audits of the Project software groups' adherence to these software
standards.

2.2 Rigorous Software Control

On the F/A-18 software control encompassed control of all aspects of the software effort, namely:

o Control of the software requirements
o Control of the software design
o Control of the software testing
o ontrol of the software configuration.

Just as the software development on the F/A-lB did not begin with the coding, neither did the
software control. Control of the software began before there was any software. It began with control
of the requirements imposed on the software by the system designers. From years of training, all
engineers possess Inordinate amounts of "technical greed", the desire to do a perfect job, to wring the
last bit of performance out of a design whether or not it is required or cost effective. Control of
software requirements was eff-cted by performing trade studies to show whether a software requirement
was cost effective, whether -here was an alternate approach, what impact each approach had on the
on-board computer resources, and whether the task needed to be done at all.

The next segment of software control involved control of the software design. Design control
really means control of the designers of the software. Management techniques were employed which
clearly established areas of r iponsibility, defined programming standards, established programming
traceability, and required programning audits. The programing standards required the use of simple and
straightforward coding which was easy to understand and maintain and which had tne appearance that the
entire program was coded by one programmer. Detailed programming "good design" practices were
established and progranmer compliance audited by engineering personnel outside the design team.

The next phase of software control addressed software testing. This is often the most neglected
and least controlled segment of the overall software effort. On the F/A-lB this was not the case.
Software testing began on the module level where every path in each module was tested. To confirm that
every path was exercised, a special program called PATHFIND was used that checked that all paths in the
airborne code had been exercised. After module testing was complete, the next phase was complete
program testing. This was performed on the airborne computer operating in an Input signal environment
that simulated actual flight conditions to the airborne computer. In each phase of testing, a test
procedure change log was maintained sa that as changes were incorporated into the airborne program
c, responding changes were made to the test procedures. Testing deserves and needs as much control as
t,e other segments of the software effort since it comprises about 50% of the overall software
development effort.

Finally the F/A-l8 software configuration was controlled. This is probably the best known aspect
of software control although historically not necessarily the best implemented. On the F/A-l8 software
configuration control did not wait until the software was delivered. It began with control of the
design by means of control of the flow charts and eventually the code itself. No changes were permitted
to a flow chart or the code without a written and approved Computer Program Change Request (CPCR). Once
the computer program was released for flight test it was assigned a part number just like hardware.
Installation in the aircraft and subsequent change of the program was controlled by changes to the part
number (see Figure (2)).

2.3 Sensor/Mission-Oriented Software Partitioning

The F/A-18 airborne computational requirements were classified into two major categories
(Figure (3)):

o Sensor-oriented computations
o Mission-oriented computations

Sensor-oriented computations were defined to be those independent computations, such as sensor
coordinate transformations, platform management, and signal processing, which were peculiar to a particu-
lar sensor or display. Mission-oriented computations, such as weapons launch calculations, were defined
to be those computations directly related to performing the mission and dependent on the integration of
information froa several avionics subsystems. Table I shows typical examples of the two categories of
computations.

TABLE I - COMPUTATIONAL CATEGORIES

Sensor-Oriented Mission-Oriented

o Air Data Calculations o Air-to-Air steering and launch
o Radar Signal Processing zones for gun and missiles
o Inertial Platform Management o Air-to-Ground steering and release
o Display Symbol Generation for bombs, rockets, gun, and missiles

o Selection of best available data
from various sensors

o Integrated display management

The mission-oriented tasks were allocated to two central Mission Computers (MC) and the sensor-
oriented tasks were assigned to embedded processors in each of the sensor subsystems. (See Figure (4)).
This relieved the central computers of those tasks which could be more effectively performed and managed
in distributed and independent sensor processors. This approach offered functional modularity of the
sensors, whereas system integration was provided by the Mission Computers. Hence, improved sensors and
displays can be added later to the Avionics System, and present ones can be changed, with minimum impact
on other equipment. Likewise, if the armament is altered for new or modified weapons as the mission of
the aircraft is enlarged, such changes can be accommodated primarily through changes to the Mission
Computer and Stores Management Set software.

2.3.1 Sensor-Oriented Processing

On-board the F/A-18 Hornet there are four major subsystem-embedded reprogrammable computers and a
number of smaller subsystems with embedded microprocessors with Read-Only Memories (RON). Table II
summarizes the computer hardware for the major subsystems with reprogrammable computers. Table III
presents the computer hardware information for the subsystems with ROM computers.

TABLE II - SENSOR-ORIENTED REPROGRAM4IABLE COMPUTERS

COMPUTER CPU SPEED MEMORY

Inertial Nay Computer 2901 238 KOPS 16K Core

Radar Data Processor 2901 700 KOPS 250K Disk/16K RAM

Radar Signal Processor 54S181 7100 KOPS 250K Oisk/48K RAM

Stores Management Processor 8080 200, KOPS 32K Core

I1 ll m l

TABLE III - SENSOR-ORIENTED ROM COMPUTERS

SUBSYSTEM CPU MEMORY

Air Data Computer 2901 5K ROM

Cons System Controller 8080 16K ROM

Flight Control Computer (4) MCP-701A 44K ROM

Forward-Looking Infrared 9900 32K ROM

Laser Spot Tracker 2901 12K ROM

Maintenance Monitor Panel 8080 1K ROM

Maintenance Signal Data Recorder Set 8080 14K ROM

Multipurpose Displby (2) 2901 5K ROM

Each sensor computer performs only those computations necessary to perform its well-defined task.
This includes all computations required to translate some measured physical parameter, such as air
pressure, into useful information for the pilot, such as altitude, airspeed, and Mach number. Once the
information is computed, it is sent to the Mission Computer over the Avionics Multiplex (MUX) bus.
There it is used with information from other sensors to perform the mission-oriented computations as

well as for display to the pilot. Figure (5) lists the major sensor computers and their allocated
software computational tasks.

2.3.2 Mission-Oriented Processing

The Mission Computer Subsystem consists of two identical computers built by Control Data Corpora-
tion (CEC). They are the new U.S. Navy Standard Airborne Computers designated the AN/AYK-14. The
rationale for two Mission Computers was the same as for two engines. When they both are operational,
they provide increased weapon system performance. When one is not operational, the other provides
enough performance for s lf-defense and safe return. Although the hardware of the two Computers is
identical, their computer programs are different and are dedicated to specific processing tasks. The
AN/AYK-14 is a high-speed, general purpose digital computer specifically designed to meet the real-time
requirement- of airborne weapon systems. The computer uses four AMD 2901 four-bit slice Large Scale
Integrated (LSI) circuits to implement the 16-bit Central Processing Unit (CPU). The CPU is micro-
programmed by means of ROM firmware to emulate the instruction set of the U.S. Navy Standard Shipboard
Computer designated the AN/UYK-20. By emulating the AN/UYK-20 instruction set, the AN/AYK-14 can use
the same CMS-2M Higher Order Langauge (HOL) support sottware originally designed for the AN/UYK-20. The
AN/AYK-14 consists of ten plug-in modules and a single plug-in modular power supply contained in one
Weapon Replaceable Assembly (WRA) weighing about 42 pounds and occupying 0.625 cubic feet. Each
computer contains 65,536 (16-bit) words of 7/13 mil (inside/outside diameter) core memory for a total of
more than a million individual cores per computer. The memory in each Mission Computer can be doubled
from 64K to 128K within the present equipment envelope simply by replacing the two present 32K memory
modules with two recently-developed 64K modules.

Each of the two Mission Computers is dedicated to specific processing tasks by means of its stored
program. One computer is assigned the Navigation (NAV) And Support processing tasks and associated
d
4
splay management. The other computer is assigned the Air-to-Air and Air-to-Ground Weapon Delivery

processing tasks and associated display management. The stored program in each computer has a small
backup software module for selected functions of the other computer. These backup modules are executed
only in the event the primary computer for these functions should fail. The funtional software modules
in each computer are shown in Figure (6).

2.4 Functional Software Module Partitioning

A modular partitioning of the software was used which partitioned each computer program into
software modules of manageable size based on a functional grouping of computational tasks. The
rationale for modular software was analogous to that for modular hardware. First, it permitted each

module to be independently developed, debugged, and tested in parallel with the other modules. Second,
it allowed changes to occur within a module without causing changes to be made in other modules, as long
as the external modular interface remained the same. Analogous to the modularity and controlled inter-
faces in the hardware, new programming modules could be added and old ones deleted without impacting the
whole program as long as the module interfacing rules were followed. Documentation and undertanding of
the total computer program was simplified, since each module could be described and learned as a
separate entity.

2.4.1 Executive Module

The executive program module imposes order and structure on the entire F/A-18 operational flight
program. All functional program modules are processed under executive control, which sequences them in
an appropriate flow and calls them at a rate consistent with their requirements.

Six major tasks are performed by the executive module. First, it initializes the MC after start-up
or after restart from a power interruption. Second, it schedules the order and rate of execution of
each functional module. Third, it schedules the order and rate of input/output operations for the OFP.
Fourth, it controls the servicing of all interrupts, external and internal. Fifth, it manages inter-
computer communication between the Navigation MC and the Weapon Delivery MC. Sixth, it uses the sche-
duling and input/output management functions to ensure proper sequencing of the other modules.

2.4.2 Air-to-Air Module

The air-to-air module performs the following functions:

1) initializes the radar air-to-air search pattern based on the weapon selected
2) computes aiming reticle for director or disturbed gun mode
3) computes aiming reticle for director or manual rocket mode
4) computes maximum and minimum launch ranges and steering cues for missiles
5) computes other aircraft and target parameters for display.

2.4.3 Air-to-Ground Module

The air-to-ground module performs the following functions:

1) performs visual and sensor-aided designations of ground targets
2) automatically positions sensors
3) calculates ballistic release times
4) calculates steering cues for weapon .elease and reattack
5) calculates launch envelope data for air-to-ground missiles
6) issues release pulses for correct weapon delivery and weapons intervals
7) manages strike camera (SCAM) for damage assessment.

2.4.4 Navigation Module

The navigation module performs the following functions:

I) selects/calculates best available aircraft attitude, position, and rate data
2) calculates steering to prestored waypoints
3) performs velocity and position updates
4) performs target marking
5) calculates range, bearing, heading, and steering error to selected waypoint and TACAN station.

2.4.5 Data Link Module

The data link module decodes and processes messages received from a shipboard, airborne, or ground-

based terminal. The messages contain information used in the following functions:

1) waypoint insertion
2) display of data for vectoring to airborne targets and rendezvous points
3) display of automatic carrier landing data
4) processing of couple requests to the flight control computers

5) processing of test messages
6) processing of radar target data and aircraft data to be transmitted in the reply messages.

2.4.6 Tactical Controls and Displays Module

The tactical controls and displays module manages the following functions:

1) Radar Control Panel/Display
2) Forward-Looking Infrared (FLIR) Control Panel/Display
3) Laser Spot Tracker (LST)/Strike Camera Control Panel/Display
4) Air-to-Ground Guided Weapons Control Panels/Display
5) Stores Management Control Panel/Display

2.4.7 Support Controls and Displays Module

The support controls and displays module manages the following functions:

1) Cautions/Advisories Display

2) Built-In Test (BIT) Display
3) Test Pattern Display
4) Engine Display
5) Checklist Display

2.4.8 Navigation Controls and Displays Module

The navigation controls and displays module manages the following functions:

1) Horizontal Situation Display Control Panel/Display
2) Attitude Director Indicator Display
3) Data Link Display
4) Up-Front Control Panel Data Entry/Readout
5) Moving Map Film Strip

2.4.9 Head-Up Module

The head-up display (HUD) module manages the HUD Graphics program. Symbology controlled by the MUD
module includes aircraft flight data, data link cues, navigation cues, radar status, armament status,
air-to-air weapon delivery cues, and air-to-ground weapon delivery cues.

39-6

2.4.10 Inflight Engine Condition Monitor Module

The inflig 't engine condition monitor module monitors various engine and associated aircraft
paters to provide engine health information to the pilot and maintenance personnel. Cautions,
advisories, and real time engine parameters are displayed in the cockpit. Life usage indices and other
engine maintenance information are transmitted to the Maintenance Signal Data Recorder (MSDR).

2.4.11 Inflight Monjtoring and Recording Module

The inflight monitoring and recording module monitors and processes various aircraft sensor outputs
for control and display of pilot cautions and advisories and transmits avionic and non-avionic equipment
failures to the MSDR Control is provided for the data recorder and provision is made for the recording
of tactical data in air-to--.- and air-to-ground modes. Also, aircraft fatigue levels are monitored and
recorded during flight.

2.4.12 Avionics Built-Test Module

The avionics built-in test module provides the control by which an operator can run total system or
individual tests on each of the interfacing subsystems. It also evaluates data received by the MC from
each of the interfacing subsystems as to their operational status. This data is correlated by subsystem
and current status and is displayed in the cockpit. In addition, the data is converted into predefined
codes each representative of a specific failure of an individual subsystem for transmission to the MSDR.

2.4.13 Mission Computer Self-Test Module

The mission computer self-test module performs the following functions:

1) immediately after computer turn-on, tests those functions which, when tested, i't:rfere with
normal computer operation

2) periodically tests selected functions of the computer which, when tested, do not interfere with
normal computer operation as well as performing an end-to-end check of the capability of the MC
to communicate with each peripheral

3) maintains error information for later maintenance action; and

4) latches WRA fault indicator and sets WRA status signal as required.

2.4.14 Mission Computer Backup Modules

A backup module is resident in each computer. Each backup module performs essential software func-
tions of the other mission computer when a failure occurs in that computer.

2.4.15 Mathematical Subroutines Module

The mathematical subroutines module supports other program modules by providing common mathematical
routines such as trigonometric, logarithmic, and matrix operations.

2.5 Top-Oon Design

A Top-down design approach was used for each module of the MC software. The resulting design was a
hierarchy where each top-level program called several second-level subprograms, each of these calling a
number of third-level subprograms, and so on (usually to about 4 or 5 sublevels) until a subprogram was
reached that did not call any other subprograms. This top-down design approach resulted in many small
subprograms (subroutines), each one being limited to a specific processing task and being able to be
represented on one flowchart. The top-down design approach for a typical module is shown in Figure (7).

2.6 Structured Software Design

Recent advances in Structured Program design were instituted on the F/A-18 and tailored to the
airborne software. Work Is in progress on development of ADA, a Pascal-like structured programming
language for airborne software. Although such a language was not yet available for the F/A-18, many of

the benefits of a structured programming language were obtained by employing a structured flowchart
design technique. Programs coded from these structured flowcharts were considerably easier to under-
stand, test, and subsequently modify as changes were incorporated. Only five structured programming
constructs were permitted to be used:

o SEQUENCE

o IF . . . THEN . . . ELSE

o DO WHILE

o REPEAT UNTIL

o CASE

I

2.7 Proven Design Practices

The proven design practices used on the F/A-18 are shown in Figures (8) through (Ill). The four
major development phases were:

o System Design and Verification

o Software Coding and Integration

o Hardware/Software Integration

o System Integration and Test

The development process began with the design of the complete Avionics system, which was defined by
a series of mode logic diagrams, equations, interface control documents, and display diagrams. From
these the program flow diagrams were prepared and a software walk-through was held with a peer group of
system and software engineers. The design was updated to include any changes resulting from the walk-
through. After this, a software "Breadboard" was Implemented in a higher-order language for system
validation by pilots in a cockpit with a realistic operational environment simulation.

Once the system design was approved by the pilots, the software coding and integration began. The

software was developed in a building-block approach. First, individual software modules were coded and
tested. When this was completed, the build-up of the Operational Flight Program (OFP, was begun one
module at a time until a complete OFP was assembled.

The third phase then integrated the software with the airborne hardware in which it was to run.
The computer and its OFP were treated as a single entity with all inputs simulated and all outputs
displayed on cockpit equipment.

In the final phase, the Avionics system was built up, just like the software, one element at a time
until the complete avionics system was integrated. Finally, the Avionics system was installed in an
aircraft and flight tested.

2.8 Thorough Software Testing

The F/A-18 software methodology was based on testing the flight program "before", "during", and
"after" the actual coding of the program. Initially, the systems analysis and design approach was
validated using an IBM 370 computer facility to produce a FORTRAN "breadboard" version of the proposed
O7P. Subsequently, that design, and its implenentation in the language of the flight computer, were
validated for both man/machine and actual hardware compatibility. Figure (12) illustrates the steps
involved.

o Step 1 consisted of creating FORTRAN models of selected equations, algorithms and mode control.
These models provided the analytical validation of the equations and algorithms to be used in
the OFP.

o In Step 2, a FORTRAN model of the baseline design was used at the flight simulation laboratory
to evaluate the important control and display interface with the pilot and to test the
mechanization proposed for the weapon system. This step provided vital confirmation of design
adequacy at an early stage, and allowed alternate approaches to be examined.

o Step 3 used a bit-by-bit functional simulator (emulator) of the MC hardware to verify coding,
test software interfaces, and evaluate timing relationships in advance of first computer
delivery. First, individual modules were tested. When this was complete, the build-up of the
OFP was begun one module at a time until the complete OFP was achieved.

o Step 4 took place after arrival of the first Mission Computer. At this point, hardware/software
inconsistencies were Isolated and corrected, leading to preliminary confirmation of correct OFP
software integration with the MC hardware.

As other equipment arrived, Step 5 was taken to test the mission computer and its software with
each actual interfacing equipment. This step provided integration of the OFP/MC with the
individual equipment followed by integration with groups of related equipment.

o Step 6 then reintroduced the man-in-the-loop to verify the total man/machine system. This used
the MCAIR flight simulation laboratory with the OFP running in the actual mission computers, in
addition to flight hardware for controls and displayr, to checkout the system about to be flown.

o Step 7 was the final step in software development. Prior software testing had assured that
ultimate flight testing would proceed unhampered by software problems, thus permitting efficient
use of the flight tests to validate the system implementation and to Improve and refine the
avionics system.

3. F/A-18 SOFTWARE DEVELOPMENT FACILITIES

The F/A-18 Hornet integrated software development process, discussed above, made use of three

separate facilities:

o Software Development Facility
o Software Test Facility
o Cockpit Simulator Facility

3.1 Software Development Facility (SDF)

The Software Development Facility is a modest-size data processing facility. It uses an IBM
System/370 commercial computer system and standard peripheral equipment, operating system, and language
processors. This facility is used for all FORTRAN processing, database processing, and compilation/
assembly of airborne MC programs.

Figure (13) is a photograph of the Software Development Facility showing the IBM S/370 mainframe
and associated peripherals. The facility includes the following equipment:

o (1) IBM 370/138 Computer (512K Memory)
o (4) 100 megabyte disk drives
o (2) magnetic tapes drives

o (1) printer
o (1) card reader
o (5) CRT/Keyboard terminals

3.2 Software Test Facility (STF)

The Mission Computer Software Test Facility is a minicomputer-controlled, real-time simulation and
test facility used to test the airborne Operational Flight Program (OFP) in the MC and to integrate the
MC and its OFP with the other avionics with which they interface. The STF accomplishes this by
simulating the inputs to the MC and sending them out over the Avionics MUX in response to the MC
requests for data from various aircraft sensors. The MC processes these inputs as though it were flying
in an aircraft and then issues output data to the simulated sensors and to the cockpit displays. In
general, the input sensors are all modeled in software in the minicomputer whereas the CRT's used to
display the MC outputs are the actual displays used in the cockpit. This provides a realistic input
signal environment for the MC and a realistic display of MC outputs for test and evaluation by the
engineers and prograimers. Figure (14) is a photograph of the STF.

3.3 Cockpit Simulator Facility

The Cockpit Simulator Facility (figure (151) is a laboratory complex oriented primarily to manned,
real-time flight simulation. It includes a CDC Cyber 175 computer, four crew stations, terrain maps,
horizon and target displays and associated hardware. Each crew station includes complete flight
controls and instruments and is located in a forty-foot fiberglass dome. Target and terrain imagery is
projected on the dome and presented in the cockpit on software-driven displays or actual flight display
equipment. Both visual and sensor (electro-optical, infrared, radar) imagery is supported. The
facility is used for weapon system design, pilot training, tactics development, and effectiveness
assessment.

4. SUIARY

The F/A-18 computational subsystem is a distributed computer system interconnected by a MIL
STANDARD 1553A multiplex system. The software is partitioned into Mission-oriented computations
performed in two central Mission Computers and Sensor-oriented computations performed in distributed
processors in the sensor and display equipment. The factors that contributed to its success are
summarized in Figure (16). Many of these same factors make the software easily adaptable to changes and

expansions in the F/A-18 vission requirements and ready to share a long and successful future with the

F/A-l8 aircraft.

References

1. Griffith, V.V., Keifer, L.F., Paxhia, E.C., et al., "Aircraft Avionics Trade-off Study (AATOS),"

McDonnell Aircraft Co., St. Louis, Mo., ASD/XR 73-20 Final Report, Nov 1973.

2. Finke, N.G. and Rosenkoetter, E., "Aircraft Avionics from the Aircraft Manufacturer's Point of

View," McDonnell Aircraft Co., Zt. Louis, Mo., MCAIR 73-023, Sept. 1973.

3. McTigue, T.V., "F-15 Computational Subsystem", AIAA Journal of Aircraft, Vol. 13, No. 12. Dec. 1976,
pp. 945-947.

4. McTigue, T.V., "F/A-18 Tactical Airborne Computational Subsystem", NATO AGARD Avionics Panel

Symposium on Tactical Airborne Distributed Computing and Networks, Roros, Norway 22-26 June 1981.

FUNCTIONAL I PROJECT _________

-ORGANIZATION I ORGANIZATION

AVIONICS DATA PROCESSING SUBSYSTEM
SOFTWAREMANAGER

SOFTWARE I SOFTWARE OFP SUPPORT SOTAEET

DESIGN I OCUMENTATION DEVELOPMENT SOFTWARE ANITERIO
INTEGRITY AOND CONTROL

MODULE NO.I

FIGURE 1
SOFTWARE ENGINEERING ORGANIZATION

PREPARE
TAPE DWG PREPARE DESIGN DATA DWGS,

MATH FLOW DWG

APEIGN TAPE ~ DATA BASE DWG
PART NUMBER DWG L

LL PROGRAM LITNOG

TAPE RELEASEICHANGE

BY STD MCAIR DWGI
CONTROL PROCEDURES

WRITE TAPE.-

41 PI ON TAPE

FfA-18

FIGURE 2
SOFTWARE CONFIGURATION CONTROL

SENSOR ORIENTED MISSION ORIENTED

" RADAR SIGNAL PROCESSING 0 NAVIGATION

* AIR DATA COMPUTATIONS 0 WEAPON DELIVERY
* INERTIAL NAVIGATION * INTEGRATED CONTROLS

AND DISPLAYS

ENGINE MONITORING
* SYSTEM BIT

FIGURE 3

FIA-18A COMPUTATION REQUIREMENTS

AIR DATA
COMPUTER

STORES MGMT M)SSION RADAR
PROCESSOR COMPUTERS PROCESSORS

INERTIAL
NAVIGATION

COMPUTER

FIGURE 4
FIA.18A MISSION vS SENSOR PARTITIONING

AIR DATA INS STORES RADAR -ADAR

COMPUTER COMPUTER MANAGEMENT SIGNAL DATA
PROCESSOR PROCIESSOR PROCESSOR

PRESSURES * ALIGN/GB * SPARROW 1 0 RCVR GAINS 6 TARGET

AOA S ACCELERATIONS INTERFACE , SIGNAL POSITION
SIDESLIP 0 VELOCITIES S SIDEWINDER THRESHOLDS 0 TARGET

INTERFACE I o RANGE VELOCITY

ALTITUDE 0 PRESENT 0 GARPE POIIN SGUN GATING 5 TARGET
AIRSPEED PO OINTERFACE 0 PULSF ACCELERATION
MACH • ATTITUDE 0 BOMBS COMPRESSION * TARGET RANGE

* TEMP INTERFACE S AMPLITUDE 0 VELOCITY

* AIR * HARM WEIGHTING ERRORSINTERFACEI
DENSITY I RANGE S DISPLAY

* WALLEYE RESOLUTION DATA
INTERFACE o TARGET

* MAVERICK DETECTION
INTERFACE , TRACK S/N

0 RACK/VIDEO
CONTROL

0 JETTISON

9 WEAPON
INVENTORY

FIGURE 5

SENSOR ORIENTED SOFTWARE FUNCTIONS

K ~~~ NAVIGATION MISSION COMPUTER 6K [,

MUX EXECUTIVE MUX
BUS Bus

NAVIGATION DATA LINK

NAVHUDNAVIGATIONNAV HUD ONTROLS/DISPLAYS

ENGINE MONITOR ATA INPIH MONTOBASE AND RECORDING

AVIONICS BIT NON-AVIONICS BIT * n

SELF-TEST SUPOR
CONTROLS/DISPLAYS 11

UP-FRONT MAHSUBROUTINES WEAPON DELIVERY S3

CONTROL ____BACKUP 'uno.

WEAPON DELIVERY MISSION COMPUTER (54K)

EXECUTIVE

AIR-TO-AIR]AN-TOGROUND
C -OU 3 ~

, 1 WEAPON
C DELIVERY HUD DJATA TACTICAL

SELBASES CONTROLS/DISPLAYS

MATH SUBROUTINES NAY BACKUP

~FIGURE 6
MISSION COMPUTER FUNCTIONAL SOFTWARE MODULES

TOP LEVEL 2nd LEVEL

PROCESS

REPEAT
UNTIL

ROUTINE

EII EXIT

3rd LEVEL I 4th LEVEL
ENTRYENTRY

IF Do PROCESS

4 5 RPROCESS

EXl Iu- Ilu- $s - - o E EQENC

FIGURE 7
TOP-DOWN STRUCTURED SOFTWARE DESIGN

COCK MAT-FO-TOOP

SI MECHANIZATIONI I
REGO:I4 I E.TSIULAIO YILSLFAOR

FUR INERN

STANDARDSINLOO

FIGCURE

SOFWAR MOUEOOINGNICTGRTO

INTEBRATED SOFTWARE YE

TEEASSOTTSTN

MAINTERFANES
AN

MEALITS FO)E~E

PROGRAMINEATO

MISSIO COMPTER lAROWA HASRFWARE/ITGRTO

L--_[:IMT EGRADARSOTAR IED

TES MEN FRTETN

FIGURE 10
AVIONIC SYSPTEM OAESWR INTEGRATION OTS

II

'9-14

MC = Mission computer
OFP =Operational flight program

FLIGHT TEST7 FLIGHT TESTS USING MC AND
KOFP IN AIRCRAFT

COCKPIT SIM 6 MAN-IN-THE-LOOP TESTING USING ACTUAL MC AND
(OFP/MC) OFP ON THE MCAIR COCKPIT SIMULATOR

BENCH 5 MC/OFP TESTING AND INTEGRATION WITH
INTEGRATION TESTS INOIVIDUAL SUBSYSTEMS ON BENCH IN LABORATORY

MC/OFP 4 BENCH CONFIGURATION HARDWARE/SOFTWARE INTEGRATION
INTEGRATION USING MC ON BENCH IN LABORATORY

FUNCTIONAL 3 BIT-BY-BIT SIMULATION ON IBM 370 OF THE EXECUTION OF
SIMULATOR OFP CODED IN MC LANGUAGE

COCKPIT SIM 2 MAN-IN-THE-LOOP TESTING OF FORTRAN MODEL OF OFF USING(FORTRAN C C D6R AND MCAIR COCKPIT SIMULATOR

FLOATING-POINT I1 VALIDATE EQUATIONS, ALGORITHMS, AND MOING ON IBM 370.

VALID (LAB STO) 2 FORTRAN MO DEL PROVIDES LAB STAN DARD FOR SUBSE OUENT TESTING

FIGURE
2

FA-IBA
A MC SOFTWARE

DEVELOPMENT
LADDER

P,:

FIGURE 13 2Pflo4iS-,I

F/A-IBA SOFTWARE DEVELOPMENT FACILITY

I- m mmm~mIn m iiIIl'
ii

ii -II

FIGURE 14

FIA-1BA SOFTWARE TEST FACILITY INTEGRATION BENCH

FIGURE 1S
FIA-18A COCKP;T SIMULATOR FACILITY

0 INDEPENDENT ORGANIZATIONAL STRUCTURE

* RIGOROUS SOFTWARE CONTROL

* SENSORIMISSION-ORIENTED SOFTWARE PARTITIONING

* TOP-DOWN DESIGN

* 'TRUCTURAL SOFTWARE DESIGN
* PROVEN DESIGN PRACTICES

* SOFTWARE DESIGN AUDITS AGAINST PROGRAMMING STANDARDS

* SYSTEM DESIGN VALIDATED IN FORTRAN IN COCKPIT SIMULATOR
(SOFTWARE "BREADBOARD")

* SOFTWARE TESTED IN STF WITH SIMULATED SENSORS AND
ACTUAL DISPLAYS

* SOFTWARE TESTED IN COCKPIT SIMULATOR USING AIRBORNE
COMPUTERS

* TOTAL WEAPON SYSTEM SOFTWARE RESPONSIBILITI PLACED
WITH WEAPON SYSTEM CONTRACTOR

FIGURE 16
FACTORS CONTRIBUTING TO FIA-1IA SOFTWARE SUCCESS

I

4u-1

A LIFE CYCLE MODEL FOR AVIONIC SYSTEMS

WissDir Dipl.-Ing. Helmut Schaaff

Bundesakademie fUr Wehrverwaltung und Wehrtechnik
Mannheim, Seckenheimer Landstr. 8-1o

SUMMARY

A life cycle model for avionic systems has to put emphasis on the design activities
and it has to differentiate three stages of design. Therefore this paper particularly
emphasizes the design activities. It states that pure functional thinking is of
special importance in the early phases and that this has to be strictly distinguished
from technical thinking.

The model presented is an answer to the software problem and gives hints for the
project management. It helps to urge early definition of user requirements and it
forms the base for the application of proper tools for that purpose.

The model in its basic philosophy conforms with the regulations (DV-Richtlinie Band IV)
of the German Minister of Defence (BMVg) and is refined according to the author's
personal opinion.

1. INTRODUCTION

Today's avionic systems are computerized systems and therefore software has to be de-
veloped during the life cycle of such systems. This transfers the software problem in
the area of avionics.

There exists a lot of experience in software development in the commercial world -
mainly bad experiences - and it is worth while to learn from these, to draw consequences
from them and to transfer them in a proper way into the field of avionic systems which
has a series of specific requirements:

- high reliability even under hard environmental conditions
- short response time
- intensie man-machine-dialog.

These specific requirements influence the life cycle model.

The difference between the life cycle of a commercial information system and of an
avionic system can briefly be summarized in the follawing two statements:

A commercial information system needs software design.
An avionic system needs integrated hard-software design, because the restrictions
caused by the hardware have an enormous impact on the software and therefore have to
be considered in detail.

It is generally accepted in the life cycle of software that there has to be more
emphasis on design, but the term design is not precise enough. So, in the following
chapter, I will present further detail.

2. DESIGN ACTIVITIES

2.1 THE THREE STAGES OF DESIGN

Considering the design activities In some more detail -ne has to realize that there
are actually three stages of design corresponding to the differences in point of views
which exist between

- the user of the system
- the system engineer

and - the software engineer.

40-2

They all look at the same system but they see different things and they see them in
a different way.

The user sees the man-machine system, the man-machine interaction and he has an
understanding of the functions of the system in relation to its environment.

The system engineer sees the hardware and software structure and the interaction bet-

ween hardware and several layers of software.

The software engineer sees the application programs, their algorithms and their data.

According to these different views, different stages of design might be named:

users point of view: functional design

system engineer's point of view: technical design

software engineer's point of view: software design

2.2 THE SEPARATION AND INTEGRATION OF FUNCTIONAL AND TECHNICAL DESIGN

The separation:

The distinct separation between functional and technical design is the specific point
in the life cycle model presented.

Why is this necessary?
The necessity results directly from the symptoms from which software developments

generally suffer:

1 Too many design errors

These are mainly errors due to the fact that the functional
interaction in the system has not been completely understood.

2 Bad user acceptance

The essential point for the user acceptance is the man-machine
dialog, which very often does not take the real user into account.

3 High cost and late delivery

Because of a lack of knowledge about the user requirements the
selected computer was often too small and too slow. Therefore
the programmer had to save both processing time and storage space,
but this, in the long run, could not be achieved by mere programming
tricks. So, a more powerful computer became inevitable in the end,
and the software had to be rewritten - a waste of time and money.

4 High maintenance cost

Because of a lack of knowledge about the user requirements nothing
was known about the future of the system. In which direktion it had
to be easily changeable and/or extendable was never considered.
Therefore the changeability and extensibility was not incorporated
into the system, and the implementation of changes became expensive
because a lot of code had to be rewritten and retested. This is
not the only reason for high maintenance cost but it contributes
essentially to it.

All these experiences have one thing in common: The lack of knowledge about the
functions of the system. The consequence for the lifa cycle model presented is the
formal introduction of an activity called "functional design".

The acceptance of this activity brings project management into a position to urge
the user to state his reqvirements as early as possible and to specify them as
completely and as precisely as possible and thus to ascertain a required standard

of quality. This helps the project management to prevent the technical design to
be started without a qualitatively sufficient base which could only lead to a mis-
development. You got something but the user expected something else.

Therefore the formal introduction of an activity "functional design" and its distinct
separation from the technical design is required because it increases the influence
of project management in a vital point.

.. . i I .. i -ii•,Il• I

Separation and integration:

Up to now I have stressed the separation of functional and technical design, but of
course both deal with the same system, the functional design describing the require-
ments and the technical design describing the way they can be realized. Both need
each other.

The relation is shown in figure 1.

technical design
A V A •

functional design

figure 1: relation between functional and technical design.

The functional design precedes because it has to produce preliminary results before
the technical design canbegin. From then both run in parallel and they are refined
in mutual interaction. This interaction is vital to the project because the functional
design gets the feedback that it is feasible and the technical design gets all the
information it needs to define a cost-effective way of realization.

Therefore it is necessary for the project management to achieve both, the separation
and the integration of functional and technical design. This is no contradiction -
it is the consequence of the dualism of projects of that kind.

2.3 OBJECTIVES OF THE FUNCTIONAL DESIGN

The functional design, has to produce a solid base for further develcpment activities
and by this it helps to reduce the risk of development.

Therefore, the functional design has to describe the functions - in our case - of
an avionic system including its operators (pilot, navigator etc.). It comprises
the functions, their data and interaction between the functions. It describes which
parts of the functions have to be performed automatically and which have to be
operated by man, and by this it determines the man-machine dialog in its principal
form.

It also states the requirements of response time, accuracies, quantities etc.
These requirements are primarily those of the functions of the system. The require-
ments of the components of an airplane and its avionic system are derivated there-
from. To make it quite clear: The requirement that an airplane has to navigate with
a certain accuracy is a requirement of the function "navigation". This belongs to
the functional design. From this is derivated the technical design concerning the
accuracy of a gyro-system. This requirement pertains to the technical design.

One might object that the user is not able to answer all the questions about the
functional design. Of course it is difficult,but this Cifficulty must not lead
to a postponing to .ater phases, it must lead to the application of proper tools.
In my mind it is not acceptable that the user does not go into the details before
he sees a prototype. He should be able to find the same results working with a
simulation model which is cheaper to build and easier to change. This is finally
connected with the question of the representation of the user in the project.

3. THE ACTIVITY CYCLE

In a life cycle of an aviu,,ic system there are a number of activities which form
an activity cycle. The activities describe the kind of work, which has to be done.
A complete activity cycle consists of the following activities:

analysis: investigation of the predecessor system
in order to learn about its functions
and to discover the bottlenecks.

functional design: describing the functions and data of the
new avionic system and the requirements
of these functions from the users point
of view.

technical design: An integrated hard-/software design which
specifies how the avionic system has to be
realized.

software design: design of the application programs and the
data base.

implementation: codij, testing, and integration cf the
prograRs; gradual integration of the
avionic system.

introduction: bringing the system into the field.

utilization: using the avionic system
maintenance of hard- and software.

These activities generally do not follow each other in a strict sequence; very often
they have to be done in parallel one preceding and the second following with a
delay which is necessary because the first has to produce initial results. Only if
two activities run in parallel interaction cantake place and this goes especially for
the acitivities "functi al" and "technical design".

A complete activity cycle is shown in figure 2.

lutilizaticn

l
i n t r

o
d u c t i

o
n

limplementationj

I eoftware design]

F technical design

[functional design

L analysis

figure 2:

activity cycle

4. LIFE CYCLE MODEL

Up to now we have talked only about activities and for technically minded people
these are the most significant partsbecause they define the kind of work which has
to be done, but they do not form a complete life cycle model.

Actually they are only one of three aspects of a life cycle model.

Aspect 1 is the time which defines the sequence of the so called Fhases.

Aspect 2 is the kind of work which is defined by the activities.

Aspect 3 is the object of development, the prototype or the version.

The aspects 1 and 2

Former life cycle models considered phases and activities as the same thing and by
this they formed a strictly sequential model. The disadvantag- of such models was
that interaction between two activities or ph3ses was generally ruled out; of
course it happened nevertheless but it was considered as something irregular and
project management had the tendency to prevent it. But, as we point-d out earlier,
this interaction is extremely important and therefore this kind of models are not

appropriate.

There is a strong necessity for phases and activities as different aspects. The aspect
activity is described abe'., in detail The aspect phase is required especially irom the
point of view of the top m~nagement which has to approve the money. There have to be
fixed milestones, which determine the objectives of contracts and which form a base
for the financial schedule of the project. The aspect phase is determirndby the life
cycle of the weapon system while the activities are related to the avionic system.
The ends of phases are marked by certain documents and by formal management decision.
The relation zetween phases and activities is depict in figure 3. The names of the
phases comply with the management regulations of the German Ministry of Defence.

AD-All? 31 SOFTWARE FOR AYIONICSIU) ADVISORY MOUP FOR AEROSPACE
RESEARCH AND KEVELOPUENI NEUILLY*S-11111 INE101 IFRANCE) I
JAN 83 AGAID-CP-330

UNCLASSIF lED F/9/2 NI

In ENi

1111-1112.

1Vo I112.0

l u l uEL 2
11111 1.

8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BU4EAU OF STANDARDS 1963-

40-5

prephase conception defination development procurement utilization
phase phase phase phase phase

utilization

[introduction

limplementatio:

software design]

Itechnical design

Ifunctional design

lanalyses

figure 3:

phases and activities of
the life cycle model

Aspect 3: prototype or version

Up to now we have talked about a life cycle of a system with only one object. In
reality there are several prototypes during development and a series of versions
during utilization. A realistic life cycle model has to be able to handle this
because it has to form the principle of order for the whole life time of the system.

We have to face the fact that within one phase different prototypes may be in
different activities.

Performing a midlife conversion of an avionic system is nothing else but accomplishing
a complete activity cycle in the utilization phase. This is necessary because the
implementation of changes has always to begin with analysis and functional design
because the changes have first to be integrated in their functional context. After
this one has to decide which is the best way for technical implementation (what soft-
ware and what hardware has to be changed). This is technical design.

The aspect "prototype or version" requires that we relate an activity cycle to each
prototype and to each version within the life cycle. An avionic test rig for example
is nothing else but a special kind of prototype, with its own activitiy cycle.

Figure 4 depicts the situation for an example of a complete life cycle model which
shows an activity cycle for one prototype and three versions of the avionic system
within the timeframe determinedby the phases of an airplane.

40-6

p cp dp dp pp up
r oh eh eh rh t h
e na fa va oa ja
p cs is es cs is
h ee ne le ue ie
a p i 0 r z
s t t p e a
e i i m m t

0 0 e e i
n n n n 0

t t n

prototy e

version 1

version 2
utilization

& j ntroductioni i

implementation --
oftwareldesign

technical design L

functic nal des gn L - I
analys s

figure 4:

a life cycle model

5. THE LIFE CYCLE MODEL AS THE BASt ,OR PROJECT MANAGEMENT

The life cycle model serves as the principle of order in the project:

1. It forms the base for project planning.
2. It separates the responsibilities in an natural

way between user und data processing specialist.
The user is in charge of the functional design
because only he can say what he needs.

3. It reduces the risks in development because
it cares for a better base for the technical
design.

4. It improves the final acceptance by the user because
it involves the user early and urges to look for
an appropriate man-machine dialog.

5. It serves as a base for a documentation standard
(a standard of content).

6. It forms the base for the systematic in the project
documentation and all the paper work of the different
versions. Thereby it improves transparency in the
project.

7. It forms the base for the quality assurance measures
(reviews etc.)

8. It defines areas for the application of software-
technological tools.

9. It forms the base for a configuration management by
defining the currently valid documents, which serve
as the base for the current work.

6. CONCLUSION

The objective of the project management of an avionic system must be to bring forth
the user requirements as completely, as correctly and as early as possible because
this saves money and time. The life cycle model presented helps to achieve this
especially by the introduction of the formal activity "functional design" and its
distinct separation from the technical design.

The presented model is valid for avionic systems but not only for these. It is
valid for military embedded computer systems in general.

40-'

REFERENCES

METZGER, Philip W., 1973 "MANAGING A PROGRAMMING PROJECT", Prentice-Hall

FLOYD, C., 1981, "A PROCESS-ORIENTED APPROACH TO SOFTWARE DEVELOPMENT"
in Systems Architecture Proc. of the 6th European ACM
regional Conf., Westbury House 1981

41-I

AVIONICS SOFTWARE SUPPORT CCST MODEL

BY

DANIEL V. FERENS
U.S. AIR FORCE AVIONICS LABORATORY

AFWAL/AAS-2
WRIGHT-PATTERSON AFB, OH 45433, U.S.A.

SUiMARY:

The United States Air Force (USAF) Avionics Laboratory is currently developing the Avionics Software
Support Cost Model (ASSCM). This effort was contracted to SYSCON Corporation In September, 1980 and is

scheduled for completion in September, 1982. The ASSCN will be based on historical software support cost
data from Air Force logistics Centers and is designed for use during the conceptual phase of a project.
The current version of the ASSCM is limited to U.S. Air Force and Navy avionics software applications.
However, the model is being developed In a modular format so that it can be expanded to include other

software applications. These applications may include space systems, ground-based systems, and NATO
software systems.

Successful completion of the ASSCM will represent a significant advancement in the area of life cycle
cost analysis. The ASSCM will aid U.S. and NATO organizations in analyzing and, consequently, reducing
software support costs.

I. INTRODUCTION:

The Concepts and Evaluation Group of the USAF Avionics Laboratory (AFWAL/AAAS-2) is responsible for

analyzing life cycle costs of avionics systems during the conceptual, or early design phase of these
systems. These costs consist mainly of the costs associated with acquisition and support of hardware and
computer software. To analyze these costs, AFWAL/AAAS-2 develops or acquires cost models or methods which
are suitable for use during the conceptual phase of an avionics program. The ASSCN was developed to
satisfy the Avionics Laboratory's need for a model to analyze software support costs,

I. BACKGROUND:

1. The Problem: Software support costs comprise an increasingly significant portion of system life
cycle costs. In fact, Dr Barry Boehm, a renown cost analyst of TRW Corporation, has stated that, by 1990,

software support costs may account for as much as 60% of total system life cycle costs (Ref. 1). The
Avionics Laboratory, however, has had no adequate model or method for analyzing software support costs

during the conceptual or early design phase of an avionics software program. A study performed by the
Avionics Laboratory in 1979 (Ref. 2) concluded that no models existing at that time were adequate for the
Laboratory's analysis requirements. The Avionics Laboratory, therefore, decided to develop a model that

would be useful during the conceptual, or early design phase of an avionics system. It was decided that
the model should be based on historical data which reflects actual costs of supporting Air Force avionics
software along with current Air Force policies and procedures for software support. The model development

effort was divided Into two phases. The objective of the first phase (Phase I) was to determine the
feasibility of developing the model and to determine a roadmap for model development. The objective of
the second phase (Phase I) was to develop a model using the roadmap determined during Phase I. The
Avionics Laboratory decided that the Phase II effort would not be accomplished unless the Phase I effort

was successful.

2. Phase I Results: A contract for the Phase I effort was awarded to Hughes Aircraft Corporation in
April, 1979. Hughes was required to perform four tasks to determine model feasibility and define a
roadmap for model development. Detailed results of the Phase I effort are compiled in the final
technical report (Ref. 3) for the effort. However, a summary of results for each Phase I task is
presented below.

The first task required Hughes to survey existing software support cost models for possible appli-

cability to the Avionics Laboratory cost model effort. Hughes surveyed over 20 existing models, but

concluded that no existing models were adequate.

The second task required Hughes to visit USAF Air Logistics Centers (ALCs) where most Air Force

avionics software is currently supported. During these visits they were asked to determine current Air
Force policies and procedures for supporting avionics software and to investigate the availability of
historical cost data for the software model development. Hughes visited all five Air Force ALCs and

discovered that Air Force avionics software is normally supported using a block change procedure. Instead
of making continuous changes as requested, the ALCs, requested changes are grouped into a "block" and
incorporated during a block change cycle lasting from six to twenty months, depending on the software
being supported and organization performing the block change. It is possible for emergency changes to be
performed outside of the block change cycle, but this is rarely done. Hughes also determined that there
was a limited amount of historical cost data available for avionics software. The data available

included block change cost data for software programs on aircraft such as the A-7D, F-Ill, FB-IIIA, and
F-16. Although the amount of data was limited, Hughes concluded that development of a model was still
feasible.

The third task required Hughes to determine several approaches to model development and to select the
best approach. The approaches suggested by Hughes included an element estimate, or "bottoms-up"

approach, an analogy, or "sideways" approach, and a cost-estimatlng relationship, or "top-down" approach.
Hughes decided that, although the top-down approach would be most desirable for the model, the limited
amount of data available could not easily support this approach. much more data would be required to
pprform the statistical regression analysis necessary to develop cost-estimating relationships. Hughes

41-2

recommended, therefore, that a bottoms-up approach was best because it could be used with a limited
amount of historical data. The approach included the use of default values in order that the resultant
model would be useful during the conceptual phase.

The fourth and final task required Hughes to define a roadmap for model development. The roadmap was
incorporated into the Statement of Work for the Phase IT effort. The four basic tasks for the Phase IT
effort are as follows:

a. Data Collection: Collect additional data to insure that as much historical cost data as
possible is incorporated into the cost model.

b. Model Development: Develop the model and related data base using historical data and code
the model in FORTRAN programming language.

c. Model Validation: Validate the model using at least three programs for which historical data
were collected, but which were not used in model development.

d. Model Installation: Install the model on computers at Wright-Patterson Air Force Base, OF
for Air Force use. Also, train Air Force personnel in use of the model such that the model can be used
without contractor assistance.

Hughes completed the Phase I contract in June, 1980. Based on the positive results of the Phase I
study, the Avionics Laboratory decided to continue the model development effort into Phase II.

3. The Phase II Effort: A contract for the Phase IT effort to develop the ASSCM was awarded to
SYSCON Corporation in September, 1980. As of this writing, the first two tasks, listed under the Phase I
roadmap, are nearly completed, and the entire ASSCM effort is expected to be completed by 30 September
1982. The completed and planned efforts for each of the four Phase I tasks are described below:

a. Task I - Data Collection: SYSCON collected historical cost data on over 15 avionics software
programs at four ALCs. However, some of the historical data was incomplete, and SYSCON could only obtain
complete data on fewer than 12 programs. This verified Hughes' conclusion that there would probably be
insufficient data for developing a top-down model. Therefore, SYSCON decided to supplement the
historical data collection with another model development technique. The techniques chosen was the
Delphi technique, which involves a survey of experts. This technique had been used successfully in
developing other cost models such as the RCA Corporation's PRICE-S software development cost model (Ref.
4). The Delphi technique also gives added flexibility to models such as ASSCM, as It can address issues
for which historical data is not available.

For the historical data, SYSCON divided the programs into seven application types. These types are
listed in Table I. SYSCON chose at least one program from each type for a historical data base. The
cost data and descriptive data from selected programs were used as a baseline from which that application
type's cost woul be computed. A sample descriptive data for a historical program used in the model
baseline is shown in Table 2 under "Sample Historical Values." Also collected were cost data called
"normalization factors" that are used to adjust baseline data into an initial cost estimate. This data
is summarized in Table 3. The normalization process used in ASSCM is described in more detail in Section
III of this paper.

TABLE 1: SOFTWARE APPLICATION TYPES

1. Fire Control Operational Flight Program (OFP)
2. Navigation/Weapon Delivery OFP

3. Navigation/Fire Control/Weapon Delivery OFP
4. Electronic Warfare (EW) Receiver
5. EW Jammer
6. EW Integrated System

7. Communication-Electronics (CE): Command and Control

The Delphi survey results were also input to the model baseline to be used as "Adjustment Factors."
Knowledgeable personnel were asked to assess the relative manhour Impact (increases or savings) resulting
from changes in factors such as language used, size of program, complexity, etc. They were asked to
assess the manhour impact in each of eight software support phases shown in Table 1, where sample data
for two factors are presented. The Delphi survey also asked knowledgeable personnel to describe a
"typical" software program in terms of the descriptors listed In Table 2. These values are used for the
representative baselines and for input default values, which are discussed in more detail in Section III
of this report. The "typical" software program in each category does not necessarily resemble the actual
program used in the historical data base. Typical values for one program are listed under "Sample
Default Values" in Table 2.

b. Task 2 - Model Development: As of this writing, the model Is about 80% coded in interactive
FORTRAN language. The details of the model are described in Section III of this paper. The development
of ASSCM is scheduled to be completed in July, 1982.

c. Task 3 - Model Validation: After model development Is completed, SYSCON will validate ASSCY
using three programs for which historical data was obtained, but which were not used in the ASSCM data

.__ _

base.* ASSCM will be rur using tbe historical data, and ASSCM cost outputs will be cor.pared with

historical costs, Any significant deviations will be Investigated and oav result in modificaition o' sort,

of the model vquiations. However, no major rodifirations are expected to be required.

TABLE 2: VARIAB.FS FOR VHICH THE USER PROVIDE' VALUES

TYPI CAL SAYPLE
SAMPLE HISTORICAL

PARAMETERS RANGE OF PLAUSIBLE VALUES VALUE VALUE

1. APPLICATION TYPE (1-73 Seven types avai'able (see Table 1) 2

2. LINES OF CODE 4K - 500K 15K 16K

3. LANGUAGE (Ii - 3) Assembly. FORTRAN, Structured HOT. 1 1

4. 7 MEMORY FILL 50% - 1007 Q0 Inn
5. 'I TIMING FILL 507 - 100% 90 95

6. DEVELOPMENT V&V RATING (I - 3) None. Done by Developer. Total IV&V 2

7. DESIGN RATING (1 - 4) Poor. Fair, Good. Excellent 2 1

8. IMPIFMFNTATTON RATING (I - 4) Poor, Fair, Good, Excellent 2

9. INITIAL. DOCUMENTATION RATINr (1 4) Poor. Pair. Good. Excellent 23

TO. YEAR OP SUPPORT I - n 32

11. AIRCRAFT TYPE (I - 4) Cargo. Bomber, Fighter, Surveillence 3

12. NO. EIEL.DED SYSTEMS I - n 600 268

13. COMPLEXITY I - 5 3 4

14. FATE OF CHANGEF I - 5 4 4

I5. SKILL LEVEL. MIX I - 5 34

16. CHANG;E EFFICIENCY 10%. - 100% 507 507

17. DIRECT SUPPORT EOUIPMENT I - n ($ Million) 2 6

IS. EXPECTED SYSTEM LIFE I - n (Years) 20 20

114. BLOCK CHANGE LENGTH I - rn (Months) 12 12

20. SUPPORT SOFTWARE MAINTENANCE (1.2) yes, no 1

21, 7 OF WORK PERFORMED BY CONTRACTOR 0% - 100% 01 0

22 LOCATION OF CONTRACTORS (1.2)onst, f-it00

23. REPRODUCTION MEDT)IUM (I - 3) Mylar Tape. PROM, Hag Tape 3 I

TABLE 3: NORMAI.I7ATION FACTORS AND DEFAULT VALUES

FACTOR DEFAUL.T VALUE

ORGANIC LABOR COST/MAN-MONTH BY GRADE (VARIES)

CONTRACTOR LABOR COST/MAN-MONTH S7,000
SU7PERVISION RATIO .13
ADMINISTRATIVE RATIO .13

SUPERVISION COST/MAll-MONTH S4,390
ADMINISTRATIVE COST/MAN-MONTH SI ,B47
AD)MINISTRATIVE COMPlEXITY FUNCTION (VARIES)

INFLATION FACTORS (VARIES)

TEST & EVALUATION RATIO OFF: 37, EW: S7, CE: 3.51,

COST/HRirLR/TFST AIRCRAFT TYPE (VARIES)

COST/REPRODUCTION BY MEDIUMI (VARIES)

P'DII'M REPRODUCTION FACTOR (VARIES)

SPACF/PERSON Technical: 275 ft
2
. Supervisory: 130 ft

2

BUILD)ING COST/SOUAPE FOOT 136

UTILITY COST/SOPARE FOOT $1.20

FURNISHING COST/PERSON $680

MATERIALS AND SUPPLIES COST/PERSON $700
CFHERALT COMPUTER COST/'PERS0N $20,000

HARDW4ARE MAINTENANCE COST RATIO 10%

TABLE 4: EXAMPLES OF MODIFICATION I-ACTORS

PHASE LANGUAGE
STRUCTURED

ASSEMBLY FORTRAN HOL

Requirements Review 1.00 .94 .91

Design 1.00 .84 .78

Development 1.00 .67 .62

Integration 1.00 .83 .76

Test & Evaluation 1.00 .87 .82

Docuimentation 1.00 .82 .75

Repro/Installation 1.00 .95 .91

Support Software 1.00 1.00 1.00

414

TABLE 4. EXAMPLES OF MODIFICATION FACTORS (Continued)

PHASE DEVELOPMENT VFRIFICATION AND VALIDATION (V&Vi

DONE TOTAL
BY INDEPENDENT V&V

NONE DEVELOPER COMPLETE

Requirements Review 1.41 1.0n .90
Design 1.56 1.00 .80

Development 1.65 1.00 .81

Integration 1.68 1.00 .71
Test & Evaluation 2.05 1.00 .67

Documentation 1.68 1.00 .83
Repro/Installation 1.18 1.00 .96
Support Software 1.00 1.00 1.00

NOTE: If year of support is 3 or more, then the modification value for development V&V rating is 1.00.

d. Task 4 - Model Installation and Training: It is planned that the model will he installed on
computers at Wright-Patterson Air Force Base in September. 1982. At this time, a number of potential
ASSCM users will be trained by SYSCON in a one-to-two day training course. The ASSCM will then become
the property of the Avionics Laboratory who will maintain control of the model.

1Il. ASSCM DESCRIPTION:

The current description of ASSCM, which is described in detail in the ASSCM Software Design Specifi-
cation (Ref. 5), is summarized in this section of the paper. The model is written in interactive FORTRAN
for ease of use and ease of modification, and is designed for use especially during the conceptual, or
early design phase of an avionic software program.

I. Model Inputs:

A listing of Inputs to ASSCM is shown in Table 2. Although there are 23 Input parameters for the
model, the user is not required to specify every input. Instead, after snecffving the application type,
the user may merely allow the model to use any of the typical values for the citegorv selected. The
typical values probably are reasonable values for the type of software heing analvzed. Powever. it is
recommended that the user specify as many input parameters as poshible so zhat his software program Is
described to the greatest extent possible. The user may also update normalization factors within the
model before running It. There are desoribod I,: 2.:1 under "Codel Processing" in this section of
the paper.

2. Model Outputs:

The outputs of ASSCM consist of software support costs which are divided into four citegories.
These categories are: direct labor, indirect labor, direct support equipment, and indirect support
equipment. Figure I shows a sample output cost listing, including the cost breakout in each of the cost
categories.

The user has flexibility in determining what tvpe of output he desires. He may merely ask for a
listing of total costs for each vesr of software support, or a detailed summarv -f costs for each year as
is shown in Figure 1. The user mav also ask for cost derivation listings which show how costs were
computed in each of the four major categories.

FIGURE 1. EXAMPLF OF ANNUAL COST SUM14ARY

TOTAL ANNUAL COST $892,503
TOTAL LABOR S203,976
DIRECT I.ABOR S166,355

REQUIREMENTS REVIEW S 11,220
DESIGN S 18,050
DEVEL.OPMENT S 18,050
INTEGRATION 5 18,050
TEST AND EVAIIATION $ 45,370
DOCUMENTATION S 38,540
REPRODUCTION/INSTAILATTON S 6,830
SUPPORT SOFTWARE S 10,245

INDIRECT LABOR q 37,521

SUPERVISION S ?6,77q
ADMINISTRATION S 10,74?

TOTAL SUPPORT EQUIPMENT $68R,627

DIRECT $498,183
HARDWARE $ 54,508
SUPPORT SOFTWARE 5248,600
TEST AIRCRAFT/T!MF $188,000
REPRODUCTION 5 7,075

JI-I

FIflUIRE 1. EXAMPIE OF ANNUAL COST SIIARY (Continued)

CFNERAl. $IQ0,444
FACII.ITY/UTILITTES S 10,880
FIRNISHINCS S 204
MATFRIALS/SUPPL.IES S 4,200

C:hPUTERS/TFRPINALS S 4,000
MAINTENANCE S171,160

3. Model Processing:

This paragraph describes the overall methodology by which the model receives input data and
computes software support costs. The overall algorithm is first described, then the modules which
implement the algorithm are described in some detail.

a. Model Algorithm: Figure 2 is a block diagram of the basic ASSCM algorithm. The model -Ies
historical data, modification factors (derived from Delphi survevs), and user inputs to compute software
support costs. The basic algorithm process consists of twelve steps described as follows:

I) Receive user inputs
2) Select appropriate historical baseline
3) Derive normalization factors from default values and user modifications
4) Apply normalization factors to historical baseline to derive initial baseline
5) Apply adjustment factors to initial baseline to derive representative baseline
6) Applv characteristics input bv user and modification factors to representative baseline

to derive total direct labor cost estimate
7) Derive allocation factors from default values and user modifications

8) Applv allocation factors to total direct labor cost estimation to derive number of
man-months and personnel

9) Derive all other cost elements from number of man-months, number of personnel, and
default values

10) Sum all costs to determine total annual cost
11) output results to user
12) Repeat process changing some data values is desired

FIGURE 2. ASSUM ALGORITHM

NORMALItZATION

t INITIAL BASELINE

SPECIFIC CONDITIONS REMOVED

S AD)JUS I'MENTS

REPRESENTAIIVE BASELINE I I NU nMDL USERIPU1

TOTAL LABOR COST
EST IMATrF

L NUMBEk OF MAN MONTiS

UMBER
OF PERSONNEL

L IMATE ALL OTHER

-T COSTS

--- F -. 7...

S TOTAL ANNUAL COST

L STIMATE

41-6

b. Module Functions: ASSCM software Is developed in a modular format for ease of modification
and understanding of the model. There are 10 modules in ASSCM which implement the model algorithm and
aid the ASSCM user. The hierarchy of modules is shown in Figure 3, and each module's functions are
described as follows:

1) ASSCM Executive: This module provides overall control of the ASSCM model. It invokes
all other ASSCM modules as required.

2) Provide Instruction (INSTCT): This INSTCT module provides the user with detailed
instructions for using the ASSCM.

3) Initialize Variables (INIT): The INIT module initializes all variables to their default.
values. These variables include normalization factors listed in Table 3, as well as the historical and
typical values for input parameters as outlined In Table 2.

FIGURE 3. ASSCM MODULES

Iodel Executive
I

Provide Process T orma oe a Compute rect p i e ut
instruction o Option utata d asiE tEI

INIT BASLIN ADUTALOCAT

Initialize Retrieve AdutAllocate
Variables Baseline Data All Costs

4) Process Options (OPTION): The OPTION module allows the ASSCM user to provide input data
to the model, modify normalization factor default values, and choose desired output formats. These three
subfunctions of OPTION are further described as follows:

a) For input data, the user may provide a value for all parameters listed in Table 2.
If the user does not know a value for any parameter or chooses not to input a value for a parameter, the
model will default that parameter to the typical value for the application type chosen. The user also
may save his input values on a file that may be used later. In this way, the INIT module allows the user
to analyze the support cost impact of changes in one or two parameters without having to create a new
input file each time.

b) For normalization factors, INIT allows the user to view the current default values of
these factors listed in Table 3. The user may then modify any of these values he chooses if he desires a
different value than the ASSCM default value. For output format, the user mav choose which format he
desires to use, as described under the "Model Outputs" paragraph in this paper.

5) Retrieve Baseline (BASLIN): The BASLIN module retrieves and lists appropriate historical
baseline data for direct labor based on the application type selected. Each data base contains numbers
of man-months and skill categories of personnel required for each of the eight support phases during a
block change. This data normally can not be modified by the user.

6) Normalize Dta (NORMAL): The NORMAL module performs Step 4 of the model algorithm by
deriving the initial baseline. The module uses historical data and the normalization factors defined in
Table 3 to compute an initial baseline of annual costs. It accomplishes this by the following procedure:

a) Annual direct labor costs are determined by multiplying number of man-months required
for a block change by cost per man-month, and adlusting for the length of the block change.

b) Indirect labor costs are then computed bY applying supervisory and administration

normalization factors to direct labor man-months.

c) Annual direct and general support equipment costs are then computed by applying
appropriate normalization factors to the appropriate variables.

7) Adjust Data (ADJUST): The ADJUST module performs Step 5 of the model algorithm. It
applies adjustment factors to the historical cost baseline derived from the NORMAL module to compute
representative baseline costs. The representative baseline is based on typical values for each
application type as derived from the Delphi survey. The ADJUST module first computes direct labor costs
using equations based on modification factors derived from the Delphi surveys. These equations adjust
costs from the historical baseline to the representative baseline. These are separate equations for each
modification factor and for each of the eight phases of software support. Once direct labor costs are
computed, all other costs are computed in a similar manner used In the NORMAL module.

41--

8) Compute Direct Cost (DLCOST): The DLCOST module performs Step 6 of the ASSCM algorithm
to derive the total direct labor cost of the software program specified by the user. This module is
similar to the ADJUST module except that it adjusts the direct labor costs of the representative baseline
to those of the user's software program. The same equations are used as in the ADJUST module. Only
direct labor costs are computed by the DLCOST module.

9) Allocate All Costs (ALOCAT): The ALOCAT module performs Steps 7-9 of the ASSCM
algorithm. The module first allocates total direct annual labor costs to each of the eight phases of
software support by percentage, as is shown in Table 5, "Allocation Factors." The module then computes
all other cost elements, defined in Figure 1. This module also sums all cost elements to obtain total
annual costs.

10) Write Out Results (WROUT): The WROUT module retrieves cost data computed by the DLCOST
and ALOCAT modules and outputs whatever data is requested by the user in the OPTION module.

TABLE 5. ALLOCATION FACTORS

Direct Labor

Phase % of Total Direct Man-Months

Support Software No Support Software

Requirements Review 9 11
Design 13 17
Development 16 21
Integration 10 13
T&E 16 21
Documentation 11 14
Repro/Installation 2 3
Support Software 23 0

IV. EXPANDED USE OF ASSCM:

Although the ASSCM is being developed primarily for use in analyzing support costs of USAF avionics
software, it can be modified for use on other software, including NATO applications. One of the
following sets of procedures will probably be followed depending on the degree of modification required.

1. Similar Software Applications: If the software is in one of the seven application types
currently considered by ASSCM, and if policies and procedures used to support the software are similar to
those used by the USAF, then ASSCM can be used with minimal modification. U.S. users can probably use
ASSCM "as is," while other NATO users will need to change inflation tables and convert dollar outputs to
their currency units. The annual inflation rates are normalization factors which can be changed as part
of the normal data Input procedures.

2. Similar Procedures, But Different Applications: If a user's application is significantly
different that any of the seven application types listed in Table 1, it will be necessary to modify ASSCM
internally before it can be used. Additional collection of historical data will be required on at least
one program in the new category and the model input options must be adjusted to include this new
category. It should not be necessary, however, to take a Delphi survey to update modification factors
unless some parameters differ radically from those of the seven existing application types.

3. Different Procedures: If the procedures used to support software differ significantly from the
lock change procedures used by the USAF, ASSCM may be of limited use. It will probably be necessarv to

make major revisions to ASSCM or even to develop a new model to accomnodate different procedures. In
this case, a new model may be developed using the same methods used to develop ASSCM. These methods
appear to work well when there is a limited amount of good historical data available.

V. CONCLUSIONS:

ASSCM promises to represent a significant milestone in the area of software life cycle cost analvsis.
The use of historical data insures that ASSCM reflects actual costs of software support, as well as the
policies and procedures used by USAF ALCs to support software. The use of the Delphi survey results
enables ASSCM to be useful for a wide variety of avionic software programs. The model has been designed
to be easy to use, especially during the conceptual, or early design phase of a softwa.e program.
Minimal input data is required. The model has also been developed in a modular format so that the model
will be relatively easy to modify as new data becomes available or new application types are added.
ASSCM can be useful to some degree for many U.S. and NATO software programs, especially on militarv
avionics projects. The model may need some degree of modification, however, for applications
significantly different from those for which ASSCI was developed.

... "AnnoI

41-8

REFERENCES:

1. Boehm, Barry W., "Software Engineering," TRW Publication 55-76-08, October, 1976.

2. Ferens, Daniel V. and Harris, Robert L, "Avionics Computer Software Operation and Support Cost
Estimation," NAECON 1979 Conference Proceedings. May, 1979.

3. Hughes Aircraft Company, "Predictive Software Cost Model Study," Final Technical Report
AFWAL-TR-80-1056, Volumes I and II.

4. RCA PRICE Systems, "RCA PRICE-S Reference Manual." Page T1-17, December, 1980.

5. SYSCON Corp., "Avionics Software Support Cost Model: Software Design Specification," March, 1982.

42-I

A SOFTWARE-COST DATABASE FOR AEROSPACE SOFTWARE DEVELOPMENT

G.J. Dekker
Nationa) Aerospace Laboratory NLR

P.O. Box 90502
1006 BM AMSTERDAM

SUMMARY

Cost estimation of software development and control of the cost during the development are difficult due to
the lack of applicable cost figures from previous projects, and consequently due to the lack of an accurate
cost estimation and management method.

In order to improve this situation, a user-friendly method for the collection, storage and retrieval of
software-cost data has been developed, with emphasis on aerospace software projects. Data is and will be
collected regarding 47 well-defined cost factors, divided in 8 classes. It is felt that the clear definition
of these cost factors will be of main importance for the applicability of the collected data.

When suitable data is available from completed projects, the impact of these factors on the software
development cost can be estimated. This will lead to a more reliable cost estimation and cost management
method.

The paper describes the cost estimation method that will be calibrated by means of the collected data, the
implemented data collection and retrieval system, called a software-cost database, and the use of this

system as management tool during running projects. For some projects, the cost database is already in use.

The described study has been performed under contract with the Netherlands Agency for Aerospace Programs
(NIVR), contractno. 1870.

1. INTRODUCTION

The current trend in developing avionics and defence systems is a continuous move to implement functions in
digital systems, especially in embedded computer systems. A result of this is that the development of the
related software becomes more and more important for the cost of the development of the total system. This
paper describes a systematic approach to control the cost of software development.

The management of software development cost concerns mainly two fields: cost estimation and cost control
(Fig. I). Cost estimation is done before a software project is started. Cost control takes place during
project development. It includes monitoring the effort spent and taking corrective action when deviations
of the planned effort do occur. A wrong cost estimate before a project will either result in an apparent
cost overrun (when the estimate was too low) or in too expensive software (when the estimate was too high).
Poor cost control during a project will also result in cost overrun, as causes of possible overruns are
detected too late to make corrective actions effective.

In spite of the enormous investments in software nowadays, in most cases it is still impossible to give
realistic estimates for the cost of software development, let alone to control this cost effectively. Two
causes of this problem are identified (Posthuma de Boer, 1978):

- There is not enough quantitative and qualitative information available about the cost estimation process.

- There are virtually no interpretable cost figures available about pr*evious projects.

This paper describes the results of a study to improve this situation. It describes the concepts of cost
estimation and cost control, followed by an overview of available methods and databases. After that, the
approach for the definition of a cost estimation method and the related cost database is given.
The paper concludes with the first Practical results and the work planned for the coming years.

2. COST ESTIMATION AND CONTROL

The area of cost estimation can be divided in two related fields: Life-Cycle Costing (LCC) and Design-to-
Cost (DTC).

Life-Cycle Costing involves the determination of the development cost from given, but most of the time
vague, project specifications (see Fig. 2). Usually this is done only in the early project stages; LCC can,
however, also be used to determine the impact of major changes during a project and as a tool for the cost

control process.

Design-to-Cost implies that the cost of a project is limited by a certain maximum and that the scope of the
Project should be adapted to this limit (Herd c.s. 1977). This adaptation can involve the removal of certain
functions andor design constraints from the initial specifications, possibly by making a trade-off between
software and hardware cost. Normally, this adaptation is an iterative process, in which at every step functions
are removed or constraints are adapted, until the estimated costs are below the maximum. At each step, the
designer needs a quick way to obtain an accurate estimate and an indication of the cost impact of each
function or design constraint.

Both Life-Cycle Costing and Design-to-Cost supply the estimator with a planning of expenses (see Fig.2).
This planning is the basis for the cost control process. For software projects, the life cycle is divided
into a number of project phases to allow for a better monitoring and control. Each phase ends with well de-
fined products.

A useful cost control method allows that the total effort is divided between those phases. Furthermore,

possiblities have to exist to update and refine the planning when the project proceeds and the project
requirements or the development environment change during the project.

1I

.1mJ

42-2

An overview of normally used phases and their products is presented in figure 3. Shortly they are:

- Conceptual phase. In this phase, the user requirements are defined.

- Definition phase. In this phase, the global technical solution is defined. The system is divided into sub-
systems and their interfaces are defined. The overall dataflow is specified and the functions of each sub-

system are identified. The first version of the user manual and the test plan are also produced.

- Design phase. In this phase, the system is designed to a sufficient level of detail to start the imple-

mentation. The products of this phase are the design description and the detailed test plan.

- Implementation phase. In this phase the system is coded and tested on unit level. The products of this
phase are the code, the software documentation and the user manual.

- Qualification phase. The sub-systems are integrated and tested according to the test plans. The products

of this phase are the approved code, system description, and test reports. After this phase the software

is ready for operational use.

3. AVAILABLE METHODS AND DATA BASES

Roughly spoken the following methods are currently available for the estimation of software costs, (Fig. 4)

- The analogy method. The new project of which the cost have to be estimated is compared with previous
similar projects. The cost of these projects and the differences in technical solution and development

environment of those projects and the new project form the basis for the cost estimate.

- The parametric method. The characteristics of the new project are described with a number of figures such

as size, complexity, experience of the developers etc. The cost of the project is obtained by feeding

those figures into some magic formula. The latter is based on the cost data of previous projects.

- The decomposition method. The project is decomposed into a number of smaller units whose cost can be
estimated more easily. Those cost are then summed to obtain a cost estimate for the total project.

All three methods are based on stored cost information about previously finished projects. With respect to
this three problems exist (Dekker 1981):

- Cost data is scarcely available, among others due to the confidential aspect of cost figures.

- The use of ill-defined terms gives rise to unallowable differences in interpretation of the available
figures. The use of various measures for a term like "software size" can give a variation in the
measured results of a factor of 10 (herd c.s. 1977).

- Especially for embedded systems it is difficult to separate software cost from the total system cost, let
alone to know the allocation of software cost to the various life cycle phases.

It is therefore not surprising that none of the currently used cost estimating methods has been proven to
be reliable (Mohanti, 1981). Recent publications stress the use of different methods which have to be tuned
by experience until the results show no significant difference anymore. (See for instance Bauer, 1979, or

Bjorklund, 1979.)

Another point which should be noted about the described estimation methods is that they are moinly developed
for Life-Cycle Costing and do not support Design-to-Cost and Cost Control adequately.

4. THE SET-UP OF THE COST DATA BASE

The first step to solve the cost related management problems is the build up of a cost database containing
well-defined data from previous projects. The set-up of this database should be such that it allows for
the support of both cost estimation and cost control. Furthermore, the overhead for projects which have to
provide data for the database should be minimal.

This leads to the following properties of the cost factors, whose data have to be gathered: (Fig. 5)

1. The cost factors have to be useful for a cost estimation and control method. This method has to be
determined before the contents of the database is defined.

2, The cost factors have to be well-defined. This will prevent interpretation errors during collection and
retrieval of the data.

3. The data has to be objectively measurable. For instance, a statement like "This software is very
reliable" can mean almost anything, ranging from "I have heard no user complaints yet" to iThe software

has a MTBF of I0' hours".

4. The collection of cost factors has to be complete. If it appears that an important cont factor exists,
whose data have not been gathered, the database can become meaningless. On the other ham . it is no
problem if data has been gathered which appears lateron to have only negligible influence.

5. The cost factors have to be distinct. Relations and overlaps between the collected data will cause
several problems:

o More data than necessary has to be gathered which will decrease the cooperation of project members
during filling of the cost database.

o If there is a straightforward relation between two cost factors, one of the two factors will not be
measured, but estimated from the other one. This will introduce erroneous data.

So for the set-up of a cost database for aerospace software development at NLR, first available methods
have been studied and evaluated against the goals of the three cost management fields. Tnis gave rise to

the definition of the cost estimation and control method which is described in the next section. Furthermore,
a list has been composed with about 100 cost factors which have been included in any estimation method. This
list has been screened and only the measurable and non-overlapping factors have been left. (Note that a
measurable factor is well-defined by its measure). After this data-collection and retrieval procedures have
been defined and developed. The database has been implemented, using the IMF database management system

1 ,

A

42-3

on the Cyber 170-855 computer at NLR.

The consideration that the database should be usable for monitoring and control software development has
led to data-collecting and reporting procedures which supply the projectleader with up-to-date highly
visible progress data, related to his planning. This also motivates projectleaders to supply the requested
cost data.

5. PROPOSED COST ESTIMATION METHOD

Each of the cost management processes imposes its own requirements on a cost estimation and control method
(Fig. 6).

Life-Cycle Costing is used already at the very beginning of a project. It is clear that at that time not
many details are known about the project whose cost have to be estimated. This requires that the cost
estimation method allows for global input. Of course, this will result in a rough cost estimate but that is
acceptable in the early project phases.

When project development proceeds, more detailed cost factor information can be obtained. To obtain a more
accurate cost estimate of the project using the cost estimation method, it is required that the method
allows for detailed input of cost factors.

As already noted, Design-to-Cost implies that the scope of a new project is set according to a given budget.
For that, the designer/estimator needs a way to assess the impact of design constraints and major functions.
If this is known he can try to remove or adapt the most suitable function or design constraint in order to
meet the given budget.

Cost control requires that the method gives cost data per project phase. Furthermore, if the requirements
and/or environment of the project change, it is necessary that the planning is updated to incorporate those
changes.

Given the above mentioned requirements, a cost estimation method has been developed which meets all of
them (Dekkei, 19811 Basically, the method is of the parametric type; analogy and decomposition have to be
used,however,to est.ate the s 'e of the project. Each project is characterized by 8 cost factors, each of
which is composed of a number of subfactors see figure 7. Each cost factor can be computed from the
related subfactors and the project-cost per phase will be estimated from the cost factors.

When a project is initiated, only the 8 cost factors have to be estimated, but, whenever possible, more
detail can be entered by estimating single subfactors.

As most of the design constraints are simply represented by a single subfactor, the impact of them to the
estimated cost can easily be assessed. The impact of major functions can be estimated via its impact on the
size of the project. This impact is already known because of the use of decomposition to obtain the total
size figure.

Changes during a project are reflected by changes in one or more subfactors. From the new set of subfactors
it is easy to derive a new cost estimate and planning.

Consequently, the proposed combinaticn of the three basic cost estimation methods supports all three cost
management processes.

6. THE COST DATABASE

After the cost estimation method had been defined, it was rather straightforward to develop the cost database
which shall support this method. At first, each of the subfactors has been defined and a measuring
procedure has been devised for each of them. The definitions and measures can be found in an interim study
report (Dekker, 1981). Furthermore the cost data collection method, and the related software has been
developed.

The cost data is collected in a staged way. The first stage consists of a weekly form which has to be filled
in by each project member. This form contains the cost related data, mainly the worked-hours per phase. Much
effort has been put into the design of this form, because an ill-designed weekly form will demotivate people
to fill it in.

These weekly forms are entered into the database, and by totalling this cost information the current status
of the project can be derived weekly. Figure 8 shows a sample of the weekly report. (Note that only the
later phases of the shown project have been monitored which explains the low percentages for the conceptual
and definition phases). These weekly reports are a powerful cost control tool for the project manager, as
he can detect deviations of his planning as early as possible.

The second stage of data collection consists of another type of forms. These have to be filled in by the
projectleader after the completion of each project phase. They contain all subfactors which can be known
after the project phase just finished. These are the data that will be used eventually to calibrate the
proposed cost estimation method.

7. FUTURE DEVELOPMENTS

The use of the database for the calibration of the method is only possible if enough completed projects
have been entered into it. It is therefore important that as much as possible data of software development
projects in the aerospace area are entered into this database.

In the mean time the database will be used effectively by supplying reference points for the use of other
cost estimation methods. For instance, the famous rule-of-thumb that a developer produces one to three

statements per hour can receive a quantitative basis. Also the model of Putnam (Putnam, 1978) and the PRICE-S

42-4

model (Freiman, Park, 1979) will be evaluated using the database. In order to enrich the open literature

on this point, the intermediate results will be regularly published.

8. CONCLUSIONS

The study described has resulted in a valuable cost control tool, which at the same tine collects cost data
from running projects. This data offers the possibility to produce a reliable cost estimation method and
opens the way to better software project management.

9. REFERENCES

Bauer, T.H., 1979, "Software Cost Estimation Experience", Workshop on Quantitative Software Models for
Reliability, Complexity and Cost: An Assessment of the State of the Art., IEEE-TH-67.

Bjorklund, H.A., 1979, "Application of PRICE-S to Embedded Avionics Systems", Workshop on Quantitative
Software Models for Reliability, Complexity and Cost: An Assessment of the State of the Art.. IEEE-TH-67.

Dekker, G.J., 1981, "Functional Requirements for a Software Cost Database", National Aerospace Laboratory
NLR, NLR TR 81017 U.

Freiman, F.R. and Park, R.E., 1979, "The PRICE Software Cost Model". National Conference on Aerospace and
Electronics, NAECON'79, IEEE.

Herd, J.H. et.aI., 1977, "Software Cost Estimation Study: Study Results, Vol. 1. Doty Associated Inc.,
RADC-TR-77-220.

Mohanti, S.N., 1981, "Software Cost Estimation: Present and Future", Software-Practice and Experience,
Vol. 11, pp. 103-121.

Posthuma de Boer, U.. 1978, "Cost Estimation and Management Control of Software Development in Scientific
Technical Projects", National Aerospace Laboratory NLR, NLR TR-78056 U.

Putnam, L.H., 1978, "A General Empirical Solution to the Macro Software Sizing and Estimating Problem,".
IEEE Trans. on Softw. Eng., Vol. SE-4, Nr. 4, pp. 345-361.

COST MANAGEMENT

COST ESTMATO N COSTCONTROL

LIFCYCLE COSTING1

Fig. I Cost management fields

EIEE-CYLE O OST

SSPECS

--- DESIGN-TO-COSTi 7

F o g r

Fig. 2 Cost management processes

42-3Sotae6eeonitpae

AUSOERAABSL-

REURMETHO ReS

CONCPTU _

OESITITOO

PRO ASE

F.4CoEst simtonmthd

4 -"

USEFUL

DITNTWE LL DEF INED

COMPLETE MEASURABLE

Fig. 5 Required cost factor Properties

IFECYCL 1COS~l
l

G - GLOBAL INPUT INITIALLY

- 0- INCREASING DETAIL

DESIGN-TO-COST - IMPACT OF DESIGN CONSTRAINTS

IMPACT OF MAJOR FUNCTIONS

CO CT ESTIMATES PER PHASE

0 ACCOMODATE CHANGE

Fig. 6 Requirements for a cost estimation method

NR OF INPUT TYPES

IR OF OUTPUT TYPES

NR OF DATA ELEMENTS

SIZE NR OF WORDS IN DATABASE

NR Or DOCUMENTATION PAGES

NR OF OBJECTS STATEMENTS

DIFFICULTY

4
1

RELIABILITY 0

T
H
E
P

UTILISATION S

U

COST DEPENDS OF F

A

PERCENTAGE OF NEW CODE C
T
0
R
S

DEVELOPMENT ENVIRONMENT

APPLICATION

RESOURCES

Fig. 7 Classification of cost factors

SUBPROJECT STATUS REPORT UPDATED TO YEAR: 82 WEEK: 8

pROJECTLEADER: INGEN - SCHENAUI H A -an

PROJECT: KNMI GROUNDSTATION
sUBPRJECTLEADR: POPTA R G aU

SUBPROjErCTj KOSMOSS APPLICATION SOFTWARE

2. PHASE ovERVIEW

-------------- - ----------------- =

CONCEPTUAL DEFINITION DESIGN IMPLEMENTATION QUALIFICATION

COST DATA PHASE PHASE PHASE PHASE PHASE

MANHOURSCAT I ACTUAL 17 0 150 10036 8495 3329

PLANNED 3600 3600 600 0i 2800 2500

PA4N72 41356 167 27 30304 133 16

MANHOURS CAT II ACTUAL 415 715 3402 10004 7385

PLANNED 2000 1200 10200 2800 2400

P 2075 993 3335 35729 30771

MANHOURSCAT III ACTUAL 00 00 0.0 0 00

PLANNED 00 00 o 00 00

PA000 000 000 000 000

TRAVEL COST ACTUAL 2610 3090 00 1500 03460

PLANNED 10000 10000 300 10000 10000

26 to 3090 000 1800 3450

Fig, 8 Sample status report

|4

THE MILITAY USER VIEW OF SOFTWARE SUPPORT THROUGHOUT THE

IN-SERVICE LIFE OF AVIONIC SYSTEMS

Wing Commander S.J. Barker RAF
Squadron Leader B. Hambling RAF

Ministry of Defence UK

SUMMARY

The view is presented that software-based military avionic systems should be
considered as vehicles requiring continuous software development throughout their
operating life. The reasons for software change are discussed and emphasis is given
to an increasing need to adapt avionic systems to match a changing hostile
environment with both speed and safety. The paper argues that more thought should
be given to basic system design to facilitate both hardware and software replacement
by greater modularity ani reduced hardware/software dependence. Some examples of
current system inadequacies are given. The need to reduce the cost of software
development is emphasized and the type of software support environment as envisaged
in the current ADA/APSE development is seen as a significant step towards this end.

1. INTRODUCTION

1.1 There are two distinct phases during the total life of a military weapon system
separated by the point at which the system is accepted into service. Considering the
entire life of a military system, the first phase is a relatively short one during
which the system is designed, developed, tested and produced to meet a stated
military requirement. The requirement against which it is designed will in some
measure have been forward-looking and will have taken into some account the
environment in which the weapon is to operate, not Just on entry into service, but
over the entire subsequent in-service life. During this period heavy reliance is
placed upon the skill of highly specialised hardware and software design staff and
is the time in which the main characteristics and constraints of the delivered
product are settled. As the phase progresses the system becomes Increasingly change-
resistant by virtue of the design decisions that have already been taken and by
virtue of the cost of implementation of such changes in extra finance, trade-offs or
late delivery. The second phase is far longer, lasting as long as the system is
economically maintainable and adaptable to the changing environment in which it
operates. The weapon system will be extensively used, misused and often abused in
a range of situations often with disregard for design limitations by a variety of
people, many of whom are somewhat intolerant when a system does not adequately
satisfy the need of the moment. This phase is characteried and driven by the
desire for change.

1.2 The main proponents in each of these phases, that is the designer/contractor
and the military user respectively, see the weapon system from different points of
view. The designer looks forward to the day when he will be able to satisfy his
customer's requirement and deliver a finished product. Although this product may
exhibit some development potential, either through stated requirements, or through
planned or fortuitous design, it is nevertheless an identifiable finished product.
A customer, on the other hand, is interested not only in the system's ability to
meet its specification on delivery, but also that he will be able to develop it
easily, safel , economically and speedily as naw operational requirements dictate.The haste wth which military users find need to change a system often fills acontractors design staff with horror, but the escalating capital cost of complex

computer-based avionic systems makes it imperative that system performance is
continually matched to the needs of the day over an increasing in-service life span.
This can only be achieved with safety, with ease, within a tight budget and in a
timely way, if systems are designed with more serious thought and emphasis given to
the ongoing system development process from inception, through design and production,
and into in-service life.

1.3 All that is said so far relates to military weapon systems in general. The term
"weapon" is used rather loosely to include all those systems deliberately designed
for direct engagement in warfare and consequently they embrace all ground and
airborne real-time computer-based systems used in both offensive and defensive roles.
Although many software and hardware considerations are equally applicable to all
these systems, avionic systems are particularly sensitive to the traditional
constraints of weight, space, flight safety and air worthiness. Therefore this paper
discusses software issues that have wide-ranging applications but with special
emphasis on those more critical in the avionic field.

43-2

2. THE NEED FOR CHANGE

2.1 Few people, if any, would disagree with the premise that some change to software
will be needed within the lifetime of an avionic system. There could well be
considerable difference of opinion, however, in predicting to what extent particular
areas of software will be subject to change. It is therefore worthwhile to consider
first of all, the factors that lead to change. These are fivefold: people,
experience, interoperability, threat environment and technology.

(a) People

People are fallible. People are different. The people that foresee a
system need, specify its requirement, advise on its development, test it, introduce
it to service, and use it are all fallible and there will usually be many different
people involved. Military systems are seldom bought tried-and-tested off the shelf.
They are, more often than not, custom-built against a forward-looking design, using
state-of-the-art technology, and consequently are subject to human fallibility both
in stating the requirement and in system design.

(b) Experience

Although in principle weapon and mission tactics are foreseen when laying
down a military requirement, much operating detail goes hand in hand with the
detailed system design. In addition, operational usage of a system, and practical
experience with it, will create the need to accommodate changes as particular
operating capabilities change in their significance and importance.

(c) Interoperability

The lifetime of a modern avionic system will see the introduction of a
range of interoperating systems. These will include new on-board weapons, radars,
displays and data transmission systems that are part of, or communicate with, other
computerised air and ground systems. The introduction of one of these systems may
demand software changes in other systems to accommodate its introduction. Piecemeal
implementation of software changes within an in4lvdual system may not therefore be
adequate. The need to be a continuously effective weapon platform within a network
of co-operating and interoperating military systems, may place very precise
constraints on software development and implementation schedules.

(d) Threat Environment

Military systems art designed to operate within a hostile environment. As
the threats which compose that hostile environment become more supported by, and
dependent upon, computerised systems, so the possibility of dramatic change to the
threat environment increases. Software changes to hostile computer systems,
although developed over an extensive period, can be put into effect in a relatively
short period of time. Consequently avionic systems will need the wherewithal to
facilitate safe and rapid software development to cater for sudden and unforeseen
changes in their hostile operating environments.

(e) Technoloxy

The development of technology brings particular problems to high-cost, long-
life systems. In the first instance, new technology often offers capabilities
previously considered impracticable or costly. In the second place, with upwards of20 years lfe expectancy in a system, advancing technology while not necessarily

offering greater operational advantages, outdates equipment and makes it harder tosupport.

2.2 The above should adequately illustrate why the military user places such
emphasis upon the ability to alter the software of avionic systems apparently with
such indecent haste and often soon after delivery. It is not personal whim but
rather pressing need that drives this requirement. The need will continue and will
increase alongside the increase in computation and intelligence built into both
friendly and hostile military systems. The fact that military systems need to
continue to operate safely and interoperate correctly whilst permitting software
changes to be implemented, imposes difficulties and constraints peculiar to their
in-service life. Conversely, the increasing reliance on computer assistance in
communicating interdependent military systems, brings a newd for stability that in
itself tends naturally to oppose changes. Whatever the difficulties, the vast
investment in computer-based weapon systems will only show a worthwhile return if
software is continually adapted to cater for the prevailing situation.

43-3

3. THE PRESENT POSITION

3.1 How equipped are we to fulfil this ongoing software development role? Not very
welll It is not difficult to find a number of deficiencies both within the embedded
software of avionic systems and within their software support environments. Within
the UK the Jaguar development potential was limited from the outset by fully
occupied core space and processor time: the Tornado GRI computing power requirement
was doubled even before initial development was completed; current analysis shows
that the Harrier GR5 is likely to enter service with considerably less spare
computing capacity than originally specified. In addition to the computing capacity
restrictions apparent at entry into service, it is likely that some additional and
desirable software features that arise during aircraft procurement phases are ruled
out by virtue of lack of computing capacity to implement them. There are also other
more subtle limits set to the maintainability of software. For example,
"shoehorning" software into an inadequate hardware configuration may have
particularly nasty effects, such as degradation of structure, modularity and order,
and increased hardware/software dependence. In addition, monolithic or poorly
modularised software causes unnecessary complications and ramifications when changes
are subsequently introduced, while extensive use of relatively basic assembly
languages to save core space increases the difficulty of implementing changes and
increases the probability of error. That these features exist is the fault both of
specification and design and it must be freely admitted that these reflect the slowevolution of software engineering awareness and practice that has occurred duringthe past ten years or so. In addition, the military user has made little or no

attempt to measure or record the number and type of software changes proposed and
achieved, the consumption of spare capacity with design change, or the operational
penalties or opportunities lost for lack of software development potential and so
is in a poor position to quantify and justify his cry for increased development
potential.

3.2 Now although one could equally well point to examples in individual projects
where there is some capacity for growth, when viewed across the field there is no
consistent pattern of such capability. This is hardly surprising; requirements
have not always been consistent, and those that have been consistent have been unable
to withstand the conflicting pressures encountered during competitive bidding or
subsequent system development. With custom-built military systems, it may not be
possible either to specify the operational requirement to sufficient detail at the
outset or to resist the pressures to amend that requirement during system
development. Irrespective of the type of contract, when finance is short or budgets
are in danger of being exceeded, those facilities that affect spare computing
capacity and development potential, and which the customer cannot justify with any
degree of certainty, are often sacrificed rather than incur the extra cost, the
system re-engineering or the project delay. The military customer must therefore
accept a share of the blame for inadequacies in the development potential of his
systems; significant improvement can only be guaranteed when development potential
is taken seriously enough to be insisted upon and paid for.

4. THE WAY AHEAD

Any change from the present position will rely upon a wider belief in the need to
design into avionic systems from the outset, the ability to facilitate considerable
ongoing system development, throughout their extensive in-service life. The user
may well be forced into expending effort on finding out which areas of a system are
most likely to change and in being more quantitative about those changes foreseen in
the near-term. While the rate of change in the military world will make it difficult
to accurately quantify long-term development, intelligent long-term estimation and
accurate near-term prediction will assist in basic decisions concerning the amount of
spare computing capacity required and its distribution within a system. The need to
be able to adapt an avionic system effectively, economically, safely, and in a timely
manner to match its changing operating environment must be recognised as a military
requirement and funds allocated to those aspects of basic systems design that provide
for it. The system designer for his part must make a conscious effort to eradicate
those system features that inhibit future growth and so produce systems in which the
desired level of flexibility can be achieved. Both the user and the designer must
be realistic about the cost of flexibility and coatings should examine overall life-
cycle costs assuming a certain level of development activity throughout the avionic
system's life. Cutting corners to provide the cheapest initial solution, or
forfeiting spare capacity to meet the specified 'operational' requirements at no
increase in initial cost are both expensive options in the long run and both seek
vainly to avoid the harsh reality that much of the cost of developing a system is
spent after delivery; short cuts taken before delivery often increase the 'cost per
unit' of post-delivery development.

43.4

5. TOOLS FOR THE JOB

5.1 One must acknowledge the significance of the downward trend in hardware costs.
The steady reduction in the cost of computing power has changed the balance of
priorities in software design. Program efficiency is no longer the over-riding
requirement for which much has had to be sacrificed in the past and which has
largely perpetuated the use of low-level assembly languages. The use of Assemblers
and the use of hardware-dependent and obscure programing tricks in preference to
High Order Languages is no longer justifiable. If the use of a High Order Language
or a structured approach to design inflates the requirement for core store and/or
processor power then in most cases the effect is only a marginal increase in cost,
provided that the requirements are established early enough. (Of course 'cost, here
refers to initial or development cost - over the complete life cycle it is likely
that the overall cost would be reduced rather than increased). Increments of
computer power are cheap and may add little to space or weight requirements if they
are specified before the hardware is manufactured and installed. After that any
change in configuration will probably be expensive and may not even be possible.
Having established that, it is not difficult to see the advantages of modularity
both of hardware and software with the aim of minimising the dependence of any one
system element on any other. This must include hardware/software dependencies and
here two aspects are important: first of all one must minimise the extent to which
software changes generate complementary hardware changes and vice versa; secondly one
must reduce the extent to which software is system specific, so that at least some
software will be re-usable and the application of an algorithm to a new system will
not entail the unravelling of complex system-specific detail. As a consequence
hardware and software modularity will be of increasing importance as will be the
reduced dependence of hardware and software design upon each other.

5.2 In parallel with the downward trend in hardware costs, is the increasing cost
of software development. This high cost is primarily due to the fact that it takes
many skilled manhours first to produce the software and then to adequately test it
in its operating or near-operating environment. When viewed against the military
pressure for ongoing software development, it is essential that means are found to
reduce both the overall effort and the elapsed time that it currently takes to
introduce adequately tested software changes into operational avionic systems.
Consequently any interest the military user has in the development and adoption of
software languages, software tools or software practices should centre around the
degree to which these things facilitate 'economic', 'speedy' and 'safe' software
developments. The well-attested economic merits of standardisation with attendent
benefits upon logistic support, training and manpower undoubtedly apply in the
software field. However, software standardisation in itself, whether it be
concerned with languages, tools or practices, is only one step. What the military
user needs to know is how well any standards will enable software to be introduced
not only economically but also with speed and in a well-proven manner, Within the
UK, the adoption by the MOD of CORAL 66 as the standard preferred language has been
a wise first move that is now beginning to yield identifiable benefits. Moreover,
the experience of using such a standard language in a variety of systems with
differing software support tools and practices has emphasized the importance of a
standard high-quality software support environment. It is consequently this latter
aspect of the current ADA/APSE development that has the greater potential benefit
for the military user. Without doubt such an environment will be only a beginning.
It is a step towards the day that has to come when we have software support tools
that will enable system engineers to amend and optimise system performance and
features without direct recourse to the perils of programming as it exists widely
today.

6. CONCLUSION

6.1 This paper has a simple theme. The theme is that more importance needs to be
attached to the design of military systems in order to satisfy the need for
continuing software development throughout their in-service lives. The factors
that drive this need are peculiar to military systems and some of them will be
increasingly Important as technology advances and automated military systems become
more widespread. The ability to introduce proven software changes in timely
co-ordination with developments in automated friendly systems and with speedy
response to tactical developments in less friendly ones, demands improvements in
both systems design and in software support environments. System design must
facilitate the modular development, expansion and replacement of both hardware and
software and must also reduce the dependence of hardware and software upon each
other. A comprehensive software support environment is a 'must' in order to
facilitate software development in an economic, safe and timely way. This calls for
a greater belief in, and comittaent to, the need to simplify the means of
performing software development in systems which themselves are increasing in
conceptual ability and complexity. It cannot be effectively achieved without
positive committaent on the part of both the user and the system designer.

Il

43-

6.2 Only a passing reference has been made to High Order Language, software
structure, software testing, software support tools and software practices. No
mention at all has been made of Specification Languages, Design Languages or
Configuration Control. This must not in any way be taken to underestimate the
importance of these things. Indeed they are all essential features of the type of
system design and software support that the paper advocates. Any assessment of
their relative merits would not only be subjective but would moreover detract from
the wider aim of establishing a raison dtetre for system design and software support
within the framework of which each of these important factors has its individual
and essential picce.

.1.l

44-1

DESIGN OF A SOFTWARE MAINTENANCE FACILITY FuR THE RAF

John Whalley and Timothy H. Scott-Wilson
British Aerospace PLC, Aircraft Group, Manchester Division,

Chester Road, Woodford, Bramhall, Stockport
Cheshire, England

SK7 h4 R

S UMMARY

It has become common policy for the RAF to assume responsibility tor the maintenance of software once an
aircraft has been delivered to service. Considerable experience has already been gained with service
software teams in support of aircraft such as Jaguar and Nimrod MR ME I. In the case of Ninrod AEW NK 3 ttac

RAF are to establish a software maintenance facility to support the software element of the Central

Navigation System (CNS) and the Mission System Avionics (NSA.) This paper discusses the general
requirements for software maintenance and describes the design of a software uaintenance facility for the
CNS. A brief mention is given of how such facilities may be improved in the future.

1. INTRODUCTION

On-board memory has shown significant increases over the last 15 years. For example the Navigation/Tactical
System on Nimrod MR MK I contained 8K words of store whereas the replacement system on Nimrod .R MW Z

contains 128K words of store. Another trend has been the increasing proportion of total system cost borne
by the software element of the system. Although the cost of hardware has been dropping in price, greatlv

increased program size and the lack of improvement in programming productivity have increased the ratio ot

software/hardware costs.

The term "life-cycle" is used to describe the period from conception to disposal of a system. lie software
life cycle can be in the order of 15 to 20 years and there is evidence (ref. 1) teat the post -delivery
phase of the life-cycle is responsible for 70-80% of total life-cycle costs. Because of this high post
delivery cost and the difficulty shown by some design contractors in maintaining post-development software
expertise it is sensible to use the approach adopted by the RAF and to use their own support facilities.

2. SOFTWARE RELIABILITY & MAINTAINABILITY

2.1 Software Maintenance Tasks

Software maintenance is required for three reasons:-

a) Changes to the software because of new operational require ments.

b) Changes to the software because of new engineering requirements.

c) Correction of software bugs i.e. inherent design errors in the
software or programuer errors.

The Central Servicing Development Establishment (CSDE) of the RAF have recently issued a document (ref 2)
which aims to provide guidelines for estimating software reliability and hence establishing software

maintenance team requirements for Nimrod AEW Mk 3.

2.2 Software Reliability

Software does not wear out and components do not fail in the hardware sense. Software bugs occur because
the program has been designed and coded In such a way that it fails to meet the system specification. They
are logic errors rather than a function of physical life of a component.

Many techniques have been formulated for the measurement of software reliability (refs. 3-b for example).

Most of these are based around an exponential decay of the number of bugs in a program with increasing
time. A step increase in the curve is likely to occur when a new version of a program is issued. The method
suggested by CSDE (ref. 2) is based upon establishing the error discovery rate. The techniques suggested

are based on the work of Shooman (ref. 6) and assume that the software error rate is proportional to the
number of remaining errors although other researchers such as Littlewood (ref. 3) suggest that this may not
be the case. The USAF evaluated three software error prediction models (ref. 7) over a period oI four
years. The results, however, proved to be inconclusive and most, if not all, of the software reliability

measurement techniques suffer from the lack of empirical validation. Unfortunately a customer is unlikely
to want to pay for the expensive logging and analysis of error data until the methods used to analyse the

data are proved to be correct and meaningful. In the case of the CNS a limited amount of analysis is being
performed but it will only be after the aircraft has been in service for some time that the validity of the

analysis will be determined.

Software maintenance s facilitated by the use of a standard high-level langiage and a standard

documentation system. The preferred standards for RAF contracts are CORAL 6b and AV?7o Spec 4 (ref. o)

respectively. The production and maintenance of documentation is in itself a marnmoth task and the use ot a

computer based documentation system is highly recommended.

It is also necessary that a suitable fault reporting and configuration control system should be
established.

.1 - - - - mmmmmmm m

44-2

RAe's experience has been that many of these elements have been developed piecemeal as a need has arisen.
Efforts are now being adc to consolidate all this data into a single computer database. The use of ,
database for project control is equally valid during both production and maintenance phases and this
approach is now becoming well established (e.g. ref 9).

3. THE CENTRAL NAVIGATION SYSTEM

The Central Navigation System is based on a Marconi Avionics (Elliott) 920 ATC computer and is the heart or
the overall integrated navigation system. BAe is responsible fcr "air vehicle" avionics including tke
navigation and autopilot systems. The CNS is positioned at the navigator's station (fig. I) and consists of

920 ATC Computer (including 64K words of core store)

CNS Interface Unit
Navigation & Display Control Panel

Raster Scan Display Unit
Cassette Program Loading Unit

Two Ferranti FIN1OI2 inertial navigation platforms provide heading, position and attitude information and
further navigation data is derived from a gyro magnetic compass system and an air data system. Position
fixes can be obtained using TACAN, LORAN C or from position information supplied to the navigator from
other sources. Navigation data is supplied to the Mission System Avionics (MSA) and steericg patterns can
be initiated by the CNS, the appropriate commands being transmitted to the Automatic Flight Control System

(AFCS). The MSA supplies the CNS with data on targets of interest to the flight crew. The CNS can also
input information to and interrogate a common database within the MSA. This database contains information
of a more general nature such as airfield weather reports and can be written to by any of the operators.

The CNS Keyboard consists of three elements:-
Discrete Function and Status Indicators (DFSI)
Multi-function keyset (MFK)
Alphanumeric Keyboard (ANK)

The use of MFK has reduced the number of dedicated push buttons and indicators that would otherwise be
required but has added to the complexity of the software. The unlabelled keys are used in conjunction with
a series of legends or cues which appear at the bottom of the tabular display on the RSDU. The display is
split into three main areas, basic navigation parameters on the top line, a selectable page of tabular data
e.g. steering data) and an interactive display area containing MFK legends or a cue requesting input of
alphanumeric data.

The computer is connected to the GEC display sub-system and the Marconi Avionics CNS Interface Unit by
hi-directional serial data channels. The links with the Inertial Navigation Systems, TACAN and MSA are via
uni-directional serial digital links of the type used on Tornado. The retention of older Nimrod MR MK I
equipment has necessitated th- inclusion of digital to analogue converters (DAC) and a single multiplexed
analogue to digital converter (ADC)

3.1 CNS Software

There are two programs associated with the CNS:

The Operational Flight Program (OFP)
The Engineering Test Program (ETP)

Both programs are being developed at BAe Manchester and a flight trials version of the OFP has been
operated successfully in the prototype aircraft for a period of about 2 years. The programs are written in
CORAL 66 and documented to AVP70 and hence are modular in nature.

The OFP is split up into seven tasks

SUPERVISOR - Real-time control & interrupt handling.

DISPLAYS & DATA MANAGEMENT - Keyboard handling & formatting of tabular
pages.

INPUT/OUTPUT - Control of data transfers and validity checking

BUILT-IN-TEST - Monitoring of external and internal functions

STEERING - Calculation of steering commands for the AFCS.

NAVIGATION - Calculation of position from raw sensor

information and selection of appropriate navigation mode.

FIXING - Calculation of position correction factors
from raw fixing data.

The ETP provides a full test and diagnostic capability for the CN. 'nd also facilitates overall testing of
the integrated navigation system. The ETP will be used to provide further information on a fault detected
by the OFP built-In-test or by some other means. The RAF fault report form F720 will be suitably annotated
with details of the software configuration and mode of operation to help determine whether or not a fault
has been caused by the CNS software.

The sequence of software production is as follows:-

44-3

Code and test individual modules on the host computer (GEC 41 8U) using renident and cross-prouct s(1 twr,.

Integrate modules on a software development rig consisting o CNS equipment.

Integrate the software into the overall integrated navigation system ott the systems intcgr, tion rig.

Each of these steps involves a number of iterations. The systems integration rig consists of ,ircra!t
equipment and cabling supplemented by simulators where appropriate. It should be noted that tile t dare
production and maintenance facilties have virtually identical requirements and so a good tart ing i U1llt I,,I
the design of the maintenance facility is tile existing production facility. because the contractor in
required to provide a technical support and validation service it is also important that tie er ic, and
industrial software facilities are not too dissimilar.

4. ,ESIGN OPTIONS

lour options were offered to MoO:-

Option I - Hardware "hot' rig with aircraft equipment based on dAes systems integration rig.

Option 2 - Software simulation rig with a link between the simulation
CS computer and the CNS hardware.

Option 3 - Joint CNS/ISA rig driven by a general purpose simulation
package - SlIBOX, based on a mainframe computer.

Option 4 - Microprocessor based sensor simulation.

These configurations were aimed at testing the software in order to determine the cause ot sottware Uaults
and to validate software changes. In addition it was also required that a facility for sottware generation
should be available for editing and cross compiling programs for example. This would be a GE. -.o0 computer
and would act as a back-up to the main generation capability provided by tile ISA software support tacility.

The first two options were based around BAe's systems integration and software development rigs
respectively. The systems integration rig consists of aircraft hardware laid out to correspond to toe
actual aircraft layout, dynamic inputs to the system being produced by a variety of hardware based
simulations and an aircraft simulation computer. The software development rig consists o the CNn, hardware
which is either operated independently i.e. without external stimulus or via a low speed lln with tile G1,r
4080 host computer.

Option 3 was suggested by the RAF because it utilises the simulation package SIMbuX. This software tool was
developed at RSRE Malvern because of concern over the wasted effort in producing a olultiplicity c l
simulations for different projects. It is aimed at simulating a large number of objects such as ships ana
aircraft in a defence environment and in the case of the ISA it would be used to provide simulated ra-.
track data.

Thc last option was in effect similar to optio 2 except tlat the relatively high cost raini-compute, s
replaced by a series of low cost micro-computers. Each micro-computer would represent a system or group i
systems.

4.1 Comparison of the Options

Option I carries the lowest risk because it is essentially the same as the systems integration rig at
Woodford. However the rig contains a number of high cost items such as the hardware simulators. The
computer used for the aircraft simulation is a Marconi-Avionics 920 ATC and can only provide a limited
degree of operator interaction. In addition a GEC 4080 machine would be required as a back-up software
generation facility. The advantage of using a hardware based rig is that it is likely to represent the
aircraft system more faithfully than a software simulation which might suffer Irom inadequate modelling.
However the modelling deficiency may be as a result of incorrect documentation of thle hardware and in tt~s
case a hardware rig might not represent the true situation. I- addition the hardware rig does not fully
represent the aircraft system because it is necessary to use a series of hardware simulators. Increasingly
these simulators are likely to be microprocessor based and hence contain software logic. A significant
advantage of the hardware rig Is that it enables visual checks of aircraft instruments to verity outputs
from the computer.

Option 2 was based loosely on BAe's Software Development Rig. However tile rig at wodf-rd o y ,ontala
low speed link between the GEC 4080 and CNS which was incapable of stimulating the CNsIlL and reprodu ing
aircraft data rates. In order to produce the required data rate this option requires the productin uI a
special interface unit between the two computers and additional software in the 4ot C,, Jr e the lin. so.

systems external to the CNS are replaced by simulations within the 4ot'. This clearly raises the prohlei ,I
testinn! one software package with further un-tested software. however, much ci the simulatio software hala
previously been validated in conjunction with aircraft/weapon system modelling tor cimrod .

Option 3 was also a software based solution but usiog a general purpose simulation pacKage w1ith could elna
Itself to supporting a number of target systems and hence form tile basis t a multi-prs-- t software
maintenance facility. This approach has been adopted by the CS Navy Air Developm,lent Centre (rel. V)I.
However, the US facility required a substantial investment in software support tools over a wteiner ol
years. Although SIMBOX is considered to be a sensible approach for war games and inter -vste,' tipes ai
simulation it is not sultanle for dynamic systems simulation where the transient reponse might t" oA

Importance e.g. the interaction between the aircraft dynamics and the stee ring sottwart.

Option 4 offers a modular microprocessor solution which given suitable standardisation could lead t, ats

application to a number of projects. However, It carries a substantial developoaent risk because ol the us.

.....

44-4

of new hardware and software.

(Iiarlo there are man" other options that could have been oftered. MOiii finally decided oin a co:aoin.otion of
iptiuos I and 2 the aim being to retain crtaio iterns ol representative hardw'are whils t elilinattOz highi

cost items such as the hardware simulators whose total cost was greater by a f .ctor 011 two than the cost 0!

tilt, simulation computer. The decision was also influenced b the necessity to provide a Gee.. - i, comjuter
for software generation and it was therefore more cost-effective to use the same computer to drive the
sottware testing rig.

5. DESIGN OF TIlE SOFTWARE TESTING RIG

5.1 HardwareiSo tware Tradeotfs

With any desigoi problem the implications of each decision must be consid red in teras of a nui.iber 0,

tactors. These vary with the details of the tasks to be performed but include.

a) Cost
bh Availability within timescale

c Technical Risk
) Mee t ing the customer' s requirement

t AiIlitiY to adapt to future changes in the requirement.

In a compl,.tLyI hardware environment tile answers to many of these points are often et rai gittlrra, cot
when a balance between hardware and sottwire is involveo, the benefits of each approach cay b le,,
obv i us .

The requirement for the Sottware MIaintenance Facilito can be sum~iarised as the need to pr-ide i,
environment similar to that experienced on tile aircraft in which realistic testin-i tite C., pr-;ri 0 ,at
ho undertaken. The diagram (fig. 2) shows the CNS as fitted in the aircraft together with tht air~ratt
systems which supply data to it and receive data from it. A.so shown is the -most inportant part ,,I ti%

navigation system, the vehicle motion. It -an be seen that a closed loop svstem is t ormed nv the oteerint:

faility of the CNS, the AlCS affecting the aircratt position in such a wan as to remove the .rrtor trum t:,e
desired course.

Considering then how this environment an be translated into a ground based rig the t irst decision in Io~
the aircraft motion is to be represented since in this case at least the real thing contot be inclueod, nuAe
have in the past used hardware simulators to generate the major signals required to drive aevelopment rtis.
These however have not usually permitted any dynamic motions and have not been suitable t r use in a chsd
loop situation. Whilst these facilities ould be provided by a new hardware simulator, the alternatie Ie
soliware simulation was considered to offer several advantages. Firstly BAe have considerable experience ot
using computers to simulate aircraft otion in the fields of design (stability and control worK) ano
modelling (development and analysis lot an aircraft's unerational capability such as the tNS steerio g
facility). Secondly e-perivnee witt the Nimrod Mk2 has shown that these modelling tecitiques adequateIs
represented the aircraft and in some instances ,ave better results than a hardware rig. Pitally iircitat
models have bet-.: used with simulations -f some of the other system that are part ot the : iirod Ahs X 3
equipment wl cb cotld be used by the Soitware Maintenance Facility.

The ilent oIt these are tile Inertial Nan-igoation Units which sense the rotation and aeceleration ot tile
air, ratt to provide attitidt tiud -onit i-nl data to ti-u CNS. Since there is no actual motion on a Rtud
vised rig -i speci;Illv pridu-td i Si-mulaitor which has ni cvros or accelerometers is available that can be
used with an aircri t itMUlati, .i t, , thuit described abo-ue. These rlnits hotwe-ver ie extreelv cost,% an"
are virtually built to order and tiu h,- I,ng lead times. The use at tile software sinulation was
theret(,re clisen. In 1-t two indepeidetlt imolations are to ;,e used so that both iN systems are otuelied.

The AFCS is te lirst system t,,r which the aircraft hardware could be used without roditication, it
comprises several units aiiCa tig tq tile aut,,pil,t and the flight director system. The henefit of using the
hardware was considered t,- h negligibl e sin-e thes do not contribute directly to the CNS so-ftware testing
Ind a software simulat i-i ht ai reide bern 2,eeloped.

he TACAN re elver has to he siltl.itd ho the. , -putlr it all the ,ssible TAI1A., stations are toi be
repri-sented. These ntnbtr tb-h-it 2-- ind tin- ec- r qi-ir, the resolut ion of ambiguit ies where transmitters share
,hannels. bA. did nT- have s ttware slmtulat in it this system at tile start of tite pro jct but tile
tmit l ion ire n-It -- mpli, ,ted h ing dvrised -is , si-iri-al tri - ,t- Ir with it, :l1oancse tr tile
I Lit tening ,,! tilt. e)arth.

it.e N!SA in itnelt bised ipoan a ihl , computer whi, t i*rorms man- tmotre lun(t ins than are required to
,t imltiate the ENS. t-e Siittwar- Supp-rt -ai Iite is reiquired I,, represent the lnctions ot the MSA that are
ivailable ti the INS t-, allowu tesing ,,t them w ith-I the iies-d ior the mlA t-, he present. However til
abi litv to irtietiace with in external

M
Sa simuiatr it .as,, required.

hi-(tent r.d I-a,,adiing Svstin (tHSi and tl, ir Data oimpoter -'Ao) ire beth systeis that, line tie I ,'s rel
"pm aircralt mitiin and tiucrer wer- hi-.-e t b- h t. rpcverlt-d ho h,:t-ware siotilatiis t,1 as-1nd the need
fiir spec Ia ' hardwire systems.

Tie plitit ' on-t-p butt-n is used to, [,ruieI- an extern.i! fix be --iert 'ing a known position. Since this is
-if necessity a manuai -peration requiring visual reterente, mtdiication of the system was required. The
mt-thod used was tui respond to an on-tip with tile uilsitiin if tile aircraft simulation at the time ot tilt.
request and was theretore implemented in the GEl .080 computer.

The hardware systems th-it are reained are the Routine Dynamic lisplay (k) and tile pi lot's instruments
both of which prtvlde visual intormaetIon to tie operator that Is useful A

u
ring testing. The instruments are

driven by data fronm both tie software slimulations and the CNS. The ROD is driven solely by the CNS and its

44-5

display consists of a moving light inditat ing the aircraft posit ion in a chart.

In considering each system mentioned above the overiding int luence upon whother tile sottware simulat too -as
acceptable was whether it imposed any limitation upon the use of the facility for testing toe C S. Te use
of software simulations has a useful side effect in that error conditions that may arise in equipment on
the aircraft can be induced in the software without having to modify any hardware which allows the
extensive BITE facility of the CNS to be exercised. There are of course servicing problems involved with
the use of specially modified LRU's. The use of software also affords considerable tlexibility bth in tot
initial design and also for future modification to keep tile rig up to date with changes on tile aircraft
which is to remain in service for up to 2c, years.

It is worth mentioning that the cost of producing software is frequently underestimattd as is the te oiai
risk with a new program. Production of sottware does take time and it must be thoroughly tested to ensure

correct performance, particularly with simulations when the software is emulating a real svstem. ''ajr
modifications later in the life of a system can be just as co-ly as tile initial production it sutticeint
provision is not made for easy comprehension of the software by the maintenance progra~mner.

5.2 Simulation Software

It has already been mentioned that the simulation software is drawn largely trom bAe's previous .xperience.
However few of the models were suitable without enhancement and also all required moditication to tit into
the real time enironment needed to stimulate the rig. The first change was to translate the models into
CORAL 66 (many were originally in FORTRAN) which allowed the software to be put into a highiy nodular tor,;
and overcomes some of the problems associated with suhsequent modifications. ihe heal Time control oi tit,
program was developed using the MASCOT approach but was implemented in the final system using t! e
Nucleus which is basically a hardware implementation of a M-ISCIT-type kernel.

The simulation of the aircraft was developed to permit large variations of speed and height in order to
allow simulation of all phases of flight. This was achieved using a combination of a small perturnation
model (commonly used for aircraft simulations) for the lateral dynamics and pitch and a fuller
representation of the dynamics for the in-plane velocities. The variation of aerodynamic derivatives with
the major flight parameters height, speed and lift coefficient was included. The control ot tie flight was
from the CNS or via the operator's VDU through tire autopilot simulation to ensure stability. Thus manual
flight is not simulated although this mode is of no significance to the CNS.

The IN simulation was developed during the Nimrod MIR HK 2 project and includes a model of the errors of the
system.

No errors are included in the CHS or ADC models since the CNN make no allowance for these. It was also
decided that it would not be appropriate to include the effects of noise in the simulat ions.

5.3 Description of the rig

The diagram (fig.3) shows the final configuration proposed for the rig. It will be seen that all tile
systems being replaced by simulation have been taken into the 4085. It has also been necessary to introduce
a special interface unit that converts the simulated data into the analogue and digital signals found on
the aircraft and also presents the data generated by the CNS to the simulation software on the 4on5. This
unit is one of the side effects of the decislen to use software simulations that affects both tile cost and
technical risk of the project. Its operation is also dependent upon a software interface that had to be
written for the 4085. The other item that is shown but has not been mentioned up to now is the Operator's
Monitor Panel (OMP) and associated peripherals. This unit provides the only means of monitoring the 92u Alt.
whilst it Is running. It also permits the operator to examine and modify store locations either whilst tile
program is running or after having stopped it. Small changes to the program are patched in this way for
testing and after proving would be added to the program cassette tape that can be read by the PLU. The
Nimrod Software Team had suggested various improvements to the facilities of the OM? which involved tile
addition of a microprocessor to control it and this task was considered as a part of this project. nowever
this would have involved high cost to the RAF and high risk to BAe so it was not undertaken.

5.4 Use of CORE to design the rig.

CORE (ref.1l) stands for Controlled Requirements Expression and is a method for developing requirements ard

specifications for systems that was originally suggested by Systems Designers Ltd. and has been refined by
RAe Warton. It is basically a tormal notation and procedure for putting on paper tile designer's thoughts
which usually get forgotten subsequently. It also helps to identify tire grey areas in the design and to
''cate faults in the thinking behind the conception of the new system. If one considers the cost ol

crecting an error in a system during its life cycle it is obvious that a little extra effort in defining
tile requirement at the start of a project car be very cost effective In terms of preventing expensive
mistakes.

Tie CORE method expresses the requirement in a diagranratic tor ni supported by written notes. ihe start 't

the method is to define the viewpoints (fig. 4) from whiir tile design is to be considered and to write down
In tabi lar form all the actions performed and data inv,ived with the, The. se are then drawn out as isolated
threads. The next stage is to join tse threads that depend upon calh ,thr into single threads that alwa~s
-ctor is a sequence of actions. An operational view is then formed (fig. 5) which presents all the ic tirns
that rcor during the lifecycle of the system. lvpiiall a lite vcle is betwee" each start and stop ,I tri
system (i.e. switthing power on to switching power tt) an ra i or events duringt i olvratin art
identified. This process can then be repeated it a new lt ,I It detail hIb t ill tile tlre te ding au
'''rre',thins back to tie previous level.

(iRE will also indicate where the system can be hroken into subsystems snd for software systems, whrt tile
nittrral division into modules can he made. There iris ilsr' terit itklid tl be a lrrse paraliCi with t'l e 'nt-i

tivitv-ciiannel-pool notation (ref.12) which can be used t, lrvplu i nt a i)t. design in s''ttwarc.

44-6

5.5 Operator Interface and Control

The simulation is controlled by an operator who can monitor and control the progress via a Vja. A svste: 11

multifunctlon legends are used which allow the required function to be accessed via a selection tree ol
commands. The operator has to perform the initialisation of the simulation and also the mode of operat i-i
(i.e. automatic data generation or manual data entry). He performs tasks that Would normally h, under tie
control of the pilot, such as setting and changing height and speed or autopilot mode selection.

All the data passing between the 4085 and the CNS can be displa-ed and all data going to the C,, can be
entered manually.

It is possible to induce many of the faults that are detected by the CNS BITE by oaKing the dati nehave in

the way necessary to fail the tests perforued by the CNS. In some cases this can be achieves no setting a
fixed value but in others certain rates of change must be exceeded. In all cases tile condition coist he ile
to persist for a variable length of time since the BITE detects spurious faults is well as regular and hard

faults.

5.c Use. of the facility for other purposes

The Software Support Facility being based upon the GEC 4,c)5 microconpoter can also ye used to provide a
bureau computer service although the loading imposed by the stimulation of the rig in real tioe precludes
the simultaneous use in both roles. However it will he used to provide a reserve tacility for sottware
generation for both the .MSA and CNS programs.

Because the facility can represent all the conditions encountered in flight it is usetul tor initial
training of CNS operators and navigators. Full length flights could be perforced including tixing, steering
and BITE monitoring training and if the rig is used in conjunction with the ISA simulator, tie w iole crew
could practise tactical exercises on the ground. This would improve the effectiveness ot tile aircraft
during real sorties.

6. FUTURE IMPROVEMENTS IN SOFTWARE MAINTENANCE

As has already been stated software does not wear out in the sense that hardware does an software
reliability proble.s are a function of poor design and inadequate requirement speciication dnd ti use ,I
toils such as CORE will hopefully Improve the situation. It is also recognised that goed cftliguratiin
control is also a major influence in the sucessful implementation of software systems.

Standardisation of host and target compaters and the adoption ot the st,aidard digital bus 13.-n ;-I III

should allow the production of a standard set oh software developoent toils And tlit use)I a gener,il
purpose s-f tware maintenance facilities.

Much software debugging is carried out using machine language and usually requirt the procrincr ti, be- it

the console (as is the case with the 920 AT(; liMP). The programmer has to mentally l tcogle with aic lit ,.i
instructions and hexadecimal, octal or binary to decimal conversion .,rd spends a onsiderable acilit ,,
ti:ie formulating machine code patches to 'repair' the progran. Recent microcomputer s .st cos .iakv thi ti t k
e ier by including a firmware package which allows such capabilities as the insertion i Muitiple
hi akpoints in a program, the retention of the execution results from the last 5i instructions s-% ia: the
capability of referring to locations in say hexadecimal, decimal and bitlry. Altliugi I nit Net itr v mcmvn

another useful feature which should be utilised note in future is souree or sabol i c langiage debugging
whereby the compiler or assembler symbol table is used by the cooputer to generate tcrcccra, reterences in)
source rather than in machine code. Tile techniqu of patching programs could also be -lininated by
improving compilation speeds and providing a direct electrical link between host and t irget ,,mputers ti
provide rapid error correction and downloading from host to target. Again this practi ce is now itiomiin

more common, particularly with microprocessors.

Althoigh significant costs are associated with many of these improvements mjor savings-can beo t-oii t le
ninteniince if future socftware systems provided that suitable hardware and ,iiitware staindards caii he

cst;ihlisied s, t hat the investment can be spread over a number oI projc ts.

It hais become common pIilicy fur the RAY to support the sottware of airborne coMputiLiig systeil toiioliclg
d-livery to service until the denise of the system, a period which can he responsible tor 7' i, c t li!L
cycle costs. In order to establish the size of the maintenance team it is necessary to hae ,,ice
measorkoent of software reliability and the number of system requirement chinges likv l to alfect tilt
software configuratiom. The data avallable to date is largely ermpirical and furtlaer rest.rci is required t.,
estibl I si icceptahl e techniques.

Viriois , tions were discussed in order to satisfy tile RAF requilrecient tr , sitwiri :.iaiiltli ' Ice ilit
t i- the Central Navigation System of Nimrod AEW M1k 3, the configuration tinalv chosen for the sottware
testing rie consisting of a mixture oi aircraft hardware and computer based simulatim it th, systel
dvnamics.

Vie er fort required In maintenance ciild be reduced in tutire by the adoption of better sittware desigcin
teihques, tice adoption of 'eimpter based management packages and irlpriced soitwaire testinc: I-,i s.

S.A(K:R.,WI EDtE>IENTS

The iittiors wisit to thank british A rerospace Pi Aircrat ((rcup t lan(hester division iir tici, r ,rini ,,ic t
povbl 1h t hi s paper and the Ministry tif Defenee (Proccicrement Execut ive) Iior thel r so;~port . il c vitwIxlressed in tics paper are those of tie authors cnd should nlt be takeni as rtprisentlt ivn ,c liAr t ic '11
opiioni.

44-7

REFERENCES

1. iilHM, B "Software Engineer", IEEE Trans. Computers, col.
C.25, pp 1226-1241, December 1976.

2. JONES, .H. "In-Service Software Maintenance - Software
Reliability assessment and Maintenance Team Manpower requircme nt
assessment". CSDE/11146/5,2/RAD RAF Central Servicing Developncot
Establishment, October 1978.

3. LITTLEWOOD, B "low to measure software reliability and how not to".
IEEE Trans. Reliability, vol R-28 No. 2 pp 13-l10 June 1979.

4. BOULTN PIP & KITTLER MAR "Estimating program reliability".
The Computer Journal, ,nlum 22 N,ribcr 4 32b-331.

5. MUSA D. "Validity of Execution-Time theory of software reliability"
IEEE Trans. Reliability vol R-28, No. 3 pp 181-191, August 1979.

6. SliOuM1AN, .M "Structural models t,,r softwart- reliability prediction",
Proc. 2nd International Cont. Software Engineering, San Fransisco,
pp 266-281), October 197b.

7. SUKERT, A.M. "Empirical validation of three softwart error
prediction models" IEEE" Trans. Reliability, vol. R-2E, No. 3, pp
199-2u5 August 1979.

8. MOD (PE) Air Technical Publications Branch. "Specification for
Air Technical Publications covering software for operational real
time computer based systems" AVP 7t, Spec 4 2nd Issue, August 197b

9. STUEBING Ii. "A modern facility for software production and

maintenance" AGARD-AG-258 - Guidance and Control Sot tware, pp
3.1-3.14 May 1980.

i0. DAVY, B "SIMBOX: A general purpose defence systems simulator".
AGARD-CPP-268, ppl4.l-1

4
.E January 19110.

11. WARD A.D. "An approach to the derivation and validation of

requirements". AGARD-G-258 Guidance & Control Software
ppl.l-1.

2 3
, 1980.

12. Mascot Suppliers Association. "The official Iaundbook of M.ASCoT"
June 1979.

44-8

PASTER SC m

I.TERPCE U..C Pv COPUTE 920 *?CI

FIGURE 1
CENTRAL NAVIGATION SYSTEM

44-.)

-C en t-ra -

Program System

Unit

CentralotDiia

Navigation Interface JntaMSA

NDCP RSDI I

Pilots Veria Cent ra I

L On Top Ref. S eain

Air Aircraft

System Display s to

CNS AS FITTED TO AIRCRAFT

LNotadingS S yseFniao

FIGUR 3

CetrlCNS SFTWARe SUPORTFACLrT

NaiainItraeFclt

44-10

FIGURE 4

CNS SOFTWARE SUPPORT FACILITY VIEWPOINTS

Requiremnent Define Run &

Initialise System

Simulated
Syvt em Data CNS O~spiay

'I, op CNS Processing CNS 01P Data

,CN5 utpu DotSm 04

lpC Simulations & 5'

FoiUrEng

CNS SOFTWARE SUPPOT FCLT SSE PEAINL IGA

45-i

A SOFTWARE ENGINEERING ENVIRONMENT (SEE) FOR
WEAPON SYSTEM SOFTWARE

H.G. Stuebing
Staff Consultant

Software and Computer Directorate
U.S. Naval Air Development Center
Warminster, Pennsylvania 18974

United States of America

SUMMARY

A Software Engineering Environment (SEE) has been designed, developed, and used for the life-cycle support of weapon
system software. This SEE con3ists of two types of facilities; software production and integration. The software pro-
duction facility consists of a software system that runs on a commercial multicomputer configuration. The approach
features increased management visibility of the software development process, increased programmer productivity
through automation, reducing the cost-of-change during maintenance, and the use of automated regression testing
to Improve software quality.

These facilities have been used for seven years to develop and maintain weapon system software for several pro-
jects. This paper describes accomplishmerts, refinements to the code and test functions, and a general approach
to extend the capabilities into the requirements and design phases. Techniques are described that simultaneously
allow different methodologies, programming languages, and target computers to be implemented on the same host
computer. Also discussed is the implementation of a SEE in a distributed computer network.

1. INTRODUCTION

"Software engineering" is concerned with developing software systems that satisfy the requirements of the user
over the life of the system; a SEE assists the accomplishment of software engineering through sets of computer ,acilities,
integrated software tools, and uniform engineering procedures. The term "weapon system software" inherently im-
plies a concern with software for embedded computer systems and support over the entire life-cycle.

A generic view of the weapon system software life-cycle phases is shown in figure 1. This figure emphasizes the
view that weapon system software is redeveloped several times during maintenance, the time after the initial version
is delivered. The development process has overlapping phases, each with a measurable input and output. The phases
overlap to show that there is an interaction between them. Within each phase, a set of activities is defined to
systematically achieve the goals; the functions of management, quality assurance, and configuration management
are included as activities in each phase. There are iterations horizontally, between activities of a particular phase,
and vertically, between phases. During initial system development the work progresses through all phases. During
maintenance the point of re-entry is determined by the scope of the intended change.

At the U.S. Naval Air Development Center (NADC), Warminster, Pennsylvania, facilities have been constructed to assist
software engineering for weapon system software. Two types of facilities were built: software production and integra-
tion. The Integration Facilities were built for each project and consist of laboratory hot-mockups of the embedded
computers with realistic simulation of external Inputs. The software production facility is an integrated software en-
vironment hosted on a large-scale commercial multicomputer configuration. The host configuration consists of five
Control Data Corporation (CDC) mainframes, a CYBER 175, CYBER 720, CYBER 760, and two CDC 6600's. This soft-
ware production facility is called the Facility for Automated Software Production (FASP) and it is described in (STUEB-
ING, H.G., 1980) and (FASP, 1979). The conceptual and architectural ideas of the FASP were strongly influenced by
(BAUER, F.L., 1971) and (SOFTECH, INC., 1974). The FASP became operational in July 1975 and was the first Integrated
environment to be used for weapon system software and among the first integrated environments. The FASP sup-
ports the activities shown in figure 1 from Mission Requirements to Code and Test; however, only the Code and Test
phase is supported by an integrated environment. In the earlier life-cycle activities the support is provided by loosely-
coupled sets of tools, an important distinction discussed later.

2. ACCOMPLISHMENTS

In this section the accomplishments of the FASP are discussed; the reported period of operation is July 1975 through
March 1982, nearly seven years. These accomplishments are given to set the context for the discussion that follows
and to give encouragement to those who are contemplating establishing such facilities regardless of scale. In judg-
ing these accomplishments one must consider the methods that were used before the introduction of the FASP. General-
ly, before July 1975 the software development was done on the target computer Itself. Sometimes the same target
computer was used for development and integration. The state of support software and peripheral devices for these
target computers was primitive compared to the state of commercial computers. Nevertheless, a large industrial-based
work force had established a way of "doing business" with these facilities and produced large amounts of weapon
system software. The software problems of those days are well documented.

2.1. Integrated Environment Hosted On Commercial Computers

The FASP experience has shown that the concept of an integrated environment hosted on large-scale commercial
computers can be used as a true production facility. True production means that the availability and performance
are adequate to produce weapon system software. The FASP was contractually specified as government-furnished
equipment with guaranteed performance; the usage was almost entirely contractor personnel located at remote sites. A
table of data Is shown in figure 2. The data shows In summary form some of the key parameters measured with the

FASP. The amounts of software shown are larger than the software delivered to the fleet since some projects keep
several versions active at any given time. Also. the data refers to on-line software and does not include the amount
o1 archived software.

This approach used a one-time development of support software that not only eliminated such tasks from the contract
but also used less in-house personnel than supporting separate facilities for each project.

2.2. Management Visibility And Control

The FASP provided the dual functions of an advanced programming system and a management information system;
this allowed management visibility into the software development process at a detailed level. Data base controls allowed
configuration management to be enforced from the beginning of projects, a welcome benefit. Also, the FASP was
a natural way to have work standards uniformly enforced over a group of projects. The NADC was able to serve in
various roles with regard to weapon system projects; these roles included System Prime, Validation and Verification.
and Life-Cycle Support Activity. The FASP, with its remote terminals, could be used by contractors or other govern-
ment laboratories regardless of geographical location.

An advantage of having software developed in the FASP is that there was no transition required when the project
was transferred to the maintenance phase. Further, since the software was in a government operated facility with
all management information, test data, and documentation in hand, the maintenance of the software could be com-
petitively procured in a realistic way, a major change from the times of being captured to one vendor for the life-cycle.

When software was not developed in an integrated environment it was found to be poorly organized and impossible
to recreate without the original developers. The development of interface control documents proved invaluable when
such software had to be transferred to the FASP from another development facility. When the developed software
did not follow the interface control documents, the effort to transfer the software was sometimes large. Transition
efforts took a few days when the interface standards were followed and varied from one-half of a man-year to seven
man-years when they were not.

2.3. Productivity

In (STUEBING, H.G., 1980) the productivity, measured in delivered source lines per man-month, was well over 400. This
data was measured before significant interactive features were added to the FASP. The data was a two-fold increase
over published industry data for real-time embedded computer software; the productivity data is believed to be greater
with interactive features. The data before the FASP was sparse and was not consistently measured. There are local
examples of turnaround time varying from one to several days with target computers being used for the development
facilities. These times also do not include the courier travel time to and from the facility. With the FASP the turnaround
time is measured as viewed from the remote terminal. The FASP speed improvement and the complete elimination
of courier travel time reduced turnaround time by a factor of twenty.

With the FASP we have had examples of sharing large amounts of software between projects. The sharing is made
easier because both projects are In the same facility and it is simply a matter of copying a data base. Further, the
use of a common facility by a large group of people tends to result in better communication among the group as
a natural byproduct.

2.4. Quality

The quality of the software produced by the FASP is significantly better than previously. Some of the reasons are: com-
prehensive unit testing with software emulators; enforcement of standards; better t')ols; and improved management
visibility into the software development process.

Consider the following example. The FASP was being used to support a Verification and Validation effort on weapon
system software that was developed by a contractor in a separate facility. An Interface control document was in ef-
fect and the software was scheduled to be delivered as functional Increments, each delivery adding to the previously
delivered software and giving additional functional features. Figure 3 shows a plot of the delivered source lines (not
counting comments). This software was quickly installed In the FASP and subjected to many unit tests, using the
FASP in the regression testing mode with path coverage analysis. As new deliveries were received, additional tests
were added and run with all the previous tests. Figure 4 shows the number of software errors that were recorded
after each delivery; at the end of the effort 89% of all paths were tested. Figure 4 is significant for several reasons.

First, before the delivery to the FASP the contractor believed the software to be suitble for fleet use; however, the
contractor had not used an integrated facility with regression testing or path coverage analysis to test the software.

Second, the errors were reported to the contractor while the development team was still in place and the resultant
error data was a factor in the computation of the contract award fee. This resulted in the correction of many of the errors.

Third, all the error corrections were done before fleet delivery. Clearly, this was more cost effective than waiting until
the errors were reported from the fleet.

2.5. Technology Transfer

The FASP has been used to support projects in several of the Naval System Commands for airborne, surface, and
subsurface applications, a much broader scope of use than originally expected. This usage has sit been on the cen-
tral computer facilities at the NADC.

The entire FASP software system was successfully transferred to a major aerospace corporation. They plan to use
It for all Navy software that they develop. Today, the full FASP system Is only portable to other CDC CYBER computers.

A version of the FASP was rewritten using the UNIX operating system on the Digital Equipment Corporation VAX 111780

computer system (UNIX is a trademark of Bell Laboratories). This version of the FASP supports several popular
microprocessors; components that are appearing rapidly in weapon systems. It is planned to bring the UNIX version
to the same level as the CYBER version, forming a product that will be easily portable to many other users.

3. "TO THE SEE"

3.1. The Software Problem

The hardware (the physical embedded computer resources of the weapon system) is generally considered less of
a problem than weapon system software. The "software problem" has been covered extensively in the literature;
however, different aspects of the problem have been emphasized over time.

In the early 1970's there was great concern over the quality of weapon system software. The performance, reliability,
and user-friendliness were poor; most errors occurred during coding and remained undetected after testing and In-
tegration. This condition has significantly improved through better design methods and comprehensive testing: most
errors are now traceable to erroneous requirements, not coding.

Today's paramount issue about software is productivity; that is, the achievement of a true economic increase in pro-
ductivity over the life-cycle, (MORRISSEY, J.H., 1980) and (MUNSON, J.B., 1981). It is well known that software is a
labor-intensive field and that the life-cycle costs are both high and rapidly increasing. For a given weapon system
about 25% of the software life-cycle costs are for development and 75% for maintenance. Software productivity, in
an economic sense, has only increased modestly when measured over the life-cycle. Most of the available labor is
devoted to maintenance and the amount is rapidly rising because more and more systems are being deployed. The
demand for labor with software skills has exceeded the supply, a trend expected to continue through the 1980's. As
the balance of labor continues to shift to maintenance, less and less labor is available for development. Therefore,
to reverse this trend in the future, it must be cheaper and faster not only to develop software but also to change it
during maintenance.

A SEE consists of sets of computer facilities, integrated software tools, and procedures that support a weapon system
over the life-cycle. A SEE serves as a unifying element to assist software engineering and forms a basis for attacking
the software problems of quality and productivity. Testing remains the primary method for assuring software quality;
a SEE can provide many automated aids to minimize the labor required for testing. Productivity is improved with a
SEE not only by automating the testing of software but also by aiding all steps in the development process, including
making it easier to reuse large amounts of software.

Each phase of the life-cycle employs different engineering methods. Within each phase there is usually a choice
of several methods for each activity. The term "methodology" refers collectively to a selected set of engineering
methods. Ideally, one methodology consisting of uniform methods would exist to cover the life-cycle. The transitions
between phases would be smooth as well as the transitions between activities of a particular phase. An ideal SEE
would be highly integrated, both horizontally and vertically. However, such an ideal state is some time in the
future. Therefore, the issue of today is choosing a way to evolve toward the ideal SEE; it is a matter of implementing
what is practical while continuing research into improved methods.

A key to success is to create a framework where new tools and techniques can be continually superimposed on ex-
isting work activities in a nondisruptive manner. Further, it is better to allow multimethodologies, to the extent possi-
ble, than to attempt to select the one "true" methodology. For example, in the Code and Test phase instead of building
facilities that implemented only the Chief Programmer Team approach, it would be better to chose a way that allowed
several methods, one being the Chief Programmer Team. The activities concerned with Code, Test, and Integration
are better understood than the remaining phases; therefore, they offer a natural starting point. There is considerably
more variability to the methods and techniques currently available in the requirements and design areas; thus, a loosely
coupled collection of tools is more appropriate for those phases.

3.2. SEE Versus Programming Support Environment (PSE)

Several terms have appeared in the literature that are similar to "SEE." They are: programming environment, pro-
gramming support environment, and software environment. These terms have been generally used to describe the
Code and Test activities, although frequently mention is made to the requirements and design phases. Further, these
terms have usually been restricted to the software concerns of a system and not the system as a whole. Therefore,
the distinction is that the term "SEE" is more general and includes the above terms. A SEE refers to the support
over the life-cycle Including aspects other than purely software.

Of course, the term "environment" itself can be somewhat confusing In this context. This term is so general it is
difficult to determine its limits in some texts. In this paper the term refers to the "work environment" for the phases
of the weapon system life-cycle. The emphasis is on the facilities that support the work of each phase and the inter-
face between the engineer and the computer. It is recognized that organizational and social factors are an Important
part of the work environment. These factors must be considered in the design of any computer-based support system
but they are not the main points discussed in this paper. An important point is to recognize that the engineer's detailed
view and use of the support facilities Is different depending on the phase of the life-cycle. The needs are different
between coding, unit testing, and integrating the weapon system software with the embedded computer. Likewise,
the detailed view of the software is different between "development" and maintenance. The term "mete-environment"
has been used to describe the aspects of environments that depend on the user's view of the system and the organiza-
tional and social setting (ELZER, P.F., 1979).

In industrial engineering there has been considerable work on facilities, both In concept and Implementation. There
are many valuable observations In this field that can be applied In part to a SEE. However, there are also some Impor-
tant limitations. For example, In Industrial engineering the production facilities are oriented to rapid and automated
replication of physical devices, devices that have been previously designed. Thus, there is an area called Computer-
Aided Manufacturing (CAM) where the computer has been applied to the task of automating the production of physical
devices. Separately, there Is an area called Computer-Aided Design (CAD) where the computer has been applied to
assisting the designer, making, for example, integrated circuit layouts. In the software field the work of coding and
testing bears a similarity to production in the Industrial engineering sense. This was the main theme In the develop-

...I

454

ment of the FASP. Now as we attempt to extend these facilities into the requirements and design phases it is impor-
tant to note that the analogy must be to "CAD" and not to "CAM." In these phases the facilities must support both
the cognitive processes of the designer and the more clerical aspects of recording the results of the pro-
cesses. Therefore, the theme of the SEE in the early phases is to assist the engineer during the cognitive processes
and to automate the clerical aspects of recording information and generating documentation.

3.3. An Integrated System

The term "integrated system" is also frequently used in the literature. Now, the dictionary definition of "integrate"
is clear: "to make whole or complete by adding or bringing together parts, to put or bring parts together into a whole;
unify." Thus in creating an integrated system, the designer would do tradeoffs between the parts to achieve a unified
whole. A SEE is referred to as an integrated system; it appears to the user as a unified whole that assists the ac-
complishment of software engineering. The users include both engineers and managers; the work activities vary over
the life-cycle and the user interface and capabilities vary accordingly. Conceptually, the SEE may be considered as
a single entity that presents to the user different views and capabilities according to the phase of the life-cycle. The
implementation is most likely to be several computer-based facilities that have similar user interfaces but different
specific capabilities depending on the phase of the life-cycle.

The two types of users, engineers and managers, means that their individual needs must be tradedoff such that the
final system represents a unified whole. The software engineers need advanced programming capabilities for the
Code and Test phase and the managers need relevant, consistent information, and a means to control the cost and
schedule of the effort. The software engineers need compilers, linkers, system generators, and simulators to accomplish
their work; these components are called "tools." The managers need a means of identifying the end-items that are
to be built, a way of monitoring progress, and a way of insuring that the agreed-on procedures are being followed. The
data base concept is a natural way of collecting such management information; it also provides a way of meeting
many functions of the engineer.

Clear!- if an engineer were given just a tool set, the work could be completed. If the tools were compatible with
one another, forming an integrated set, the work would be easier to accomplish. However, such a tool set usually
relies on the host operating system and the engineer is thus free to create any set of files that is felt to be appropriate. If
many engineers are working on the same project, the chances of them all retaining the same type of information in
their files is small. In such a case the manager has no easy way to determine what end-items are being produced
or what progress has been made. Of course, this hypothetical team could agree to follow a set of standards; but changes
in personnel, deadlines, design changes, etc., would quickly destroy the good intentions. Also, the end-item produc-
tivity of this team is lower because experience has shown that a large part of their energy is diverted to handling
the file system and writing support programs.

The computer is the natural and convenient place to integrate the needs of the engineer and manager and provide
an integrated system to accomplish the work. A SEE is an integrated system in the above sense; it is much more
than a tool set, it is a unified system that meets the needs of both engineers and managers.

4. CODE AND TEST

In this section the characteristics of an integrated system to support the Code and Test phase are briefly described
(STUEBING, H.G., 1982) contains a more detailed description). The system that is described is not specifically the
FASP, but one that has been generalized and refined based on seven years of operational experience with the FASP. Dur-
ing the seven-year period, three major evolutions took place along with extensive feedback from the users.

4.1. A Dual System

The system should provide the dual functions of an advanced programming system and a management information
system. The needs of the manager must set the top-level framework of the system. This requires a selection of the
engineering methods and procedures and deciding what information should be saved; it implies choosing a method
or allowing only certain methods to be supported by the system. The methods must have a sound engineering basis
and fit the organization's business methods. With the FASP it was a conscious decision to support several methods
with the same system. The FASP facility is owned and operated as a government facility and used by weapon system
contractors to develop and maintain software. Each contractor had different methods and procedures for doing business,
yet each was able to effectively use the FASP. Some contractors have used the Chief Programmer Team approach,
others a different team approach. All use some form of structured programming, although the details are different. Thusas a government facility, it was important to impose only reasonable constraints on the contractor and allow for the

different ways of doing business.

An important concept in software engineering is incremental development. The idea is to first complete the software
design and then to build the software In stages, or increments, such that each successive increment adds a new
functional feature. This approach breaks the work into smaller pieces that are easier to manage. Thus. it is easier
to judge progress on the total project and it has the additional benefit of allowing users to gain some early experience
with the software system. Incremental development has proven to be valuable on large-scale software projects and
should be supported by the SEE.

An important management need is the enforcement of configuration management principles. Configuration manage-
ment principles consist of identification, control, status accounting, and the establishment of baselines. Decisions
must be made regarding what software elements will be subject to configuration manager t. This involves deciding
what is the smallest unit of software that will be configuration managed. Is it a "line" of ..Je? Is It a "module?" Is
it the basic compilation unit of the compiler? Is there more than one language to be supported and is the definition
of a compilation unit the same for both? These decisions have a significant Impact on the final system and must
be made at the outset.

Along with structured programming came the Idea of include segments. Include segments are fragments of code
that are used in many modules without change. The programmer Identifies these segments by name and places them

I

in the data base; In the source code of a module the segment is referenced by name. The system automatically locates
the segment and "Includes" it into the source stream before compilation. Since these segments are fragments of
code, they cannot be separately compiled without errors; however, they are useful to the programmers. In the FASP
during a typical month the data bases contained 48,000 modules and 28,000 include segments, showing the wide
acceptance and use of include segments. Therefore, although include segments add to the configuration manage-
ment burden, they are recommended for a SEE.Another related area is access control. Management level decisions
are needed regarding what aspects of the system are subject to access control. In the FASP there are three dimen-
sions of control; control over access to the software end products, control over software tools, and control over access
to the computer system itself. In the latter case this implies cost control over the use of the computer system.

4.2 The Data Base

The data base is the most critical component of the SEE since it serves as the unifying element for all other com-
ponents. The data base contains not only the weapon system software but also related technical and management
information that contains the genesis nd status of the total effort. Furthermore, the data base has a significant in-
fluence on the performance of tie SEE, an important consideration in obtaining a true production environment.

Here the term data base refers to a fixed number of libraries that are encapsulated and managed as a whole rather
than distinct parts. The software for a particular weapon system is contained in several "data bases." Each data
base contains the following libraries:

" The source library, containing either the source code for modules or the source code for include segments, or both:

. The object library, containing the object code corresponding to the source library;

" The test library, containing test input data, previous test results, test directives, and system generation directives:

" The interface data library, containing information such as linkages to external object programs or to shared source
code;

" The production data library, containing modification histories, and a variety of management information: and

" The documentation library, containing all documentatiofn about the weapon system software.

The encapsulated data base is the basic unit that the SEE deals with. Several libraries are included because the rela-
tionship between those libraries must be strictly enforced. Thus, source and object code must have a one-to-one
correspondence with no exceptions. A consequence of this relationship is that if compilation errors occur the data
base (source and object libraries) will not be updated! Likewise, test data and test results are synchrcnized. Most
important, at any time in the development schedule the management data is consistent with the rest of the data base;
thus, managers always have access to accurate information.

An important feature of the SEE for large-scale projects is the automatic recompilation of dependent modules when
certain software is modified; for example, if an Include segment is modified then all modules that use that segment
will be automatically recompiled.

Commands are available that allow software to be shared between the data bases, allowing the total effort to be divid-
ed among several data bases and teams. Similarly, commands allow data bases to be divided into smaller ones or
combined into larger ones. Other commands allow the data bases to be copied.

The integrity of the data base must be assured; therefore, during interaction with the SEE the system automatically
creates a backup copy of the data base permitting instantaneous fall-back to the previous version. Additionally, com-
mands allow archive copies to be made on magnetic tape for off-line storage. This level of protection is over and
above that offered by the host operating sysem.

4.3 Procedures, Tools, Commands, And Processing

The use of the SEE involves sequences of tool and data base interactions. To simplify the use of the system a set
of procedures is defined that are invoked by user commands. A procedure is a set of computer directives that automates
a particular work task, invokes the proper tools in the proper sequence, provides all data base manipulations and
correspondences, and automatically records statistics of all activities.

The software tools are programs that do certain functions for the software engineer. Examples are: editors, translators
(compilers and assemblers), system generators, test analyzers, software emulators (target computer instruction level
simulators), data extractors, report generators, and documentation aids. A tool or set of tools are automatically invok-
ed as part of the execution of a procedure. Some tools are visible to the user, such as the editor, and require com-
munication in a language unique to the tool. Other tools are invisible to the user, such as the librarian, and are
automatically invoked when certain actions take place with the data base. In the latter case input and output date
may be processed by other programs but all such actions are hidden from the user.

User commands cause procedures to be invoked. A command Is a procedure name followed by parameter values. These
values give the user flexibility In directing the procedure to accomplish the specific desired function. All commands
are validated before being executed. The commands can be grouped Into two categories, Immediate and Queued,
depending on whether the data base Is modified or not. In batch mode, there is no distinction and all validated com-
mands are executed in the order received. In interactive mode an "Immediate" command is executed at once; all
others are placed on a command queue. Once activated, the system executes the queued commands.

As an example of the power of commands, consider the FASP commend Modify Software (MODSW). This command
is used to create or modify software in the data base. In the FASP on the CDC CYBER computers, MODSW causes

315 job-contol-language commands to be executed; in the FASP on the VAX computer it causes 262 UNIX shell-script
commands to be executed. These operating system level commands are all hidden from the user.

A general set of procedures has been developed and is described in (STUEBING, H.G..1 982). Figure 5 shows a list
of these general procedures. The procedures are divided into functional groups and are described by process flow
diagrams. These diagrams use a structured English description of the control flow for a procedure and a data flow
diagram showing the process performed, the tools used, the data base contents useC and produced, and other infor-
mation required by the procedure. When a procedure is performed a certain amount of standard processing is done
before and after the main processing for that procedure, The standard processing for each procedure is shown in
figure 6 using structured English. Two process flow diagrams are shown in figures 7 and 8.

4.4 Testing

Testing remains the primary method for determining the quality of software. The SEE should support four distinct
types of testing during the code and test phase. They are:

. Progression testing that evaluates new or modified software operation;

9 Regression testing that identifies changes to previously attained software operation;
. Automated test analysis that measures the effectiveness of a test by identifying the software source code paths

exercised; and

* Trial testing that provides for testing proposed software changes without modifying the data base.

Progression testing is used during the development of new software or modifications to existing software. This form
of debugging is frequently an intense creative process best performed interactively. It usually will involve interactive
use of the software emulator to make experimental changes to initial conditions, data or instructions, and immediatererunning of the test.

Regression testing is used once proper operation is achieved. It insures that the software does not deteriorate (regress)
due to subsequent progression changes. Two forms of regression testing are used, explicit and automatic. In the
explicit form the user specifies the tests that are to be performed. In the automatic form tests are automatically run
whenever certain modules are modified. Test data, test results, and test directives are accumulated in the data base
during the life of a module; also, an index is kept that relates tests to modules. A change to the module triggers
the automatic running of all associated tests and a comparison of all results. The user is able to identify those por-
tions of the test results that are important.

Automated test analysis is provided to check the quality of the tests themselves. In this form of test,-'g a tool called
Automated Test Analysis (ATA) scans the source code and inserts software probes at program decision points This
allows the decision-to-decision paths to be identified. When the instrumented code is run on tWe software -m*dato,
with the test input data, the system reports how many times each path was executed, flagging those not executed Thus
the percentage of total paths tested is available along with indications of "dead code" and code path, most eqjer'i
ly executed. This data allows the user to devise c.hanges to existing tests or to develop more eftect;v tests TP
data on the most frequently executed paths is valuable when optimizing the speed of the program

Trial testing consists of syntactic and semantic checks before the software is entered into the data base I his type
of testing is used when changes are made to large existing bodies of softvare. In such cases there may arise uncer
tainty about the interactions between changes to the software and to tests. Also, uncertainties about the optimum
changes that could be made may require that severa. different changes be tried before deciding on the best

4.5. InteractivelBatch

In many ways the differences uetween interactive computer jobs and batch have disappeared: however, there are
some fundamental differences that are important to the operation of a SEE. A batch job consists of a stream of user
commands with all parameters and input data previously determined; an intercctive job must have these items sup-
plied on-line, Since the system is to be user-friendly, the interactive job must prompt the user for such items and
provide some helpful information when incorrect data has been Input. Thus, the SEE must distinguish between the
two types of operation and provide some extra software for interactive usage.

In a SEE for weapon system software it is unlikely that all the tools will be interactive, especielly the compilers. Therefore.
it is a matter of judgement to determine what functions are best performed interactively; all functions should operate
in the batch mode. There are three areas that should allow both interactive and batch operation: they are editing.
debugging with the software emulator, and generating management reports.

With the editor there is a clear benefit to the user to be able to quickly inspect and change the software. Full screen
editors appear to offer the best advantages. When debugging, particularly during progression testing, there is also
a benefit to the user. Here errors tend to be discovered more frequently and once observed the remaining parts of
the tests can be terminated, saving computer time. Management reports, especially the smaller ones, tend to be the
most useful when they can be quickly and easily obtained by the manager whenever desired.

Just as interactive mode Is best for progressive testing, batch mode is best for regression testing. Here the total
running time increases as the project software grows, a case best left for overnight turnaround when computers are
lightly loaded and costs are frequently reduced. For example, when the FASP has been used for maintenance of
large bodies of software the ratio of interactive-to-batch commands Is about 3 to 1 on the average; however, in times
of intense regression testing the ratio becomes I to 2. If one considers tool invocation during the same period then
the ratio of Interactive-to-batch Is about 1 to 3 on the average; during intense regression testing the ratio becomes I to 12.

4.6 Multilanguages and Multitarget Computers

The design of a SEE is greatly simplified if there is only one programming language to be supported for a single target
computer. For weapon systems this is rarely the case. Figure 9 shows the matrix of languages and target computers
in the FASP. The difficulties begin with the languages themselves. A SEE is dependent on the programming language,
a point noi generally understood. One problem is the definition of a module is different in all the languages. Also.
there are different dependencies on the data base between the languages. For example, if one language has struc-
tired programming constructs with an include segment feature built into the compiler, and another language does
not, then clearly there is a significant difference in the way tha' a SEE would support each language. In the latter
case it may be desirable to provide the capabilities by way of preprocessors; however, the way the SEE supported
each language would still be different.

Other problems arise owing to structural differences in the languages. For example, the versions of the CMS-2 language
have an order dependency on the appearance of declarative statements and executable statements. The declarative
statements are dispersed throughout the program in blocks followed by blocks of executable code with an order
dependency on the referencing of data. In this night-marish state any change normally would mean that the entire
program would have to be recompiled. However, in the FASP a special modular compilation feature has been added
such that the system keeps track of the dependencies and only the appropriate blocks are recompiled. This example
might appear extreme but it is characteristic of the difficulties that can arise.

With weapon system software there is likely to be several high-order languages and several assembly languages that
must be supported. It is, perhaps, best to present the SEE to the user as an integrated string of tools that apply to
a language and target computer. This would correspond to the vertical columns of figure 9. During the log-on pro-
cess the user identifies the desired string, actions remain with that string because only those tools have meaning
with one another. Internally, the system may use many common tools such as an editor or librarian: however, to the
user the system appears as a unified set of tools.

The consequence of having strings of tools is that there are in effect several different SEE's. In the FASP there are
four such systems concurrently operating in the host computers at any given time. From a maintenance standpoint.
the FASP is maintained in a FORTRAN FASP. About 75% of the code is common across the four, the remaining uni-
que to each language dependent environment. The language unique portions are maintained separately from the
common portion and combined when a new version is desired.

4.7. Management

The success of a SEE depends on the degree that management is satisfied. Although a SEE brings many advanced
tools to the user and makes the job of producing or maintaining software easier, it also constrains the user to work
in a somewhat rigid framework, a point the user is sometimes quick to make. However, the benefits in productivity,
improved quality, and stability over the life-cycle are great compared to any perceived loss of freedom by the user.

The degree to which management is satisfied depends to a great extent on the amount of involvement by manage-
ment, the degree to which the system is understood by management, and how smoothly the SEE fits into the current
methods of doing business. As with any management information system, the SEE requires that management become
more involved with the operation at a deeper level than previously. However, once this commitment is made the gains
are great.

The management view of the SEE is through the reports: therefore, it is desirable to generate clear, concise reports
in terms that managers can understand. Reports that measure work progress and expenditures against planned pro-
files are interesting to management. For example, to report that the effort is on schedule and within funding regar-
ding the number of modules, lines of code, storage size, and target computer execution time is obviously valuable
to managers.

There is no general agreement across the industry on what precise software measures should be made; therefore,
each organization must establish such measures and slowly refine them based on experience. It is important to allow
a high degree of flexibility for SEE management reports.

Software complexity measures have been somewhat disappointing as absolute measures of software quality (PARISEAU.
R.J.. 1979). However, some are useful as relative measures and can be used for management control pur-
poses. Generally, care must be taken in the selection of such complexity measures.

A promising area apoears to be "earned values" reports and other related measures. These reports can be easily
established in a SEE and have the benefit of being based on impersonal data directly from the software development
or maintenance environment. Of course, considerable experience is needed to select the particular "value" that is
earned; however, there is a reasonable expectation that this can be accomplished.

5. THE EXTENSION TO REQUIREMENTS AND DESIGN PHASES

It has been stated that the SEE should support a weapon system over the entire life-cycle as shown in figure 1. It
is intentional that the term "system life-cycle" has been used rather than "software life-cycle." Today, software
is so important that it must be taken into consideration at the system level. Here the term "requirements" is used
is used somewhat loosely to cover the phases in figure 1 from Mission Requirements to Software Requirements; oerhaps.
the terms system requirements and system design are more accurate.

The requirements phase begins with high-level statements about the mission of the weapon system. During a sub-
phase called concept formulation a set of requirements is evolved that begins to express the requirements in technical
terms. The activities at this point are not highly structured. The system designers used high-level tools such as analytic
simulations and the methods of Operations Research to do tradeoff studies and to verify the conceptual design.

Once the system requirements are expressed In technical terms the system architecture must be determined in

.

in detail. The critical issue is the allocation of the system functions to hardware or software implementation. The
system designers need tools to assist the tradeoff analysis. This activity is probably the most difficult of the entire
process since the final system's cost and performance are largely determined by these allocations. Once the alloca-
tions are made, any changes become not only increasingly difficult but also increasingly expensive as the system
moves toward nperational deployment.

When the hardware and software allocations are completed the system development splits into two paths; the resul-
tant hardware and software efforts come together at system integration time. The software requirements should be
expressed in a formal requirements language so automated tools can analyze them for completeness and consisten-
cy, the two major sources of errors. At the end of the phase the requirements should exist in a computer data base
so all formal documentation can be automatically generated.

The software design process begins with the formal software requirements and results in a specific software
design. This design is a specification for the code. During this process the designers synthesize a software system
that satisfies the requirements. This involves considering several different designs and evaluating them according
to performance, cost, and ease of change. A major output of the design process is information that will guide the
unit and system level testing of the software.

There has been considerable work done in both the requirements and design areas; however, a uniform and consis-
tent set of methods has yet to be developed that covers the entire proess. To date, somewhat singular efforts have
been pursued that usually focus on one small step. For example, there are several software design methods that
have been developed. The result is that the individual methods do not fit smoothly together, particularly at the boui,-
daries between phases. There are two primary reasons for these prcblems.

First, the efforts to date have attempted to address the software issues, ignoring the distinction between software
requirements and design and system requirements and design. Thus, system design remains a hardware oriented
process and there is a considerably better interface between system design and hardware design.

Second, there has been a lack of thorough understanding of the requirements and design process. Recent work
(LEFKOVITZ, D., 1982) suggests that if one forms a model of the work that identifies the cognitive processes that
are used, then virtually all present methods have serious omissions. Further work utilizing this concept would seem
to have good potential.

From a practical standpoint it is best to view the present state as a time of change. There are certainly tools and
methods that can be profitably applied to the requirements and design phases; however, they do not fit well together
and it is likely that new ideas and refinements will continue to emerge. It would be ideal to have methodological strings
of tools to apply to the requirements and design phases; tools that assisted the engineers with the cognitive pro-
cesses and the automated the recording of relevant information and generation of documentation.

A recommended approach to a SEE for requirements and design is to start with a highly integrated environment for
Code and Test as previously described. Next, simplify figure 1 to reflect just the software concerns, as in figure 10. New
weapon system developments would start at the top and progress through all the phases; each phase would have
a support environment as shown in figure 11. It is understood that in the requirements and design phases that the
tools and methods would be loosely coupled, although relationships between the phases can be determined and record-
ed in data bases for tracing purposes. The tools and methods are chosen off the shelf and then force fit together;
several methodological strings should be implemented to gain experience with each. This approach is judged to be
the most practical in the short term. As new, better integrated methods are developed they can be superimposed
on this structure. The same approach can be used to extend the capabilities to the system design phases.

6. INTEGRATION FACILITIES

Integration facilities consist of a hot mockup of the weapon system computers with realistic simulation of external
inputs. These facilities are used for hardware-software Integration at the system level, evaluation of man-machine
interfaces, and evaluation of hardware engineering change proposals. Typically, they form the hardware configurea-
tion baseline for the computer and associated subsystems. The simulation of realistic inputs allows the total system
to be tested in a laboratory where sophisticated instrumentation can monitor the tests. This minimizes costly flight
or shipboard testing.

Originally the integration facilities used special equipment or groups of minicomputers to simulate the external in-
puts: the capabilities of the test engineer were limited. Today, these facilities can take advantage of commercial com-
puters to create an integrated test environment that both speeds the testing and takes it to greater depth. Modern
integration facilities are full integrated environments and are electronically linked to the software development and
maintenance computers for rapid loading of the mission software. Interactive capabilities allow symbolic debugging
to be done on the target computer; extensive capabilities for storing test inputs and saving test outputs are now available.

Experience has shown that it is better to use separate computers to run the integration facilities than to attempt to
use the host computer of the software production facility. This is because the Central Processor Unit (CPU) and In-
putlOutput (110) utilization can be high in the integration facility computer during intense periods of real-time debugg-
ing. Further, the target computer and its subsystems frequently require extensive hardware checkout, particularly
when new hardware Is being developed.

7. SEE ARCHITECTURE

The goal of the SEE is to support the weapon system over the entire life-cycle. There are, of course, many ways to
implement such facilities. The approach taken at the NADC was to coalesce the functions of figure 11 into two facilities
as shown in figure 12. At the NADC there are large central facilities capable of supporting these activities and several
integration facilities distributed throughout the Center. Therefore, one approach is to form clusters as shown In figure
13 and to interconnect the software production facilities by communications networks. Similarly, the software pro-
duction facility could support just one integration facility with less capable host computers. It is important that the

production facilities be interconnected regardless of size because this communications capability will ultimately per-
mit software sharing to take place between weapon systems projects.

Alternately, the functions of figure 11 could be allocated to separate host computers that are interconnected. The
choice may be dictated by the scale of the available host computers, a judgement that may vary depending on the
expected workload. However, a word of caution; the software tools of today do not efficiently use computer resources.
thus. it is easy to underestimate the size of the host computers. Software emulators used to unit testing take a large
amount of computer resources, for example.

An emerging factor in SEE architecture is the availability of microprocessors and the expectation that networking
is close at hand. An excellent example of a workstation for a software engineer is (WIRTHN.,1981). With this technology
the problem becomes how to distribute the functions to retain the dual aspects of an advanced programming system
and management information system. On the one hand powerful microprocessors appear to have the power for editing.
compilation, document generation, etc., but will they be capable of efficiently executing software emulators of target
computers? Further, how will configuration management be enforced and how will consistent management reports
be generated in such a network? A large-scale computer may still be needed to collect the software for configuration
management and other management reports, as well as for executing unit testing efficiently. These problems appear
to be solvable and the direction toward microprocessors seems the way of the future.

8. REFERENCES

SAUER, F.L., 1971, "Software Engineering," Proceedings of the IFIPS Congress, pp 1-267, 1-274.

ELIZER, P. F., May 1979, "Some Observations Concerning Existing Software Environments," DORNIER Systems, GmbH,
Postfach 1360, D-7990 Friedrichshafen, Germany, Defense Advanced Research Projects Agency.

"FASP Management Summary," April 1979, U.S. Naval Air Development Center.

"FASP Software Production and Maintenance Methodology," July 1979, U.S. Naval Air Development Center.

"FASP Handbook," December 1979, U.S. Naval Air Development Center.

LEFKOVITZ, D., 1982, "The Applicability of Software Development Methodologies to Naval Embedded Computer
Systems," University of Pennsylvania, Contract N62269-81-C-0455.

MORRISSEY, J.H. and WU, L.S. Y., 1980, "Software Engineering...An Economic Perspective," Proceedings 4th Inter-
national Conference on Software Engineering, pp 412-422, Munich, Germany.

MUNSON, J.B. and YEH, R.T., March 1981, Report by the IEEE Software Productivity Workshop, San Diego, California.

PARISEAU, R.J., 1979, "A Screening Criterion for Delivered Source in Military Software," Report No. NADC-79163-50,
U.S. Naval Air Development Center.

SOFTECH, INC., March 1979, "Support Software Planning Study," Contract N62269-74-C-0269, U.S. Naval Air Develop-
ment Center.

STUEBING, H.G., "A Modern Facility for Software Production and Maintenance," AGARDograph No. 258 Guidance
and Control Software, May 1980, pp 3-1, 3-14, Military Electronics Defense Expo '80 Conference Proceedings, Wies-
baen, Germany, October 1980, pp 828-845, and Proceedings of the IEEE COMPSAC '80, October 1980, pp 407-418.

STUEBING, H.G., August 1982, "A Software Engineering Environment (SEE) for Weapon System Software - Functional
Description for the Code and Test Phase," Report No. NADC-82183-50, U.S. Naval Air Development Center.

WIRTH, N., March 1981, "Lilith: A Personal Computer for the Software Engineer," Proceedings of the 5th Interna-
tional Conference on Software Engineering, pp 2-15, San Diego, California.

I
Im

INITIAL VERSION VER ION VERSION

SYSTEM 2 N

D EVELOPMENT

MISSION REQUIREMENT SYSTEM REQUIREMENTS HARDWARE DEVELOPMENT

SYSTEM REQUIREMENTS

REQUIREMENTS ALLOCATION

FLOCAL SYSTEM TEST

F - NAVY T&E

OPRTIONAL SUPPOR1

Figure 1. Generic System Development Process

FISCAL CPU TAT SOURCE LINES OBJECT CODE
YEAR PROJECTS ACCOUNTS JOBS (HOURS) (HOURS) (MILLIONS) (MILLIONS)

FY-76. 7T 3 10 57.686 197 05S3 1.6 1.6
(JUL 75 - SEP 76)

FY-77 6 20 104,652 907 2.0 2.0 2.0
(OCT 76 - SEP 77)

FY-78 13 78 110-368 1,035 2.2 2.9 2.9
(OCT 77 - SEP 78)

FY-79 28 236 105,032 1,344 0.65 3.7 3.7
(OCT 78.- SEP 79)

FY-80 35 299 118.960 1,449 0.66 7.2 8.2
(OCT 79 - SEP 80)

FY-81 41 438 135,265 1.855 0.93 12.8 12.9
(OCT 80 - SEP 81)

FY-82 47 492 67,445 1.153 0.88 14.8 16.3
(OCT 81 -MAR 82)

Figure 2. Key Parameters Measured With The FASP

50-- INC 7

AVIONICS OPERATIONAL PROGRAM

40-

I-HOUSANDS 30 IN3
OF

NOF
EORS

0-
JANIFEB MAR APRIMAY JUN JULIAUIGISEPIOCTINOVIDEC JAN IFE MAR APRIMAY JUN

1979 1960

Figure 4. Numeivere Softwre rrnrs cre

SOFTWARE DEVELOPMENT PROCEDURES

CREATE/COPYISAVEIRESTORE A DATA BASE

DEVELOP SOFTWARE

INSTALL EXTERNAL SOFTWARE

SHAREICOPY SOFTWARE

CREATE LOAD IMAGES/TAPE

PRINT REPORTS

SOFTWARE TESTING PROCEDURES

ANALYZE SOURCE CODE

DEVELOP TESTS

INSTRUMENT CODE

EXECUTE TESTS

DEBUG TESTS

REGRESSION TEST

ANALYZE TEST RESULTS

USER ASSISTANCE PROCEDURES

LIST BULLETIN

LIST NEWS

LIST HELP

LIST USER MANUAL

CONTACT SPF PERSONNEL

SOFTWARE MANAGEMENT PROCEDURES

CONFIGURE A PROJECT

CONTROL ACCESS

PRINT PROGRESS REPORTS

IDENTIFY SOFTWARE CONFIGURATION

RELEASE SOFTWARE

TRACK STRs. SCPs. SEPs

CONFIGURATION STATUS ACCOUNTING

GENERAL PROCEDURES

DOCUMENT PRODUCTION

CONTEXT CONTROL

LOGGING ONIOFF

GLOBAL PARAMETER HANDLING

COMMAND QUEUE HANDLING

DATA CREATION

OUTPUT HANDLING

Figure 5. List Of General Procedures For Code And Test

,=• =_

4 -1 1

Verify user access rights for this procedure
IF verification fails
THEN raise abort flag
* Notify user
ELSE

* (unique process flow for procedure)

ENDIF
IF abort flag is not raised
THEN save production data
* Make "saved" files permanent
ENDIF
Save job statistics
Make job statistics permanent

Figure 6. Standard Processing For Procedures

DOWNILE no LOGOFF command received
*DOWIILE no valid LOGON command received

*Read and identify command P
IF *tnot LOGON

**THEN notify user that LOGON is required
**ELSE inoeLGNprcso OO

* See process flowfor PGOSSl

**ENOIF
SNODOo (user is now identified)
Read and identify command
IF not identifiabile
THEN notify userFIE

*ELSE validate command
**IF error
**THEN notify user

*ELSECOMN
- Append default values of unspecified parametersQUE

* IF an immediate command
- THEN Iexecute thecomn-: - ------------
- ELSE put the command on the command queue EEUO

*** ENDIF

'E ENDIF

Figure 7. Command Processing Diagram

45-14

DEVELOP6 SOFWARE OLD OlO SEW DIDO

INP UT
0Dab Bad IdedAA IO6lO,
.005 0ata I'd. IISPUT) SEARED5055
S...'. Cb l.ansn fTEASAEOSI $DsUKE

A-. INPUT El. COP

Acn Eont caf ',I t. 5 STATE

IF Aid "at. fib .. ,
THEN doahtf, Int

Mw, EN TRIUSERO

ESE hat1ow

P,% lAadO INPUT1 "IA~. EA t . ",EIO

* Pod 0505Aode AAO.10
DO* L Son 0 con ,~d , ndAol aOinve O SE AK

AUTOMATEDE TET1NAYER8(A-F
SOFTWAE EMUATOR F F- F

MANGEENT REPRT all "Wai ft,1416 It sF-td1~E0S

E PRESEN INMSYSE; -NOTPRESEN

S- ~ ~ -6EGUIREMENTSOURC

MAINTENANCE DEINI

THEOD N TESTla

INNEERAAIE

Figure 0. mlfe eomn Process Fo iga

45-1

MISSION
REQUIREMENTS

REQUIREMENTS REQUIREMEWS
USER PHASE TOOLS

SYSTEM

REQUIREMENTS

REG DOCUMENTATION

DATA
BASE

DESIGN DESIGN
USER PmSE TOOLS

SYSTEM

DESIGN
DOCUMENTATION

DESIGN AND
DATA SPECIfICATIONS
BASE

CODE & TEST CODE b TEST
USER PHASE TOOLS

SYSTEM I

CODE & TEST

CODE TEST
DOCUMENTATION

DATA BASE

INTEGRATION
FACILITIES

OPERATIONAL

DATA BASE

S SOFTWARE

0

Figure 11. Separate Facilities For Each Phase

45-16

Iy
Y TOOLS

PRODUCTIAN TOOLS
FSACILIAR

DADAA BAASS

FA A cLTY FAIIY ACIT

~~~~~Figure 13. ntroecinOSoTe Pr Toduto Facilities Sy m unctosewrS



(IN AIR.FAF 1IFSliS 5 TWARKI I- Ok F I k- Il [ IMN
MA[N tENAN:;

fir . H * eriP

Po,-tfach [30 11 60
r, -6000 Mijercher. 80

SUJMMARY

Tlie a v i. ori es of an, ai1rc raft is su4b ifct to mita r, hardwa re anrd softwaire
ofications ; l herefore:,anYl firs P o etsotaefrt,'a nL t Ii,

eriir-en msthe very3 f le!:lble toL reduce sotae q.a iit i i-r, t osts Inr

c-iF-er a methort is7 nr-Lreseted to irovidle :otitb le tie-ib iitv. ir-l ur
maTir~terianif e for a test software r-ac, age. evei, whet' wri lten~ in, a 1 eweT ll,-0 I
lairigtiase. the method essenitiallo i-on',i--t of a iei-v a-ij ofI ianitI to-I
softwa re F-ai aqe into arn r-enuIt,1ve ra rt id a fiie,(iri t1,1v(, rpart. fi t1i- aj-ik-

hardware. Biecause the erectitive iFart Is-,d onfrta the -s 16] -101,1
eruii met, hardware mtodjifiicut ton, resoil t oril-, ii, a -hit: l tic 'I- ,IL: tIie
c-art of the software. Ihvse -Ii3r ree s i ti il aid -jitn- fir',iII
-- t ardard i red methods 1ji rill miideTr. s.of t.wa.;rei In-veo, mrit taoIS . 1ie to r iLre-, ior
method has beer, used- to die, i r anitl ii le nieiilt iiii or. .- ir-ra3ft I- t. ,i ('i -1,;i 1 w itIh

gjood result.

1. IN1RODiUCIION

The avionics of an, aircraft is a comeile% sutempn of s ensor, intrfaces asi
croiessot- For, the develori ni comcanies this, imp lies riiach WoiP iIf, the a rca iff
hardware insterirat ion; hardware/s:oftware inte-iratiorit ha rdware iid ,o ift1wariit
modi ficat ion as well as, soiftware mfa tntciricp- FoPur, the viii use r the a I T -e wv11%

arid the mat nteriance re rso(rir'e 1 tte corre~ct fuinet ioiin od f the wtiii I ,2 -n,m
crucial arid error detect ior as; well as isa ii lenaice hei-:inic a I1.:Ij
croblem.

Another di ffi c'al t ifter ericourte red is the iritey ration, of' new OT rMOd i 1-fi
avion ic eaut n-merit * What hi)th -induce rs arid enrd us cis, the rfioirip' -etIee i
a sy4stem that sun--o rts the too w irirD

-hardware ComciatibilitrJ CieckS;

- hardware/Software integAration. check,-;

- hardware configuoration. controli,

- n-re-flillht cheelsi9

in-flight error retcordinai

-P ost--flight fairlIt evaluiatnoni

mairiteianice assi starce.

These tasks have been, conferred unr-ori a tes1t so0ftware? i-el'- ae wh u-h i ['ccii

irtegrated within the Op-erat iorial F Iicslit Frorur it. (OFt) to all ow III f Iti Oltt
checks .

Ouhr insi the life cycle of the atircraft~ )rrl thus [lie sotftwirev. mat i moit tcf -totii

anid rtenis ions of the hardware have to he ricer tei , hi' ha1t1 e-i,;a1l
severe imn-act on the test softwaresic

- tests have to be modified beca ire of hardwa re
modification;

- tests have to be cancelled because of eoi,icment
cancellation F

-new tests have to bie 3intelrated bocauise of new
eotsicments

- status anid mode indications have to hie modified an-I/or
ex tended;



- the faults to be monitored during fliht chanle
accordirl to the aircraft hardware corifi .tiration.

Therefore, test software must initiall be designed in sjch a fashion that

modification arid extensiorn can be carried oit with a mirimlllir of effort ir

redesign, codir,ip testing arid aircraft release trocedaure. This is es 'itlla
valid for a test Package which has been written ir, assembler soich as 1in OUT

case. Therefore, this raper sives emnphasis to this asce(t . rottwar

documeritat ion is another critical Poirt as is to be ePrectei ir a lar'e

pack age.

2. TEST SOFTWARE [IESCRIF'IION

The test software Pacage has beer, designed for a classical star-Iits

irtercorniect ion of avioric ecui-ment arld a central crocessor (see Fig. I)
Some ecluiPment have their own dedicated processor f or sPecific ist-rrsal task
enecutio. The principle design facets however, car be applied to mans other
system types (incloldiij a duplex buis system) with the orly restriction beirs

that all information and commirands necessary- te eord-ct a test have to tie

accessible to the processor performirg it. Thlis' in a l ltirrocessor sy-stem,
srpecial tests can be performed bs special crocessors.

The central processor receives avionic da;ta arid -statJs iiiformatto( fro, the
erjipmerit arid commands from the control siitches arid panels. It al Tiinrririts
data and status irformation to the eouiP ert (incli'idtrig the di a I irs)

When selected from riormal OFF operation, tile test suftwlr(f I- '-i le of

Performtnd the follow rig fririctions:

receipt (f cormanids from the s:istem or.prator (irj iri
mlti--function keyboard iriputs) to ) orform spec icin

tests;

receipt arid display of status arid miode iriformratior, of
all relevant avionic eeuiPmenit?

upon reouest, dlisplays of avioric parronreters ari ioOlii
detailed status information;

-uor remlest, displayi of faults and iry-ortant
parameters recorded during the last f I idh;

upon recuest, start or repeat the test of a -F ctif i-

avionic eeiarhent.

tiurir,- normal OFP operation, orl, the fault recorii i tai'k i, arctivs. lii ' I as
monitors all enuirPment and records all faults which occur durila fliigit,

ircljdirg certain important aircraft paramreters ipor, the fir, t .....rjrL i (if thl,

fault * Flight critical faults are not only recorded but also shown uri the

disit-lass.

1. FLEXIBIE SOFTWARE DESIGN

The basic goal is to achieve ar ass to modlft (fletibe) test software. Thil

is accomplished by ser-aratiri the car' aile into ai e-ecutivie Part that is a
independent as possible from the aviorin hardware ervironment arid a dos'i in t n-t-
part which defines tire hardware bit onta ilris no ,eitii code whitsi+:r0 e

This separation is relatively itiple for the drPlas and reurilrin r ,, I' •i,

is more complex for the eijrirment tests,

3.1 How to Separate

The first step in the seraraitior F rocedrine is, to defir e whirch rart- . of the
f rictiors to be Performed ire "?om ori for aI e(rinir mern t Norimal, n it, is rut

Possi hle to (cover all fintc tiors ir the -a.nIofhiot executive r artx r". ase ev . 1
etaitipmerit nay have specific rectotreuments* Thus, the re.t :Ae would (ie rt,

irtroduction of all special flinictioris irite the vi . -ttve r art. ii, iurlh i w ,

that they car be rerses,ted byj the descriptive tart for these sr-sri fit



45-3

ciluiePmenrt.•

The I step in the separation rr;'oeedure - in. rh Opinion, the mot c i titl oso
has t be a look towards the flutlre. Which reoui remernts are Probable to Gr'Isp

durins t, further life of the software P After ev,.3ijiat. inn., 311 .hose full, t ions

which can ,easoriably be integrated ir, the design phase both ir the vpecsjt lve
Part a nd tie structure of the hardware description Part shourld he covered.
This step muist be treated veru thoroushly because the whole concept of
sepa rat ion loses mary of its advantases if ir r.nt(e every mod ification, of
Pcijipmenit hardware catuses a charise in the e:ecutive Part of the software.

Nevertheless, one shoild be aware that hardware diodifications may arise which
carpriot be covered bv the current structure of the software. Therefore, I

modular desiqr of the e::E('utive Part and all e;:r.JIabIn deefr i)tiVe cart y reatl

facili itates the incorporation of new ft'rictional recjiremenits.

3.2 Seraration for the Dlislay Task

As a simple e;ample of separatior, let js, treat the diselayI of statusx 'rid data
information for several avioniC eciPmln *er Ihe e;:ecutive part corI';ists of:

- disPlauJ control and eclliPmernt selection;

Aerleral format la"o-it !Aenerator,

-data aco-uisition.;

trari.%forrtatior of data arid displawi (the tr.~iiiformhatiori
mla5j consist of either a special mess.Ie for each ,tatlv.

hit or of nilifferical conversion to disFlaq frmrffit and

its unit) .

Because all relevant FQ-JlpMei-,t data for the di-Flav task are ava ilable ir, the

lemlor i of the central Processoi P we have no specific reouiremerits for specific
e(ouipmierit. Flirtherivorep the dx,.Pl.;,l format allows both i1essacles for statfJs bit,;

and riljimber% with lIjrits so that kfnowh Possible future rnodificj t rns are revered
:sa this strbicture.

rho descriptive Part is strdctired in intzts or er, ri5 adopted to the e;:eL-UjtiVe

nart. In the case of the disPlaa task. a well suited unit is the description (if
onie eo'iipmernt, Thlus, the whole descriptive Part is a list comrosed of orle entry

for each ecuipment. The structure of the list can be a linked one, if orly

senuential stepping through is rnecessary or a contisuoujs one, if direct aiccess
to each ecijipmert is mandator,. Anl entry therefore may appear as shown in1
Fiqure 2.

The display task is adapted to modificatiors it the ecn-jirrent hardware by

-)mc I charim the corresPondirnil entry in the hardware desc'rPtionl llst with

the e::ecJtive Part relainin' completely ijrchansed. A niew e(iiFcmert is catered
for b ,. new entra in the list, which describes the new ecuiemert Thus, the

chan es are limited to a very small Portion of the software which allows cuick

,nrror trac ins and testing. Another advantage, which becomes even more
immortart in the future wher software development tools will be widespread, is

thit changes in the actual code of the list are sui ted to be Performed

automatically4 from higher levels of Program description arid design. This

render% the chance method ever more safe.

.1 <;er-ar-itiOrl for the Tesitilnq asP

ihe task that actall rlhie S the elPler t tests renlJires mlch more effort ir

cu a ration , the differert eouiphent rec uire different test iriS methods and so

the testin nm.jst be broken down into smoll elementary3 test irilt, ir order to te
ahle to firld l-sonably common functions. Becaise of the vat iety of ecu ipment,

there are marsv elementarv funlrctions (rouJqils 40 inn ouir case),

phP et-c-pt ive pal therefore consi sts of in approPr iste repetoire of funt t ion,
arid a test is Performed bd secutentiallj e::ecjtirl the rolli red elementarj

firctions ir the order specified bj the description Part.

Ir a first step the Common elementary funict ion have heen. estahlished to be:

ettina Parameters or bits to srecifii valji;d

check'ini whether parameIter's are in rai .i;

check rins tatus oits;



46-4

- issuiina error messages if arn error occured;

- Performiri jumps in the test list if specific
conditions are met;

- checking if buttons have been s'ressed;

- checking Positions of switches;

- displavina Parameter values;

- issuing commands to eouipment;

- introducing a time delay before thr, next action is
started;

- waiting for input.

Againp the structure of the functions has been chosen in such a was that a
future software development tool will allow auitomatic code Froduction out of a
higher level of specification, for ex:ample, from a nuasi-code description. Ii,
the meantime, manual Procedures have been established to inteo-rate
modifications without this tool, with as much safety as Possible.

Future modifications and e:xten(ions of the hardware have been integrated
insofar as thev are Pnown. To cover as mary 3S Possible unknown modificatiurs,
the elementary functions have beer, desigred to be more fle:ible than
momentarily necessaryv In addi tion, universal functions rot preseritl5 used have
been included as well. K eeping in mind that ever, the most thorough analysis
cannot cater for all future modifications. the test executive Part has been
designed in such a w6y that new elermentary functions cari be entered withouit
significant alteration of the executive Part. The only necessary alteration is
a new entry in the list of available functions which r-oirits to the new
e:ecut.ve Part. Thus, a request of the new function by the descriptior, table
will result in a check whether the new function is available in the function
list and if so, control is transferred to it.

The descriptive Part is structured hierarchially. fhe first lovel is subdivided
into individual tests for each enuipment to be tested. The re;:t one is the
action level which !groups several elementary functions into one operator
action, The bottom level are descriptors of the elementary functions to be
Performed. Thus' the descriptive Part is a structured test list which tells the
executive Part which functions must be e;xecuted for specific tests. Since tests
have to be selectable at random' the list is not a linked one. Its structure
is given in Figure 3.

An example of the description of an elementary function is -iven in Figure 4.

Hardware modifications that influence the test execution are integrated in the
test software by simply changing entries in the elementary function list; in
the action list? or ir the test list. A nea test is introduced bu adding one
entrw in the test list, with one list for the actions and one list of
elementary furction, for each action. Thus, the old test descriptors remain
completely unchanged in the latter cnsp and testing effort is decreased

significantl, .

4. STATUS

The test software Package described above is cuirrently in Preparation for

operational release. It has beer tested on-aircraft on around. where most of
its facilities are available. Since the software is currently still in an early
life cycle stage, little e:Perience has been gathered to date with regard to
actual maintainabilitw. Nevertheless, during the final development stage.
addition of a new test and some minor modifications to ex istina tests were
alre d remuired. Their integration Proved to be very easy both in desirn,
implementation and testing since no new elemenare function had to be included

arid onl the descriptive Part had to be changed. Especially error debuggin

proved t- le ouite simple, enormously reducing the cost of checkout or, the
avlonic r'i



5.CONCL US3IO)NS

Evc--eri1ertee w ti- formie r to A software -ack aqpe has s;howis that a f o i,'"
Ioftwate1' diStq' is m,3rdator,s in r reveprti ri ew:ortc tart softwn-Tic, a, it e rapfi
costs . Ithis I' esre F CIa-31ts t I ic for r- 3LkasOIs wr ittLen in tow to-v et1 t---p i1-o -. A,
was, shown inc this ear-er, 1161c-h ttcs ibilita ITies to scir i- or: at -tior cit the1c
tt e ark ail I nto a rc P::ecit tve arid a dec 1ic-I i vt' c-acrt. I r, I he t ,citicre.
mtod if ica t 1ors c arh ti rttl-temertted i rcc, ~ d, a; tcl-ti i:-d Wd-ti wa 5' t I mccciii r. iove tr-t.'
tooils. Even the test rhase will the, lie ;cicy'cnrtedi :,; ii.ro ton I '. Ticc- wil
resl I~t in, at ever, moire drast ic ctc LtI c. t "Ctej tir "t niC, " "" t" >1 t- - L"'

than. is available at the miomienct i.e,. at -re etA c-ha',h- ;T- '.; -. ;l 1.?
imutlemtented).

Orec murst oct the other hanid, lie _warce thA not 100% of ; ci cit it-t tici ic tic-
wil1l he covered Us these stnaru tr tethori; , Pi, m- 1c,p ice*ijc I.c-ict

-( tactk of fiji-ictiorts in. tho eccecotive cart. Thar& - t- the, tiscicci Si Jt c-cci,- ,if

tatter, addirIt new fuirctiorns is s ific Ie 13r-d Wil 11" I t c's- P.c.6 11 ev 0fi.ii. Irn
total' IWe ei:-Cct 3a arqe COS t vsV Inso i n f~itire sot tWA ce cutia c,to r-c- 1 t ic tiU.

P1 ecibie desicin of Dir test software -caasev.



RAD. ALT. DOPPLER SAHR IN

CONTROLSCETA D

DI[SPLAYS DEFENSI[VE WEAPONS RRDR

RIDS

FIG.I EXAMPLE OF A CLASSICAL AVIONICS SYSTEM

POINTER TO NEXT LIST ENTRY

STATUS WORO RDORESS
MIRSK FOR RELEVRANT BITS

IESSRGE FOR BIT NO. I

MESSAGE FOR SIT NO. N
SPRES

NUM1ER OF PARRI1ETERS

PRIMETER ROESS

MASK FOR RELEVNT BITS

SCALING FACTOR PRAMETER t
DISPL.AY FORMlAT SELECTION

PIHYSICAL UN["

P RAMETER AGORESS 1

PHYSICRL UNIT

SPARES

FIG.2 EXAMPLE OF A DISPLAY TASK LIST ENTRY



Test I ACT(am 1. 1 m . FiEIcriom t.i. t

Tesr 2 ATION t.2 ME. FUNCTION t.1.2

TEST N ACTION I.flII FUNCTION t.I.K

ACTION 2.1 W1. FUNCTIN 1.2.t

ATION 2.2 EL. f CTCi t.?

~TION 2.M MZA. FUNCTION 14.2

ACTION N.1 M . FUNCTION tJ.K

F UNCTION N.fl.t

MEN FUNCTION NM.2

FUNCTION NJ1.K

FIG.3 TEST DESCRIPTION LIST STRUCTURE



FUNCTION 'CHECK BIT(S)-

ADDRESS OF STATUS WORD

BIT MASK

GOOD CONDITION

FAIL MESSAGE

FIG.4 EXAMPLE OF AN ELEMENTARY FUNCTION LIST ENTRY



DISCUSSION FOR AVIONICS PJEL FALL 1982 MEETING ON
SOFTWARE FOR AVIONICS

Session 5 SOFTWARE LIFE CYCLE CONSIDERATIONS - Chmn Dr. H. Hessel (GE,

Paper ar, 38 - MiNAGEMENT OF LARGE REAL-TIME MILITARY AVIONICS SOFTWARE PROGRAMS
Presented by - Dr. P. J. Carrington
Spealer Wg. Cdr. Bonnor
Lomment - I. If tii'COT had been a required metho, dology or QS 0)1 _ortwere, what impact would
this have had on the project development.
2. If the RAF wish to make the best use ,: the major software investment in the AOS 901 and not

replacement processors Which can use the current software with minimum change. How practical do

you see it to be to bu' or force a micro-processor to fit our softtare.

Response - I. The u=e ot tSS0T would have given a better structure to the software. However,
thi wuld hAve been at the expense of data throughput and processing facilities, which miaht
a+tect operati:nal ,.apabilitv.
2. F )ster and smaller processors c an be de..'el oped whi ch are transparent to the software and
hence aoid a major software reurite. 8ut. to make full use of the processor speed improvement.
other areas oc,+ the s'ystem might need to be modified for faster tore.

P per r. ': - M44lGEIIENT iF LARGE REeL-T! M MILITeRi ,'yIrtHi'S _SOFTiiwRE FROGPv tS

Fres eted bt Dr. P. 1. Crrington
"Speaker - N. lr aedrich
COfcent - Ptchlng ma' be the better wa. to _hieve , fast response on queries than
rec-mpl aton. hu1it ifcreisrng numbers of patches makes maintenance more and more dificult. What
ar e ,u joi so t o c r,er t h i s pro b I em

Response - The number of patches is general I; not the proble, it sensible contiguratior. rontrol

prrcedures 3re used. The problem occurs with patches which have ma)or or wide-rangirng system

effects. These we normal ly only inscrporate by reccitpiIation, e~cept for short-term tI al s,

nr,odifia, wti,_ns or for rapid response to essential operati-,nal requirements.

P per fir . 39 - F/A-I8 A:JIONICS SOFTWEARE - A CAS-.E 'LIE),
Prestrted by - I. V. tIcTigue
7peal er - L . - orizews I

rLrisent - Since the F-IS OFP is now located in distributed proce s ors connected by ar,
asynchronous data-bus, was an, attempt made to simulate this in the IBM Fortran design
prototyping eercile, and were any problems subsequently found on the -system integration rig
which were due to 

t
he hardware partitioning and 5synchronous operation'

Response - The 1553 bus was not simulated it the IBM/Fortran eercise. Hoe'er, we did simulate
the ,s bus t tit" in the laboratory testing.

Paper 11r. _9 - FA-I8 AVIONICS SOFTWARE - A CASE STUDY
Pre.ented by T. ''. McTligUe

A. lr - I, Haigh
Comment - Did you find that adopting a top-,oin structure for the OFF, added signiticantly to the
stor fge requ;r rments

-

Response - No it did not add signaiicantly to storage requirement- only about I0% to 12%.

Paper lit *3" - F .- IS AVIONICS SOFTWARE - A CASE STUDY
Presented by - T. V. McTigue
Speaker - Dr. W. J. Cullyer
Cor"men t Hcw did you propagate the use of the flow chart constructions. if...then...else and
repeat... until and so on into C1152'

Response - We :,uld not directly propagate these standards into the C14S-2M language system

-including an Assembler extension) used as the programming language because CMS--21 does not
directly support these structured constructs. However, by structuring the flowcharts and then
implementing these e~actly in the available C01S-2M language constructs, we obtained many of the
so'antages inherent in a structured programming language.

Paper fir . 3' - F A-18 AVIONICS S5FTWiARE - A CASE STUDY
Presented by - T. t . ft:Ttgue
Spealer - J. M. Janssen

cimment - I. HOW much memory is currently, left in the mission computers'
viere there timing problems' What is the duty cycle'
W3. hat are the growth possibilities-' What software changes are required?

Response - I. II, 61K
2. No timing problems yet. in the future this is to be reconsidered.
a. Double the memory from 64K to 128K by replacing (21 e,,isting memory cards with two not ones.

Paper Uar. 40 - A LIFE CYCLE MODEL FOR AVIONIC SYSTEMS
Presented by - H. Srhaaff
No Qluest ions

Paper lJr. 41 - AiIONICS SOFTWARE SUPPORT COST MODEL
Presented by - R. Shaw

m III N I II I



15-2

No Questions

Paper Nr. 42 - A SOFTWARE-COST OATA BASE FOR AEROSPACE SOFTWARE DEVELOPHENT
Presers ed by - G, J. Dekker
Speaker - r H. Hessel
Coment - How many projects have you in your data base currently and how many do you need'

Response - Currently we have one project completely monitored. Some 5 projects are available to
be entered.
We need at least 30 to 40 projects to calibrate the formulae from the 8 cost factors to the
development cost.

Paper Nr. 42 - A SOFTWARE-COST DATA BASE FOR AEROSPACE SOFTWARE DEVELOPMENT
Presented by 13. J. Dekker
Speaker - H. R. Simpson
Corment - Could you comment on the linearity of the relationship between cost estimates and the
factors identified as contributing to cost'

Response - He did not gl,e much thought vet about the ecacf form of the relationship between
each cost factor and the cost. Much of the formulae relating cost factors to cost will
presumably be linear. The relation between size and complesity and cost will pres)umably be
erponential. This will however be eihown by the cost data which we will gather.
Paper Nr. 43 - THE MILITARY USER )IEW OF SOFTWARE SUPPORT THROUGHOUT THE IN-SERVICE LIFE CF
A "IfIC SySTEMS
Presented by - H,4g. Cdr S. Barl:er RAF
Speaker -';, Osman
Comment - Software reuseablIitv can be achieved by many techniques. One technique that is
possible today is to require of the Hardware Designer to support S,'H developers on user
equipment. i.e. Design the new computer to support older archi tecture as well as nea ones.
Eample - 4JI.jrR-7 to An/UYK-43 Project, as it is presently going on in the U.S.A.

Response - I agree with your Cle,. stions and this is certainly one step towards achieving
software reuseability. However it is aiso important to require the software designer to produce
software that is independent of the trget hardware characteristics and to provide him with the
erironment and the tools to do so.

Paper fHr. 44 - DESIGN OF A SOFTWARE AINTEPaKCE FACJL;TY FOP THE RAF
Presented by - J. Whalley
Speafer - H. R. Simpson
ccrwent - Could you tell us please whetrer the kuaF will be using your soatware xl atir.,
verification and test procedures when they make changes-

Response - This is still under discussion, however the RAF software team are currently based at
Bristol Aerospace Manchester and are familiarizing themselve, .iith the contractor - procedures
which include a configuration control system ba~ed or, a total data tase system. There is
therefore a high probability that the RAF will adopt British Aerospace s procedures.

Paper Nr. 45 - A SOFTWARE ENGINEERING EIJIRONtENT kSEE) FOR HEAPON SYSTEM SOFTWARE
Presented by - H. G. Stuebing
Speaker -T. F. Kensey

Comment - Reference figure 4. At what point were the errors detected within tte sci, tware
development progr amme'

Response - The errors were detected during unit module testing in the Code and Test phase. 'See
Figure 1

Paper Nr. 4o - ON AIRCRAFT TEST SOFTWARE FOR 1ST LINE MAINTENFNCE
Presented by - Or rer hat H. Klenk
No Questions



A-I

APPENDIX

LIST OF ATTENDEES

AARKVISLA, S. Major FO/LST, LTJINSP, Oslo MIL/HUSEBY, Oslo I. No

ALLEN, K. Major Directorate of Maritime Aviation 3-2CA, 101 Col By Drive, Ottawa,
Ontario KIA OK2, Ca

ANDERSON, T. Dr University of Newcastle Upon Tyne, Computing Laboratory, Claremont Tower,
Claremont Rd, Newcastle Upon Tyne NEI 7RU, UK

APPLIN. P. Mr Lucas Aerospace Ltd, 40 48 Chase Road, Willesden. London NEI0 6PX. UK

ASTLEY, J. Capt. Software Development Unit, Canadian Forces Base Greenwood, Greenwood, Nova
Scotia BOP I NO, Ca

BAARSPUL, M. Mr Delft University of Technology. Dept. of Aerospace Engineering. Kluyverweg I.
2629 HS Delft, Ne

BACOT, M.D.P. Mr MASCOT, 17 rue Paul Dautier, 78 Velizy, Fr

BALL, W. Mr Head, Tactical Software Eng, Div., Code 319, Naval Weapons (enter, China Lake.
CA 93555, US

BARBER, D. Mr Room K 213, CAA House, 45 49 Kingway, London WC2B GTE, UK

BARKER, S. Wg Cdr ACCS Team, NATO ltqs, 8 rue de Geneve, 1140 Bruxelles, Be

BERGER, P. Mr Eleetronique Serge Dassault, 55 Quai Carnot, 92214 St. Cloud, Fr

BEVAN, F.H. Mr Marconi Avionics Ltd, Airport Works, Rochester, Kent, UK
BOARDMAN, R.M. Mr Marconi Avionics Limited, Airborne Software Division, Elstree Way, Borehamwood.

Hefts WD6 I RX, UK
BONNOR, Wg Cdr (RAF) MOD (PE), A & AEE Boscombe Down, Salisbury, Wilts SP4 0JF, UK
BOSMAN, D. Prof. Ir. Bldg. EF, Twente University, P.O.Box 217, 7500 Enschede, Ne

BOT. I. Mr Fokker BV, Afd ISA/MS, Postbus 7600, 1117 ZJ Schiphol, Ne

BRACON. G. Ing. Electronique Serge Dassault, 55 quai Carnot, 92214 St. Cloud. Fr

BRAULT, Y. Mr Thomson CSF, 178 Blvd Gabriel Peri, 92240 Malakoff, Fr

BRUNORO, F. Dr SIAI Marchetti, Via Independenza n. 2, Sesto Calende, (Varese), It

BRUYNS, tl. Mr Fokker B.V. aid CB/LW, Postbus 7600, 1117 ZV Schiphol, Ne

BUJAK, E. Mr VFW/MBB-UT 2800 Bremen 1, Hunefeldstr I -5, Postfach 10 78 45, Ge

BURROWS, J. Dr Lucas Aerospace Ltd, Maylands Ave., Hemel Hempstead, Herts HP2 4SP. UK

CALLAWAY, A.A. Dr Flight Systems Dept., Royal Aircraft Establishment, Farnborough, Hants, UK

CAMERON, A. Mr Smiths Industries Aerospace & Defence Systems Company, Evesham Rd, Bishops
Cleeve, Cheltenham. Glos. GL52 4SF, UK

CARRINGTON, P.J. Dr Maritime Aircraft Systems Division, Marconi Avionics, Airport Works, Rochester,
Kent, UK

('AWTHORNE, G. Mr Thorn EMI Electronics Ltd, Penleigh Works, Wookey Hole Rd, Wells, Somerset, UK

CHEVREUL, Mr SAGEM, BP 51, 95612 Cergy Pontoise Cedex, Fr

CHIINN, P. Mr Airborne Software Division, Marconi Avionics Ltd, Borehamwood, Herts, UK

CHRISTENSEN, N. Dr MBP, Semerteichstr. 47, D-4600 Dortmund I, Ge

CINAR, U. Dr SHAPE Technical Centre, P.O.Box 174, 2501 CD The Hague, Ne

CLARY, J.B. Mr Research Triangle Institute, P.O. Box 12194, Corwallis Road Research Triangle
Park, NC 27709, US

COLLARDEAU, C. Mine Societe Crouzet, 25, rue Jules Vedrines, 26027 Valence Cedex, Fr
CORBISIER, F. L/Col. Heidestraat 23, 2850 Keerbergen, Be

CORNELISSEN. P.J. Mr Delft University of Technology, Dept. of Aerospace Engineering, Kluyverweg I,
2629 HS Delft, Ne

.1



A-2

(OUI)ERT. LiJ. Mr SIIAPF Technical Centre, P.O. Box 174, 250) ClD, The fhague, Ne
(OULMY. P. Mr Thomson ('SF. 52 rue Guynenier.92130 Issy-les Moulineaux, Fr
(ROCK 1:R. S. 1), D~r The Aerospace Corporation, P.O. Box 92957. Los Angeles. CA Q0009). L'S

CROVLLA, L. D)r Aeritalia Gruppo Sistemi Avionici ed Equipaggiamenti, 1007 2 ('aselle (I orniot.
It

(ILLYI-R. W.I. Dr RSRE MOD (PE), St Andrews Rd. Malvern WRI14 3PS. UK

I)ANIFL. i.P. Mr Thomson ('SF, 52 rue Guynerner, 92130 Issy-les-MoulineauX. Fr

DF K K .R. G. . M r NLR National Aerospace Laboratory, P.OBox 90502. NL-1006 BM Amsterdam. Ne

DILACROIX. M. Prof. l(;L. 46 rue de Provence. 75009 Paris, Fr
DI-LAIiAYS. J. Mr Flectronique Serge Dassault. 55 Quai Camnot. 92214 St (loud, Fr
DeVRIFS. J.C.Z. Mr Fokker B.. CB-BS. Posthus 7600, 1117 iz Schiphol Oost. Ne
lDeVRILS, MA. Mr Fokker By,. aid ('B/ILW. Posthus- 7600. 1117 7.V Schiphol. Ne
DIAMOND, F. Dr RADICA. Griffiss AFH. NY 13441. US
DIBBLE, R. Mr Ferranti Computer Systems Ltd, Ty Coch Way, Cwnibran. Gwent N1144 7XA. UIK

l)IJKSTRA, PiJ. Ir. RNLAF!Dk.KLU!AWO. Postbus 5953, 2290 liz Rijswijk. Ne
DOLADILLE. F. Ing. Electronique Serge Dassault. 55 quai Carnot. 92214 St ('loud. Fr
D)OLMAN. W.C. Mr Lucas Aerospace. York Road. flall Green, Birmingham BRS 81-N. U.K

I)ORP. W.A. van Mr National Aerospace Research Lab., Anthony Fokkerweg 2. 1059 CM Amsterdam.
Ne

D)OVEi, Billy Mr Mail Stop 477, NASA Langley Research Center. Hampton. VA 23665. lAS
D)OWLING. E.i. Mr Ferranti Computer Systems Ltd, Ty Coch Way,.C ('mnran. Gwent NP44 7XX. UK
D)UBOIS, B. Major Ftat Major de )a Force Aerienne VDT. I rue d'F'vere. B-1 140 Bruxelles. Be
D)UNC'AN, I. Mr Ferranti plc, Ferry Road, Edinburgh FIIS 2XS. Scotland. UIK

FSCAFFRF. F. Mr SNIAS DTO/PLE. 316 Ric. Bayonne, 3J060 Toulouse ('edex. Fr

FVAIN. R. Mrs SFENA. Aerodrome de Villacoublay. 78141 Villacoublay. Fr

FAULKNER. J.A. L(Col. Aurora Software Development Unit. CFB Greenwood N.S., (Ca
FFRRANTF. P. Mr Reparto Sperimentale Di Volo, Aeroporto Pratica di Mare. Roma, It
FIKKERT. D.W. Mr Physics Laboratory TNO. P.O. Box 208. 2509 JG The Ilague. Ne
F()LIGUET. G. Mr Thomson-CSF, 5 2 rue Guynemer, 92130 lssy-les-Moulineaux. Fr

FOLILON. M. Ing. MATRA, 17 rue Paul Dautier. 78 Velizy, Fr
FRAFDRICII. W. Mr Bundesminister der Varteidijeng. Postfach 1328, 5300 Bonn. Ge
FUCHIS. 1. Mr Teldix Gmbli. Grenzhoferweg 36, POB 105 608, 6900 Hleidelberg. Ge

(;AILI. S. Miss LABEN. Via Cassini IS. Milano, It
GFRHIARDT. L.A. Prof. School of Engineering, Rensselaer Polytechnic Institute. 110 Eighth Street, Troy.

N.Y. 1218 1,US
GIIICOPOULOS. B. Dr IlAF Technology Research Center. KETA Delta Falirou, P. Faliron. Athens, Cr

GIUBOLLINI. M. Mr Selenia s.p.a., Via dei Castelli Romani 2, Pomezia. It

GROE-.NLNDIJK. J.Q.M. Mr Fokker B.V., Postbus 7600, 1117 ZJ Schiphol-nost. Ne
GROOT, Tb.11. de Mr Directie Luchtvaartinspectie RLI). Stationsplein Gebouw 144, 1117 AA Schiphol.

Ne
GROOTE, H. von Dr MBB Ottobrun-FE 411, Postfach 80 11 60, D-8000 Munchen 80. Ge
GUILLAUME, i.P. Mr SFENA, Aerodrome de Villacoublay. 78141 Villacoublay. Fr

CUSIMANN. B. Dr Fa. LITFF (Litton Technisehe Werke), Abt. EWI), Postfach 774, 7800 Freiburg i. Br.,
Ge

GIISBERS, G.A. Mr KLM Aircraft System Group (SPL/CI), P.OBox 7700, 1II 72L Schiphol'Oost, Ne

HIAIGH, N.P.H. Mr MOD (PE) A& AEE Boscombe Down, Salisbury. Wilts SP4 OJF. UK

IIA.L., W.H. Mr British Aerospace P.L.('.. Brough. HUI 5 1 EQ. North Humberside, UK
11AMBER(;FR. W. Mr Furocontrol. Postbus 78, NL-62 3t) Zli Luchthaven Zuidlimburg. Ne

HANSEN. R. Mr Messerschmitt-Bolkow-Blohm Gmbll. P.B. 801160. 8 Munchen 80, Ge



A-3

HARRIS. Mr. K.E. Smiths Industries. Aerospace anti Defence System, Company. \kinchester Rd.
Basingstoke. Hlants R(;22 6HP, UK

HIARTUNG, W.G. SHAPE Technical Centre. P.OBox 174. 2501 (CD The Hague. Ne

IILLMICII. K. Mr Bodenseevwerk Geratetechnik. 7770 Uberlingen. Postfach 1120. Ge

HELPS. K.A. Mr Smiths Industries A.erospace & Defence Systems Company. Fveshani RU. Bishops
(leeve. ('heltenhant. Glos. GL52 4SF. UK

HENDERSON, I.11.S. Dr DTA Air. National Defence lHqs, 101 ('olonel By D~rive, Ottawa, Ontario KIA 073.
Ca

HESSEL. If. Dr MBB Ottobrunn, FE 43. Postfach 80 11 60. 8000 Munchen 80. Cie

FIIGSON, N. Mr Airborne Software Division, Marconi Avionics Ltd, Borehamss od. Flerts. UK
IGEVE, J.T. Mr National Aerospace Research Lab. NLR. P.O. Box 940502, 1006 BM Amsterdam. Ne

HOLMES. R.H. Mr Airborne Display Division. Marconi Avionics Ltd. Airport Aorks. Rochester. Kent.
UK

1IO(XERVORST. J.A.P. Mr KLM N.V.. Aircraft Systems G;roup, SPL/CI. P.OBox 7700. 1117 ZL Schiphol-
Oost. Ne

HUBER. E. Mr Messerscltmitt-Bolkow-Blohm GmbH. Unternehmensbercich Apparate. AF432I P.B. 801160, 8 Munchen 80. Ge
HUGHES, T. Mr Software Engineer. Smiiths Induatries Ltd. Bishop (leeve. Cheltenham, Glos. UIK

I IUNT. G11. Dr ADXR/E. RAE Farnborough. Farnborough, Hlants G~l 4 6T1), UK

JACK, C.D. Mr Rolls-Royce Ltd, P.O. Box 3 1. Derby. UK
JACKSON, P.W. Lt Col. NDHQ/DA vsSE 3, Ottowa. Ontario KIA 0K4. Ca
JACOBSEN, M. Mr AEG Telefunken, A 14 V3, Postfach 1730. D-7900 Ul~m. Ge

JANSSEN,. 3M. Mr RNLAF/DMKLU/AVL. Postbus 940501. 2509) LM 's-Gravenhage. Ne

JARSCH. V. Mr SHAPE Technical Centre, P.O. Box 174. 2051 CD The Hague. Ne
JONES. C. Mr MOD (PE) A&AFE Boseombe Down. Salisbury. Wilts SP4 OJF. UK
JONE.S. E.P. Mr Smiths Industries Aerospace & Deece Systems Company. Bishops Cleeve.

Cheltenham. UK
JORDAN, D. Mr Marconi Avionic Systems Ltd. Elstree Way. Borehamwood. Hlerts. UK

JURKOWSKI, D.M. Major Project Management Office CF-18, NDHQ. 101 Colonel By D~rive K IA 0K2. ('a

KENSEY, T.F, Mr EASAMS Ltd, l~q. Lyon Way. Frimley Rd. Camberley. Surrey, UK
KEPPNER. K. Mr Standard Elektrik Lorenz AG. Abt/GLS/TS. Hlell muth-llfirth. Sn 42.

7000 Stuttgart 40, (;e

KESSELMAN, M. Mr SHAPE Technical Centre, P.O. Box 174, 2501 CD The Hague. Nc
KLEINSCIIMIDT, M. Dr Fa. LITEF. Poatfach 774. 7800 Freiburg i. Br., Ge

KLEMM, R. Dr FGAN-FFM, D 5 307 Watchberg-Werthhoven. Ge
KLENK. H-. Dr rer. nat. MBB Ottobrun-FE 411. Postfach 80 11 60. 8000 Munchen 80. Ge

KRAMER. i.E. LfCdr ADA Joint Program Office. Suite 1210, Ballston Tower 11, 801 North Randolph
Street. Arlington, VA 22203. US

KRYN. R. Mr NLR, Anthony Fokkerweg 2, 1059 CM Amsterdam. Ne
KUNY. W. Mr MBB Ottobrunn FE 4, Postt'ach 80 11 60, 8000 Munchen 80, Ge

KUNZ, J. Mr Luftwaffenamt. Postfach 902 500/501/14, 5000 Koln 90, Ge

LAWES. B.R. Mr Smiths Industries, Aerospace and Defence Systems Company. Winchester Rd.
Basingstoke, Hants RG22 6HP, UK

LeROY, G.A. Mr RNLAF/DMKLU!AVL, Posthus 90501, 2509 LM 's-Gravenhage. Ne

Le('OQ. M. Mrs 3 Allce de ha Jointe CGenete, 91190 Gif au Yvette, Fr
LEJEUNE, G. C'apt. Etat-Major Force Aerienne VDT/B, Quartier Reine Elisabeth, rue d'Evere I.

B 1140 Bruxelles, Be
LEUTS('HER. A.J. Mr Physics Laboratory TNO. P.O.Box 96864, 2509 JG The Hague. Ne

LIESFIOUT. P.L.J. van Mr Physics Laboratory TNO. P.OBox 96864. 2509 JG The Hague, Ne

LONGINOTI, E. Mr Costruz. Aeronautiche. G. AGUSTA Sp.A.. 21017 Cascina Costa di Samarate.
Varese, It

LOONEY, M.J. Mr PE, MOD. ASWE, Portsdown, Cosham. Portsmouth P06 4AA. UK



LUS('FNITZ. W. Dipl. Ing. AEG-Telefunken. Sedanstrasse 10. D)-7900 Ulm 'Donau. Ge

MacKINTOSH. L.W. Mr Royal Signals and Radar Establishment. St Andre" s Rd. Mlalv'ern. AWorcs.. L1K
\IacPI1ERSON. R.W. Dr National Defence Headquarters, CRADIDSP-3. 101 Colonel By D~rive. Ottawaj.

Ontario. K I A OK 2, Ca
\lAlERNA. F. Dr (1SE. DOB 12081, 20134 Milano, It
MADSEN. T. Mr NDRE, Division for Electronics. POBox 25. '007 Kjeller. No
MALCOLM, R. Chief Frig. Marconi Avionic Systems Ltd. Fistree Way, Borehamwood. Herts. UK
M1ANDERS, P.J. Mr National Aerospace Laboratory NLR. Anthony Fokkerweg 2. 1059 CM Amsterdam.

Ne
MARAS .Ing. Via Tiburtina 12 10, Roma, It
MARILN, J. Mr rue Toussaint Catros. 33 100 Le Haillan. Fr

MARQART D.Dr FAN FE.Konistrsse2, 5307 Wachtberg-Werthhoven. Ge

MARTIN. D.J. Dr Flight Controls Division, Marconi Avionics Ltd. Airport Works. Rochester. Kent. UK
MASCARENHAS, J.M.B. Major G. Dirrecao do Servico de Telecom da FA, Rua Escola de Fxercito. Lisbon. Po

MUS .. van Mr Javastraat 43, 353 1 PN Utrecht, Ne

MEYERRATHKEN, J.J.M. Mr NLR. Anthony Fokkerweg 2. 1059 CM Amsterdam. Ne
METEG.J.A. Mr Fokker B.V. Certificatie. I'ostbus 7600, 1117 ZV Schiphol. Ne

MINALG.E. Mr FTSB/FCSD MS 477, NASA Langley Research Center. Hampton, VA 23665. US
MRILSB.Mr STTW/PNI. 129 rue de la Convention, 75 731 Paris Cedex 15, Fr

MTHLR.O. Mr Code 50 1, Software and Computer Directorate. Naval Air Development Center.
Warminster, PA 18974, US

MOLLE. Mr Societe Crouzet. 25, rue Jules Vedrines, 26027 Valence Cedex. Fr
MONTCHEUIL. J. De ICA DTEN/STEN. 4 Avenue de la Porte d'lssy, 75025 Paris. Fr
MORFEAU,.C. (CA SITTE/PNI, 129 rue de la onventiont, 75 731 Paris Cede5, F r
MOWAT. A.R. Mr Ferranti Ltd, Silverknowles, Ferrn Rd. Edinburgh EH14 4AD. Scotland. UK

NAYLOR. P. Mr Westland Helicopters Ltd, Yeovil, Somerset. UK
NEGRE. J.M. log. 37 Ave. Louis Breguet. 78146 Velizy, Fr
NOUVELLON. J. Mr SAGEM. Chaussee Jules Cesar, 95 Osny, Fr

O'IIARA. D.W. Dr Smiths Industries Aerospace and Defence Systems Co)mpany, Evesham Rd. Bishops
('leeve, Cheltenham, Glos. GL52 4SF UK

OXMAN, S. Mr SHAPE Technical Center. P.O. Box 174, 2501 CD The Ilauge. Ne

PANKHURST. R.V. Mr MOD (PE) A&AEE Boscombe Down, Salisbury. Wilts SP4 QIF. UK
PEARCE. G. Mr British Aerospace plc, Richmond Rd. Kingston upon Thames, UK
PEDERSEN, J.T. Dr A/S Kongsberg Vapenfabrikk, Postbox 25. N-3601 Kongsberg, No
PELISSERO, R, Dr Ing. Aeritalia, Gruppo Equipaggiamenti. 10072 Caselle (Torino). It
PIJPERS, E.W. Mr NLR. Anthony Fokkerweg 2, 1059 CM Amsterdam. Nc
PORSIUS. D. Mr KLM/NV, Aircraft Systems Group, SPL/CI, P.OBox 7700, 1117 ZL Schiphol-Oost.

POST. J.A. Mr CI3-BS, P.OBox 7600. 1117 ZJ Schiphol. Ne

PRICE, C.P. Mr British Aerospace PLC. Aircraft Group, Warton Division. Warton Aerodrome.
Preston PR4 l AX. UK

PULFORD. K.J. Chief Eng. Marconi Avionic Systems Ltd, Elstreee Way. Borehiamwood, Herts. UK
PUTZKI. R. Dr Clo 5(5, Oehlecherring 40, 2000 Hamburg 62. Ge

REITZ, S. Mr Messerschmitt-Holkow-Blohm GmbH, AEI 35, P.B. 801160 8 Munchen 80. Ge
RUNNALLS. A.R. Dr Marconi Avionics Ltd. Airport Works. Rochestet, Kent. UK

SALMON. .J.P. Capt. Etat-Major Force Aerienne VDT/B. Quartier Reine Elisabeth. rue d*Evere I.
B 1140 Bruxelles, Be

SANDNER. N. Dr Fu LITEF. Loreacher Strasse 18 POB 774, 7800 Frieburg. Ge



A.

SANGLARD, A. Mr Societe Crouzet. '5 rue Jules Vedrines. 2602' Valence (Celcx, Fr
SANSON. P'. Mr [lectronique Aerospatiale. B.P. 5I. 93350 Le Bourget Principal. Fr

S(IIAAISF. If. MIr Bundesakadernie fur Wehirverwaltung und Wehirtechnik. SeckenheimerT I andtr.
8 10, 6800 Mannheim 25. Ge

SCIIL. P. Mr Breguet Aviation, 7g, Quai Carnot. 922 14 St Cloud. Fr
S(IINLIDEWIND. N. Prof. Code 54Ss. Naval Postgraduate School. Monterey. CA 03940. LIS

SCIIROIPL. 11. D~r Teldix Girbil. Grenzhoferweg 316 I'OB 105 608, 6900 Heidelberg. Ge
S1:RGLANT. W.A. Capt. Software Development Unit. Canadian Forces Base Greenwood. Green~ood. \.o()a

Scotia POB I NO. Ca
SHIAW. R. Mvr AFWAL/AAWP. Wright-Patterson AFB. 01l 45433. I'S
SIMPSON. h.R. D)r British Aerospace Public Ltd Co.. Dynamics Group. Stevenage Division. Six IHills

Way, Stevenage. Hierts SG I 2DA. UK
SIROT. B. Mr 6 Ave Auguste Dutreux. 781 20 La Celle St Cloud. Fr
SKORCZFWSKI. L. Mr British Aerospace plc. Aircraft Gp, Warton Division. Warton Aerodronme. Preston.

WarnsterPAX 1874K U

STUEBIN(;. HG(. Mr (Code 50OC. Software & Computer Directorate. LIS Naval Air Development Center.
SUDWORTH. .P. Dr Roalirctraf EsA . F18 borugh HUtSU

SUMMERBELL. F. Mr British Aerospace plc. Richmnond Rd, Kingston-upon-Thames. Surrey. UK
SUNDBERG, G. Mr Tracor. Inc., 65 West Street Road, C-206, Warminster, PA 18974. U S
SUNDSTROM. D.F. Dr General Dynamics, P.OBox 748,.MZ 245 1. Fort Worth, Texas 7(1101,.US

SWANN, T.G. Dr Marconi Avionics Ltd. Elstree Way, Borehamwood. Ilerts. UK
SYVFRTSEN. A. Mr RNOAF/MATFRIFL Command, PO Box 10, 2007 Kjeller. No

TAILLIBERT. P. Mr Electronique Serge Dassault. 55 quai Carnot. 92214 St Cloud. Fr
TANNER. G.F. Mr Rolls-Royce Ltd. P.O. Box 3. Filton. Bristol. BS 12 7QF. UK
TIMMERS. HI. Ir. Nat. Aerospace Lab.. NLR. Ant. Fokkerweg 2. 1059 CM Amsterdam. Ne
rioA, .(1. Mr Fokker B.V., Posthus 7600, 1117 ZJ Schiphol-Oost. Ne
TUINENBUR;. l1.A. Mr National Aerospace Research Lab.. Anthony Fokkerweg 2, 1059 CM Amsterdamn,

Ne

TURNER. G.A. Mr Dowty Rotol Ltd, Cheltenham Rd, Gloucester. UK

VA(;NARELLI. F. L/Col. Aeronautica Militare Italiana. Officio del Delegato Nazionale AGAR). 3 Pie
Adenauer. 00 144 Roma IEUR. It

VALLBRACHT, G. Mr SHIAPE Technical Centre. P.OBox 174. 2501 ('1) The Hague. Ne
VAQUIER, Mine SFENA, Aerodrome de Villacoublay. 78141 Villacoublay. Fr
VEEZE. J.P. Mr Rijksluchtvaartdienst. P.O.Box 7555, 1117 ZH Schiphol. Ne

VERBEKE. A. Mr Societe Crouzet. 25 rue Jules Vedrines. 26027 Valence Cedex. Fr
VICKERY. B.L. Dr Ferranti plc, Navigation Systems Dept.. Silverknowles. Edinburgh F114 4A1).

Scotland. UK
VOG;EL. M. Dr DFVLR. D8031I Oberpfaffenhofen, Ge
VOGELPOEL, A.A.F. Mr KLM Schiphol East. Dept. SPL/CI. P.O. Box 7700. Ne
VOGL, W. Mr Messerschmitt-Bolkow-Blohm GmbH. Military Aircraft Division FFS2. P.B. 801160.

8 Munchien 80, Ge
VOLES. R. Dr Thorn EMI Electronics Ltd. 135 Blyth Road. Hayes, Middlesex UB3 IBRP. UK
VRIES, i.C.Z. de Mr Fokker BV, P.OBox 7600, 1117 ZJ Schiphol Oost. Ne

WAGGOTT, i.G. Capt. National Defence Headquarters. Ottawa. Ontario K IA 0K2, Attention DAEM 2-2-2.
Ca

WARE, W. Dr Rand Corp.. 1700 Main St. Santa Monica. CA 90406. US
WASCH. R.B.A. Mr NLR. P.O.Box 90502, 1006 BM Amsterdam. Ne
WEISS. D.M. Mr Code 7592. US Naval Research Laboratory. Washington. D.C. 20375, UIS

WEISS, M.T. Dr The Aerospace Corporation, P.OBox 92957, Los Angeles, CA 90009. US
WESTBROOK, R.E. Mr Code 31903, Naval Weapons Center, China Lake, CA 93555, UIS
WESTCOTT, P. Mr Westland Helicopters Ltd, Yeovil, Somerset, UK



A-6

WIIALLEY' J. MT British Aerospace PLC, Woodlord Aerodrome, Stockporl. Cheshire SK' IQR. UK

WIEMER. W. Dr Messerschmitt-Bolkow-Blohmi Gmblt. .A A 135. Po-stfach 801144. I)-8000

Munchen 80, Ge

WILKINSON, A.l. Mr Westland Helicopters Ltd,Yeovil. Somerset. UK

WILLIAMSON. A.F. Mr Marconi Avionics, Airport Works, Rochester Kent Mtli 2X\

WILSON, R.LI. Mr Marconi Avionic Systems Ltd, Elstree Way Boreham\ood. lierls'UK

ZALUSKI, F. Mr Director of Air Requirements, 101 Colonel By Drive, Ottawa, Ontario K IA OK2.

Ca

ZIEGLER, J. Mr ERNO Raumfahrttecfnik GmbH, HunefelLstrasse 1 5 Alt. KP5. 2800 Bremen 155.

Ge



REPORT DOCUMENTATION PAGE
1.Recipient's Reference 2.Originator's Reference 3. Further Reference 4.Securitv Classification

of Document

AGARD-CP-330 ISBN 92-835-0323-6 UNCLASSIFIED

S5Originator Advisory Group for Aerospace Research and Development

North Atlantic Treaty Organization
7 rue Ancelle, 92200 Neuiy sur Seine, France

"6. Title

SOFTWARE FOR AVIONICS

7. Presented at
the Avionics Panel's 44th Symposium held at the Atlantic Hotel, The
Hague-Kijkduin, Netherlands, 6- 10 September 1982.

8.Author(s)/Editor(s) - 9. Date

Various January 1983

I0. Author's/Editor's Address 1i Pages

Various 472

12. Distribution Statement This document is distributed in accordance with AGARD

policies and regulations, which are outlined on the
Outside Back Covers of all AGARD publications.

13. Keywords/Descriptors

Avionic system software Software technology
Avionic embedded computer resources Ada®
Avionic software life cycle considerations MASCOT
Avionic software design and development Avionic software standards

!5. Abstract
These Proceedings include the papers and discussions presented at the AGARD Avionics
Panel Symposium on "Software for Avionics" held in The Hague-Kijkduin, Netherlands,
in September 1982.

The last decade has brought about an explosion-like progress in electronic data
processing technology. Computer capabilities have increased while computer size and
costs have decreased. The military need for high perf,,rmance navigation, weapon
delivery, flight control, and defensive avionic systems has lead to highly integrated
digitized avionic systems. The costs and complexity of the associated software are

increasing rapidly.
This symposium addressed the impact of software on avionic systems.

The symposium provided an overview of the software elements associated with embedded
computer resources and addressed current issues related to software requirements,
design, development, verification and validation. Software life-cycle considerations in
the areas of cost, management and maintenance were identified. Trends in software
technology and key features contributing to more efficient and more economical
software programs in the NATO countries were discussed.

Included with the 44 papers presented are the discussions that followed the presentations
of papers. A Technical Evaluation Report has been included by the Editor to
summarize and highlight the results of the symposium.

I



0 E 2

0 0 a
0 0 0

< 0 E >

00000 0 0 0

0E 0.

C) C-

.0<

V V

2 8

V >1 0
L) a, <

0 wj C)I' t C )C

c 4, C. u~C)

u.j0 a m0 0mE

OC < cn0C OZUt "t

C)A V>,o C -C

0) ~

~2 0  
V.00 0 .0 C) c c :ra>

!2 ~ C0 0 2 0 C

><V >V~ >~~ 0 a <

< <V

17



0. 
'

0 *1.,U

c C!

!E C:5 7;

E 5

E 0 0 -=~
C U 

0 .; A 5F~ U V . 0 0 ~ L ~ C
0~. 2 , S C

~ C 00

E E
E.0~ * 0* 2o'

V0C.~

00 E 0 . .

c ri 2
lu. ~ . 0 0.u 2 w t-

:2 5

UE" E:'-2 U

ra r. E0

to -V0 -8

"~ ~ Et *~2
E C ' ~ ~~~ ~ C 

0 0 
U 

0 0 
U

oO 0)

0 10 1 C



NATO OTAN
NATO OTANDISTRIBUTION OF UNCLASSIFIED

7 RUE ANCELLE .92200 NEUILLY-SUR-SEINE

FRANCE AGARD PUBLICATIONS

Telephone 745.08.10 • Telex 610176

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD
publications is made to AGARD Member Nations through the following National Distribution Centres. Further copies are sometimes
available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies listed below.

NATIONAL DISTRIBUTION CENTRES
BELGIUM ITALY

Coordonnateur AGARD - VSL Aeronautics Militare
Etat-Major de Ia Force Ahrienne Ufficio del Delegato Nazionale all'AGARD
Quartier Reine Elisabeth 3, Piazzale Adenauer
Rue d'Evere, 1140 Bruxelles Roma/EUR

CANADA LUXEMBOURG
Defence Science Information Services See Belgium
Department of National DefenceOttawa, Ontario K I A OK2 NETHERLANDSNetherlands Delegation to AGARD

DENMARK National Aerospace'Laboratory, NLR
Danish Defence Research Board P.O. Box 126
Osterbrogades Kaserne 2600 A.C. Delft
Copenhagen 0 NORWAY

FRANCE Norwegian Defence Research Establishment
O.N.E.R.A. (Direction) Main Library
29 Avenue de Ia Division Leclerc P.O. Box 25
92320 Chitillon sous Bagneux N-2007 Kjeller

GERMANY PORTUGAL
Fachinformationszentrum Energie, Direc;lo do Serviqo de Material
Physik. Mathematik GmbH da Forca Aerea
Kernforschungezentrum Rua da Escola Politicnica 42
D-7514 Eggenstein-Leopoldshsfen 2 Lisboa

Attn: AGARD National Delegate
GREECE

Hellenic Air Force General Staff TURKEY
Research and Dcvelopment Directorate Department of Research and Development (ARGE)
Holargos. Athens Ministry of National Defence, Ankara

UNITED KINGDOM
ICELAND Defence Research Information Centre

Director of Aviation Station Square House
c/o Flugrad St. Mary Cray
Reykjavik Orpington, Kent BR5 3RE

UNITED STATES
National Aeronautics and Space Administration (NASA)
Langley Field, Virginia 23365
Attn: Report Distribution and Storage Unit

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE iNASA) DOES NOT HOLD
STOCKS OF AGARD PUBLICATIONS. AND APPLICATIONS FOR COPIES SHOULD BE MADE

DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

PURCHASE AGENCIES

Microfiche or Photocopy Microfiche Microfiche or Photocopy
National Technical Space Documentation Service British Library Lending
Information Service (NTIS) European Space Agency Division
5285 Port Royal Road 10, rue Mario Nikis Boston Spa. Wetherby
Springfield 75015 Paris, France West Yorkshire LS23 7BQ
Virginia 22161, USA England

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, title,.author or editor, and
publication date. Requests to NTIS should include the NASA accession report number, Full bibliographical references and abstracts

of AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements (GRAI
published by NASA Scientific and Technical published by the National Technical
Information Facility Information Services, Springfield
Post Office Box 8757 Virginia 22161, USA
Baltimore/Washington International Airport
Maryland 21240. USA

hl
Printed by Specaftsed rinting Servces Limited
40 CAVlgwe Lane, Losaihton. Essex IGIO 3TZ

ISBN 92-835-0323-6



IMill


